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Abstract

Background: Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient
production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance
co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug
resistance of cancers.

Methodology/Principal Findings: Codon-optimized ‘‘Opti-Pgp’’ and wild-type Pgp, identical in primary protein sequence,
were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified
protein from P. pastoris (,130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-
Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-
Pgp was strongly stimulated ,15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.262.2 mM
and 1.160.26 mM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.160.28 mmol/min/mg and was
enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type
and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid
increased the thermal stability from Tm ,40uC to 49uC, and the total unfolding enthalpy. The increase in folded state may
account for the increase in drug-stimulated ATPase activity seen in presence of lipids.

Conclusion: The significantly higher yields of protein in the native folded state, higher purity and improved function
establish the value of our gene optimization approach, and provide a basis to improve production of other membrane
proteins.
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Introduction

P-glycoprotein (Pgp2, also known as multidrug resistance

protein MDR1 or ABCB1) is a plasma membrane protein that

has the ability to pump a wide range of hydrophobic compounds

out of cells. It has particular relevance to chemotherapy, because it

is able to prevent accumulation of many anti-cancer drugs in cells,

thus conferring multidrug resistance (MDR) [1]. Therefore, Pgp

has been a target for improving cancer treatment since its

discovery more than three decades ago [2,3,4]. Pgp has also been

therapeutic targeted for its role in MDR of HIV, epilepsy, and

psychiatric illnesses [5,6,7,8]. Pgp is an ABC transporter that

requires the energy from ATP binding and hydrolysis in the

nucleotide binding domains (NBDs) to drive drug transport across

the membrane. Drug binding to the transmembrane domains

(TMDs) typically stimulates ATP hydrolysis in the NBDs [9], while

inhibitors may compete with drug binding at the polyspecific drug

binding sites and so block transport activity and/or ATP

hydrolysis. Pgp, like other ABC transporters, is thought to

alternate between an inward-facing, drug-binding competent
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conformation with the transmembrane domains (TMDs) open to

the cytoplasm, and an outward-facing, drug-releasing conforma-

tion with the TMDs accessible to the extracellular space [10]. We

recently solved an X-ray structure of this mammalian ABC

transporter in the inward-facing conformation at 3.8 Å resolution

