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Abstract

Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. The latest studies revealed
that aggressive breast cancer, especially the triple-negative breast cancer (TNBC) subtype was frequently associated with
apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was
identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast
cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in
triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in
aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion
and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of
events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and
promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding
of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as
a responsive molecular target for TNBC chemotherapy.
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Introduction

Breast cancer is a heterogeneous disease, classifiable into five

major biologically subtypes, i.e., luminal A, luminal B, basal,

ERBB2-overexpressing and normal-like [1,2,3]. Importantly, this

molecular taxonomy has significant clinical value because some of

the molecular phenotypes (especially Her2 and basal-like) show

aggressiveness and unfavorable prognosis [2,3]. The triple-

negative breast cancer (TNBC), which accounts for 15%–20% of

total breast cancer patients, shares many similarities with the basal

subgroup [4,5]. It refers to any breast cancers that do not express

the genes for estrogen receptor (ER), progesterone receptor (PR)

and Her2/neu. The bulk of data indicate that this subgroup of

patients may have a poorer prognosis than those who with

hormone receptor-positive or Her2/neu-positive genotypes [6,7].

Therapy of TNBC has been a challenge to the physicians because

it is resistant to many effective therapeutic approaches. So far,

much of the research interest has been focused on identification of

new biomarkers of TNBC, but the understanding of its molecular

events is still limited. Results from only a few studies suggested that

FOXC2, ID1 and LSD1 were involved in the metastasis of TNBC

[8,9,10]. Weinberg and colleagues found that expression of

FOXC2 was induced in cells undergoing epithelial-mesenchymal

transition (EMT), and FOXC2 was correlated with the highly

aggressive basal-like subtype of human breast cancers [10].

Moreover, LBX1, an EMT inductor, was shown to be upregulated

in the triple-negative basal-like subtype [11]. These studies

implicated that EMT played a critical role in the invasion and

metastasis of TNBC.

A number of studies suggest that carcinoma cells often activate a

trans-differentiation program termed the epithelial-mesenchymal

transition (EMT) to acquire the ability to execute the multiple

steps of the invasion-metastasis cascade [12,13]. During an EMT,

epithelial cells lose cell-cell contacts and cell polarity, express the

mesenchymal markers, and undergo major changes in the

cytoskeleton that enables cells to acquire a mesenchymal

appearance with increased motility and invasiveness [14,15,16].

EMT process can be induced by several crucial signaling pathways

including the TGF-b [17], Wnt [18] and Notch [19]. Certain

developmental factors, such as Snail, Slug, ZEB1 and FOXC2,

were also demonstrated to regulate EMT [20].

In recent years, NEDD9 has been confirmed to contribute to

the development of several cancer types [21,22]. Recent studies

showed that Nedd9-null genetic background significantly limited
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mammary tumor initiation in the MMTV-polyoma virus middle T

genetic model, suggesting that NEDD9 expression played an

important role in breast cancer [23]. Despite these diverse reports,

the precise functions and the mechanistic action of NEDD9 have

not been well defined. In this study, we demonstrate that NEDD9 is

a potent activator of EMT. In mammary epithelial cells, NEDD9

can activate ERK signaling, increase the expression of EMT-

inducing transcription factors Snail/Slug and their interactions in

vivo with the E-cadherin promoter. Ectopic overexpression of

NEDD9 led to morphological transformation, induced character-

istic molecular features of EMT and enhanced cellular migration,

invasion and proliferation. Analysis of NEDD9 expression across

different cancers revealed an apparent correlation of this gene with

the aggressive human triple-negative breast cancer.

Materials and Methods

Ethics statement
Written informed consent was obtained from all participants

involved. We obtained ethics approval from the ethics committees

at The Tumor Hospital of Jilin Province and The Bethune

Hospital of Jilin University.

Tissue specimens and cell culture
Breast carcinoma tissues were obtained from the Tumor Hospital

of Jilin Province and the Bethune Hospital of Jilin University.

Samples were frozen in liquid nitrogen immediately after surgical

removal and maintained at 280uC until use. All human tissues were

collected using the protocols approved by the Ethics Committee of

the Jilin Tumor Hospital. The normal human breast epithelia cell

lines and the human breast cancer cell lines were obtained from the

Institute of Cell Biology, Shanghai, China.

Plasmid constructs and transfection
The E-cadherin promoter plasmid was a gift from Dr. Ji-

Hshiung Chen (Graduate Institute of Molecular and Cell Biology,

Tzu Chi University, Taiwan). The LZRS-Ires-Nedd9 plasmid was

generously provided by Dr. Lynda Chin (Department of

Dermatology, Harvard Medical School, Boston). Nedd9 cDNA

was cloned using the following primers: 59-CCGCTCGA-

GATGTGGACAAGGAATCTTATGGC-39 (sense) and 59-CC-

GGAATTCAGAACGTTGCCATCTCCAGCAAAGA-39 (anti-

sense). The resultant DNA fragment was inserted to pEGFP-N1

vector at XhoI and EcoRI sites. Short interfering RNA (siRNA)

targeting the Nedd9 sequence (GAAGCTCTATCAAGTGCCA)

was synthesized. Oligonucleotide that represents the siRNA was

cloned into the pSuper-neo vector (Oligoengine) between EcoRI

and HindIII sites following the manufacturer’s instructions.

NEDD9-GFP and pEGFP-N1 were transfected to the MDCK

and MCF10A cells using FuGENE HD (Roche) following the

manufacture’s instructions. Cells were selected with G418 for

more than two weeks to establish NEDD9-MDCK, EGFP-

MDCK, NEDD9-MCF10A, EGFP-MCF10A. NEDD9 siRNA

and control siRNA were transfected to the MDA-MB-231 cells

using Amaxa nucleofector kits (Lonza). Cells were selected with

G418 for more than two weeks to establish NEDD9 siRNA-MDA-

MB-231, control siRNA-MDA-MB-231.

Wound-healing assay
Cells (16106 cells per well) were seeded on 6-well plates. 24 hr

later, cell layers were wounded in serum-free medium with 1%

bovine serum albumin using a sterile 200 ml pipette tip. After

washing away the suspended cells, cells were subjected to serum

starvation. The progress of migration was photographed in six

regions, immediately and during 2 days after wounding (0/12/24/

48 hr), under an inverted microscope.

RNA extraction, reverse transcription and quantitative
RT-PCR

Total RNA was isolated using the Trizol reagent (Invitrogen)

following manufacturer’s instructions. One microgram RNA was

used for cDNA synthesis using a reverse transcriptase reaction kit

(Promega). Quantitative real-time RT-PCR was carried out on an

ABI Prism 7000 Sequence Detection System (Applied Biosystems),

and SYBR Green (TOYOBO) was used as a double-stranded

DNA-specific fluorescent dye. The PCR primer sequences were

mentioned in the Methods S1.

Western blotting
Western blotting was performed as described previously [24].

Monoclonal anti-NEDD9 (ab18056), anti-snail (ab63371), anti-

slug (ab27568) was purchased from Abcam (Cambridge, USA).

Monoclonal anti-vimentin (v6630) and anti-b-actin were pur-

chased from Sigma (St. Louis, Missouri). Monoclonal anti-

fibronectin (610077) was purchased from BD Biosciences (Cali-

fornia, USA). Monoclonal anti-occludin (33–1500) was purchased

from Invitrigen (Invitrigen, USA). Monoclonal anti-p44/42 MAP

Kinase (137F5) and phospho-p44/42 MAPK Thr202/Tyr204

(197G2), polyclonal anti-E-cadherin (#4065) and anti-N-cadherin

(#4061) antibodies were purchased from CST (USA).

Immunofluorescence
Cells were grown on glass cover-slips in a six-well plate and

washed three times with PBS then fixed in 4% formaldehyde

solution and permeabilized with 0.1% Triton X-100 in PBS for

5 min. Cells were blocked with 2% BSA in PBS for 30 min at

room temperature. Cover-slips were incubated with respective

primary antibodies at 1:100 dilutions for 1 hr and then washed

with PBS and incubated for 1 hr with TRITC-conjugated

secondary antibodies at 1:50 dilutions (Zhongshan, China). Cells

were further washed in PBS and mounted with Vectashield

mounting medium containing 49, 6-diamidino-2-phenylindole

(DAPI; Vector Laboratories) and were analyzed using fluorescence

microscopy. Photographs were taken under a Nikon microscope

with a fluorescein isothiocyanate filter.

Cell migration and invasion assay
In vitro cell migration assays were performed as described

previously [25]. Images of three random 610 fields were captured

from each membrane and the number of migratory cells was

counted. The means of triplicate assays for each experimental

condition were used. Similar inserts coated with Matrigel were

used to determine invasive potential in the invasion assay.

MTT assay
Cell proliferation was assessed by using the MTT [3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. Cells

were plated at 16105 cells/well on 96-well plates. At 24, 48 hr after

transfection, 20 ml of MTT (5 mg/ml) was added to each well; the

samples were incubated for 4 hr at 37uC and then sub-cultured to the

medium with 100 ml dimethyl sulfoxide (DMSO). The absorbance of

each well was determined at 492 nm. Survival percentage (%) was

calculated relative to the control.

Colony formation assay
Cells were plated in 10-cm tissue culture plates 24 hr before

transfection. pEGFP-N1 control vector or NEDD9-GFP expression
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vector was transfected. 24 hr later, the transfected cells were diluted,

re-plated, and selected in 10-cm plates containing 1 mg/L G418 for

12 days. Colonies were stained with crystal violet (Sigma-Aldrich).

Luciferase reporter assay
Reporter gene assays were done as previously described [24].

Briefly, 56104 cells were seeded in 24-well tissue culture plates

24 hr before transfection. The E-cadherin promoter luciferase

reporter was transfected at 100 ng/well and the Renilla luciferase

control plasmid pREP7-RLuc was cotransfected at 50 ng/well as

an internal control reporter. For reporter assays in HEK293T

cells, b-catenin was used to activate the reporter gene. Increasing

amounts of NEDD9-GFP expression vector were transfected into

cells. Thirty hours post transfection, cells were washed and lysed in

passive lysis buffer (Promega) and the transfection efficiency was

normalized to the paired Renilla luciferase activity by using the

Dual Luciferase Reporter Assay System (Promega) according to

the manufacture’s instructions.

Chromatin immunoprecipitation assay
The protocol for chromatin immunoprecipitation (ChIP) was

described elsewhere [24]. Briefly, the chromatin solution was

precleared with 50 ml of protein A-agarose beads (Upstate

Biotechnology). The soluble fraction was collected and 5 mg of

antibodies was added. The precipitated chromatins were analyzed

by PCR. Primer 1 and 2 were used to amplify the E-cadherin

promoter regions from 2600 to 2329 and 2359 to 263,

respectively. A human negative control was designed. The primers

Figure 1. Expression of NEDD9 in breast tissue samples. A, NEDD9 levels in normal breast and breast cancer tissues. Normalized NEDD9 mRNA
expression was measured by quantitative RT-PCR with b-actin expression as the internal control. B, Representative IHC of NEDD9 protein expression
in paraffin-embedded human primary breast cancer and adjacent normal tissues. a, faint cytoplasmic staining of NEDD9; b, moderate cytoplasmic
staining of NEDD9; and c, strong cytoplasmic staining of NEDD9. C, Western blotting and qRT-PCR analysis of endogenous NEDD9 expression in
normal breast epithelial cell lines and in breast cancer cell lines. b-actin was used as a loading reference.
doi:10.1371/journal.pone.0022666.g001
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used were: P1, sense: 59-TGGTGGTGTGCACCTGTACT-39,

antisense: 59- GACCTGCACGGTTCTGATTC-39; P2, sense:

59- CGAACCCAGTGGAATCAGAA -39, antisense: 59- GCG-

GGCTGGAGTCTGAACTG -39; and the human negative

control sense: 59-ATGGTCAACCCCACCGTG-39, antisense:

59- TGCAATCCAGCTAGGCATG-39.

Statistical analysis
Student test was used to calculate the statistical significance of

the experimental results. The significance level was set as *P,0.05

and **P,0.01. Error bars denote the standard deviations (SDs).

Results

NEDD9 was overexpressed in human aggressive breast
cancers

NEDD9 was expressed in several types of tumors [21,22,26].

This observation prompted us to investigate whether NEDD9 was

also overexpressed in breast cancers. We analyzed 20 breast tumor

samples, together with their adjacent normal tissues, from breast

cancer patients. The results revealed a statistically significant

increase in NEDD9 mRNA expression in tumors, compared with

their adjacent normal mammary tissues (Fig. 1A). We then

employed immunohistochemistry (IHC) to assess the NEDD9

protein expression in the paraffin-embedded mammary tissue

sections from 84 breast cancer patients in parallel with the

surrounding normal breast epithelia. The results indicated that,

while normal mammary epithelial cells displayed none or weak

NEDD9 staining (Fig. 1B, a), breast carcinoma cells were positive

for NEDD9 staining in cytoplasm and/or in nucleus (Fig. 1B, b

and c). Further analysis of the data revealed that NEDD9

expression was associated with several adverse prognostic markers,

including estrogen receptor (ER) negativity and high tumor grade

(Table S1).

Interestingly, high levels of NEDD9 expression were associated

with aggressive breast cancers, including ER2/PR2/Her22

subtype of invasive ductal breast cancers and Her2/neu-positive

breast cancers (Table 1 and Table S1). As shown in Table 1,

31.82% of the TNBC tumors and 24.00% of Her2+ subtype

tumors exhibited high levels of NEDD9 expression, whereas only

11.62% of the common ER+ subtype of tumors showed high

expression of NEDD9 protein. To date, only a few distinct

molecular markers have been identified that are uniquely

associated with TNBC [10,27,28,29]. NEDD9 expression there-

fore may prove to be a useful diagnostic marker for this subtype.

Moreover, western blotting analysis of immunoreactive NEDD9 in

established mammary epithelial cell lines indicated that the levels

of NEDD9 in aggressive breast cancer cell lines were considerably

higher than those in MCF10A cells derived from normal

mammary epithelial cells (Fig. 1C). Collectively, these data suggest

that NEDD9 is dominantly overexpressed in human aggressive

breast cancer.

NEDD9 was a positive regulator of migration, invasion
and proliferation in highly aggressive TNBC cells

The above results indicated that the endogenous NEDD9

mRNA level was barely detectable in MCF10A cells, but was

expressed in several invasive breast cancer cell lines. This suggests

that NEDD9 may also play a role in breast cancer migration and

invasion. To validate this, we examined the function of NEDD9 in

breast cancer by repressing its expression in two highly aggressive

TNBC cell lines, MDA-MB-231 [30] and HCC1937 [31]. To test

whether constitutive NEDD9 expression in MDA-MB-231 cells

contributes to their oncogenicity, we knocked down the endoge-

nous NEDD9 by a specific siRNA. The efficiency of this gene

silencing protocol was confirmed by western blotting (Fig. 2A). As

shown in Fig. 2B and C, using scratch wound assay, we showed

that the NEDD9 siRNA-MDA-MB-231 cells had only completed

a half closure at 24 hr compared to the control siRNA-MDA-MB-

231 cells. The trans-well migration assays also demonstrated that

the control cells migrated approximately 2 times faster than

NEDD9 siRNA-MDA-MB-231 cells (Fig. 2D). To further validate

the roles of NEDD9 in regulating cell invasion, we performed

trans-well Matrigel invasion assay to assess the ability of cells to

invade through the Matrigel layer. As shown in Fig. 2E, NEDD9

siRNA-MDA-MB-231 cells invaded much slower than control

cells. Moreover, results from MTT assays revealed that stable

expression of NEDD9-siRNA inhibited the proliferation of MDA-

MB-231 cells (Fig. 2F). Colony formation assays also confirmed

that knockdown of NEDD9 expression markedly decreased the

number of MDA-MB-231 cell colonies (Fig. 2G, H). In order to

rule out the false positive results of migration and invasion caused

by proliferation inhibition, we carried out representative assays in

the presence of 12 mM mitomycin C (MMC), an alkylating agent

which inhibits DNA synthesis. As a result, we found no significant

difference between groups treated with and without MMC (Figure.

S1). These findings suggested that inhibition of NEDD9 expression

reduced the migration, invasion and proliferation of MDA-MB-

231 cells. Similar results were obtained with HCC1937 human

breast cancer cells when NEDD9 expression was repressed by

siRNA (Figure. S2). We next examined the function of NEDD9 in

mammary epithelial cells. We showed that overexpression of

NEDD9 in MCF10A cell increased cell migration (Fig. 3B–D) and

invasion (Fig. 3E).

NEDD9 promoted epithelial-mesenchymal transition
(EMT)

NEDD9 has been shown to be a target gene of TGF-b cell

signaling [32,33], which is an important signaling in epithelial-

mesenchymal transition (EMT), and we found that NEDD9

overexpression in MCF10A mammary epithelial cells changed

morphology of the cells (Fig. 4E). So we tested whether NEDD9,

on its own, is sufficient to induce the EMT program in a Maden-

Darby canine kidney epithelial cell line (MDCK) which has been a

widely used model to study epithelial cell biology [34,35]. First, the

NEDD9-MDCK cells were generated and confirmed by immu-

noblotting (Fig. 4A). As can be seen in Fig. 4B, after ectopic

NEDD9 expression, MDCK cells displayed a spindle-like,

fibroblastic morphology, one of the main characteristics of

EMT. At the molecular level, expression of both epithelial and

mesenchymal molecular markers was confirmed by western

blotting and immunofluorescence (Fig. 4C). It can be seen that

the epithelial markers E-cadherin, Occludin and b-catenin were

significantly reduced in NEDD9-MDCK cells. Meanwhile, E-

cadherin and Occludin were lost from the cell membranes, as

revealed by immunofluorescence. In contrast, the mesenchymal

Table 1. The percentage of NEDD9 expression in breast
cancers.

Parameter High Low

Non-aggressive ER+(n = 43) 11.62% 88.38%

aggressive HER2+(n = 25) 24.00% 76.00%

Triple negative(n = 22) 31.82% 68.18%

doi:10.1371/journal.pone.0022666.t001
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markers, Fibronectin, Vimentin and N-cadherin, which are

positively correlated with EMT, were dramatically upregulated

(Fig. 4C). We then examined whether NEDD9 could induce EMT

process in MCF10A human mammary epithelial cells. The

NEDD9-MCF10A cells were generated and confirmed by

immunoblotting (Fig. 4D). Similarly, we found that the morphol-

ogy of the cells changed from epithelial to mesenchymal-like

(Fig. 4E); and overexpression of NEDD9 in MCF10A cells caused

the reduction of the epithelial markers and increase of the

mesenchymal markers (Fig. 4F).

Next, we tested whether suppression of endogenous NEDD9

expression is sufficient to reverse the EMT progression. We

showed that after knockdown of NEDD9 in MDA-MB-231 cells,

the mesenchymal markers N-cadherin, Vimentin and Fibronectin

were reduced, whereas the epithelial markers E-cadherin,

Occluding and b-catenin were increased, as revealed by western

blotting (Fig. 4G). Similar results were obtained by using

immunocytochemistry. Concurrently, the NEDD9 siRNA-MDA-

MB-231 cells displayed an egg-shaped, epithelial-like morphology

(Fig. 4H), consistent with the increase of epithelial markers and the

decrease of mesenchymal molecular markers. These results suggest

that suppression of NEDD9 in TNBC cells not only reduced

migration and invasion but also partially reversed the EMT

process.

Figure 2. Suppression of NEDD9 expression inhibited tumor cell migration, invasion and proliferation. A, NEDD9 expression in NEDD9
siRNA-MDA-MB-231 cells. The level of NEDD9 in NEDD9 siRNA-MDA-MB-231 and control siRNA-MDA-MB-231 was determined by western blotting. B,
C, Knockdown of NEDD9 inhibited MDA-MB-231 cell motility. Cells were plated for a scratch wound assay. Photographs were taken at 0, 6, 12 and
24 hr after wounding. The percentage of wound closure was calculated using Image J software. D, E, Migration and invasion assays using either
control siRNA-MDA-MB-231 or NEDD9 siRNA-MDA-MB-231 cells. The migration and invasion ability is presented as fold change in number of cells
migrated to the bottom chamber. Bars represent the mean SEM of samples measured in triplicate, and each experiment was repeated at least three
times. F, Effect of NEDD9 on cell proliferation. MTT assay was used to estimate the proliferation at different time points. G, H, Effect of NEDD9 on
colony formation. Cells were cultured in the presence of 1 mg/L G418 for 2 weeks. Colonies were stained with crystal violet.
doi:10.1371/journal.pone.0022666.g002
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Finally, we tested whether NEDD9 contributes to EMT in

vivo. We assessed the correlation between the level of NEDD9

and that of the mesenchymal markers, such as Vimentin and

Fibronectin in 32 aggressive breast tumors. We found that

positive expression of NEDD9 was significantly associated

with the expression of Vimentin and Fibronectin (Fig. 5).

Overall, these results demonstrate that NEDD9 is a regulator

of EMT.

Figure 3. Ectopic expression of NEDD9 enhanced the migration and invasion in MCF10A cells. A, Stable overexpression of NEDD9 in
MCF10A cells. The expression level of NEDD9 in NEDD9-MCF10A cells was determined by western blotting. B, C, NEDD9 enhanced the motility of
MCF10A cells. Cells were plated for a scratch wound assay. D, E, Migration and invasion assays in NEDD9-MCF10A and NEDD9-GFP cells.
doi:10.1371/journal.pone.0022666.g003

NEDD9 Promotes EMT in Breast Cancer
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NEDD9 promoted EMT through the ERK-Snail/Slug signaling
To further investigate the molecular events involved in

NEDD9-induced EMT, we first tested whether NEDD9 is capable

of interfering with E-cadherin promoter activity by using a human

E-cadherin proximal regulatory promoter luciferase reporter gene

plasmid. Transient expression of NEDD9 in HEK293T cells

resulted in strong downregulation of the activities of reporter gene

(Fig. 6A). Similar results were obtained with MCF10A cell line

(Fig. 6B). Moreover, mRNA (Fig. 6C) and protein (Fig. 4F)

expression levels of E-cadherin were also reduced upon NEDD9

overexpression in MCF10A cells. These data indicate that

NEDD9 is a potential factor that downregulates E-cadherin

expression during EMT.

Since NEDD9 is not a transcription factor, we wondered

whether Snail, Slug, Twist or ZEB, the transcription factors known

to repress E-cadherin in various cell systems [36,37,38,39], act in

cooperation with NEDD9. RT-PCR analysis in NEDD9-

MCF10A and control cells revealed similar expression levels of

ZEB1, ZEB2, ID2 and Twist (Fig. 6D). On the other hand,

evident increase in Snail and Slug expression was noted in

NEDD9 overexpressing MCF10A cells in contrast to control cells,

and western analysis confirmed the increased Snail and Slug

Figure 4. Expression of NEDD9 caused EMT. A, D Stable overexpression of NEDD9 in MDCK and MCF10A cells. The expression level of NEDD9 in
NEDD9-MDCK (A) and NEDD9-MCF10A (D) cells was determined by western blotting. B, E, NEDD9-MDCK and NEDD9-MCF10A cells showed the
spindle-like, fibroblastic morphology (620 magnification). C, F, Immunoblots and immunostaining of epithelial and mesenchymal markers in NEDD9-
MDCK and NEDD9-MCF10A cells. G, Immunoblots and immunostaining of the epithelial and mesenchymal markers in NEDD9 siRNA-MDA-MB-231 and
control cells. H, NEDD9 siRNA-MDA-MB-231 cells displayed an egg-shaped, epithelial-like morphology (620 magnification).
doi:10.1371/journal.pone.0022666.g004
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protein levels (Fig. 6D). Moreover, ChIP assays revealed that

overexpression of NEDD9 enhanced the interaction between the

Snail family and E-cadherin promoter (Fig. 6E).

It has been reported that activation of the extracellular-signal

regulated kinase (ERK) can induce Snail and Slug expression

[40,41]. We then tested if this signaling pathway functions in the

cell model we used. We found that treatment of NEDD9-

MCF10A cells with 20 mM the specific ERK kinase inhibitor

U0126 indeed caused a recovery of E-cadherin expression

(Fig. 6F). We further explored the possible involvement of ERK

signaling cascade in the NEDD9-mediated regulation of Snail and

Slug expression. Western analysis revealed a significant increase of

activated ERK (p-ERK) levels in NEDD9-MCF10A cells

compared with control cells (Fig. 6G), suggesting that ERK acted

downstream of NEDD9.

Together, these data suggest that NEDD9 is able to activate the

ERK cascade and subsequently to induce Snail and Slug

upregulation that bound to E-cadherin promoter to inhibit its

expression. This finally contributes to the EMT and invasive

phenotypes of human breast adenocarcinoma cells.

Discussion

A noticeable point arising from this study is that high levels of

NEDD9 expression were associated with the aggressive breast

cancers, including TNBC and ERBB2-overexpressing subtypes

(Fig. 1, Table 1; Table S1). As shown in Table 1, 31.82% of the

triple-negative tumors and 24.00% of Her2+ tumors exhibited

high levels of NEDD9 expression, whereas only 11.62% of the

luminal ER+ subtype of tumors showed high expression of

NEDD9 protein. High expression of NEDD9 may therefore be

a potential diagnostic marker for these subtypes of breast cancer.

Our data are compatible with the pro-oncogenic role identified for

NEDD9 overexpression in glioblastoma, melanoma, and lung

cancers [21,22,42]. These studies implicated that NEDD9 may

have a promotive effect for the carcinogenic process.

The process of EMT has been shown to provide carcinoma

cells with many of the phenotypes required to execute multiple

steps of the invasion-metastasis cascade. When examining the

NEDD9 and mesenchymal markers, such as Vimentin and

Fibronectin in 32 aggressive breast tumors, we found that positive

expression of NEDD9 was associated significantly with the

expression of Vimentin and Fibronectin (Fig. 5), implicating that

NEDD9 may play a role in EMT in vivo in aggressive breast

tumors. Moreover, we discovered that ectopic expression of

NEDD9 promoted migration and invasion in MCF10A cells, and

knockdown of NEDD9 in highly aggressive TNBC cells reduced

their migration, invasion and proliferation (Fig. 2, 3). These data

suggested that NEDD9 was a regulator of the migration, invasion

and proliferation in breast cancer cells. In contrast to our

findings, a previous study suggested that NEDD9 acted as an

inhibitor of migration, as the authors reported that siRNA-

mediated NEDD9 depletion promoted cell migration in breast

epithelial cells [43]. In line with our results, Fashena et al found

that NEDD9 production induced crescent morphology and cell

spreading in MCF7 cell lines [44], and Izumchenko et al reported

that the Nedd92/2 mice significantly limited the mammary

tumor initiation in the MMTV-polyoma virus middle T genetic

model [23]. These data support our finding that the NEDD9 is

positively correlated with breast cancer progression. However,

the authors detected no significant differences when they

examined a number of hallmarks of TGF-b-induced EMT in

Nedd92/2 tumors and tumor-derived cell lines [23]. These

discrepancies may probably be due to the fact that NEDD9 is

required at early stages in the EMT process, but downregulated

after the metastatic cancers undergo a reverse mesenchymal-

epithelial transition (MET) process. Further investigation to

address this issue is required.

Figure 5. NEDD9 promoted the EMT in aggressive breast tumor. A, Representative immunohistochemical images of an aggressive breast
tumor sample stained for NEDD9 and Vimentin. B, Venn diagram showing the association between NEDD9 and Vimentin in aggressive breast tumors.
doi:10.1371/journal.pone.0022666.g005
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Our Boyden-chamber trans-well assays determined that the

ectopic expression of NEDD9 in MCF10A cells turned this

epithelial cell lineage into a highly migratory (Fig. 3D) and invasive

(Fig. 3E) phenotypes. Cancer cells degrade the nearby extracellular

matrix by using secreted matrix metalloproteinases (MMPs) [45].

As gauged by gelatin zymogram assay and western blotting, we

found that MMP9 (Figure. S3), but not MMP2 (data not shown),

was upregulated in response to the expression of NEDD9 in

MCF10A cells. These observations reinforced the notion that

NEDD9 can serve as an organizer of mesenchymal differentiation

during an EMT.

Significantly, our data suggest that NEDD9 expression activated

the ERK cascade and subsequently induced Snail and Slug

upregulation resulted in a potentiated binding of Snail and Slug to

E-cadherin promoter (Fig. 6E). These events eventually contrib-

uted to the initiation of EMT and invasion in human breast

adenocarcinoma cells. Consistent with our results, Storci et al

reported that the tumor tissues expressing high levels of Slug

mRNA displayed a basal-like breast carcinoma phenotype [46].

Shin et al described that ERK2 specifically regulated EMT in

MCF10A cells [47]. ERKs are effectors of MAPK cascade

activated by Ras/Raf. Meanwhile, Kim et al demonstrated that

NEDD9-dependent tumor promotion was partly dependent on

Ras/Raf pathway activation [22]. These studies suggested a close

relationship between NEDD9 and Ras signaling in tumor growth.

Moreover, our ChIP assays revealed that overexpression of

NEDD9 enhanced the recruitment of histone deacetylase

HDAC1/HDAC2 repressor complex to E-cadherin promoter

(Figure. S4), indicating that the regulation of E-cadherin

repression by overexpression of NEDD9 may involve several

epigenetic repressors, although this assumption requires further

experiments to confirm.

To summarize, we validated in this study that the expression of

NEDD9 was frequently upregulated in highly aggressive TNBC

breast cancer cell lines as well as in aggressive breast tumors,

including ERBB2-positive and triple-negative subtypes. In vitro,

knockdown of NEDD9 reduced the mesenchymal molecular

markers, increased the epithelial markers and inhibited the

invasion and migration of aggressive TNBC cells. Ectopic

overexpression of NEDD9 in MCF10A mammary epithelial cells

led to a morphological transformation towards the mesenchymal

phenotype, together with the expression of mesenchymal markers,

and consequently resulted in an enhanced cell migration, invasion

and proliferation. Moreover, ectopic expression of NEDD9

activated ERK signaling, upregulated the expression of the

EMT-inducing transcription factors Snail and Slug, and promoted

Figure 6. Molecular events involved in NEDD9-induced EMT. A, B, NEDD9 inhibited the E-cadherin promoter activity. HEK 293T cells (left) and
MCF10A cells (right) were transfected with the expression vectors as indicated, and the relative luciferase activity was determined after culturing for
24 hr. C, NEDD9 inhibited the E-cadherin mRNA in MCF10A cells. D, RT-PCR and western analyses of the expression of indicated transcriptional
repressors of E-cadherin in NEDD9-MCF10A and control cells. The b-actin was used as an internal control. E, ChIP assays at the E-cadherin promoter.
top, increased binding of Snail and Slug at the E-cadherin promoter in the presence of NEDD9. bottom, map of the E-cadherin promoter showing the
sites of the amplification in ChIP analyses. F, G, Western analysis showing the effect of NEDD9 overexpression on ERK activation. Cells were incubated
in culture medium containing the indicated concentrations of U0126 (CST) for 24 hr. Lysates were prepared and subjected to western analysis using
specific antibodies.
doi:10.1371/journal.pone.0022666.g006
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their interactions in vivo with the E-cadherin promoter. Results

from this study contribute to the understanding of the mechanisms

by which NEDD9 promotes the epithelial-mesenchymal transi-

tion. Also, this study provides useful clues to the evaluation of the

potentiality of NEDD9 as a responsive molecular target for TNBC

therapeutics.

Supporting Information

Figure S1 NEDD9 knock down inhibited tumor cell
migration and invasion. trans-well migration and invasion

assays in NEDD9 siRNA-MDA-MB-231 cells with or without

12 mM mitomycin C (MMC).

(TIF)

Figure S2 Suppression of NEDD9 expression inhibited
tumor cell migration and invasion. Migration and invasion

assays upon NEDD9 knockdown in HCC1937 cells. The

migration and invasion ability is presented as fold changes in

number of cells migrated to the bottom chamber. Each bar

represents the mean SEM of samples measured in triplicate, and

each experiment was repeated at least three times.

(TIF)

Figure S3 NEDD9 increased the expression and secre-
tion of MMP-9. A, Identification of the gelatinolytic enzymes

produced by NEDD9-MCF10A and control cells. The condi-

tioned media and the cellular extracts were collected, centrifuged

and the proteins were analyzed by zymography in gelatin-

embedded SDS polyacrylamide gels. B, Western analysis showing

the effect of NEDD9 overexpression on MMP-9. Cell lysates were

prepared and subjected to western analysis using an anti-MMP-9

polyclonal antibody. b-actin was used as the loading reference.

(TIF)

Figure S4 ChIP assays at the E-cadherin promoter.
Increased binding of HDAC1 and HDAC2 at the E-cadherin

promoter in the presence of NEDD9. Primer 1 and 2 were used to

amplify the E-cadherin promoter regions from 2600 to 2329 and

2359 to 263, respectively.

(TIF)

Table S1 Patient and tumor characteristics of 84 cases
of primary invasive breast carcinoma analyzed by
immunohistochemistry.

(DOC)

Methods S1 Quantitative RT-PCR.

(DOC)
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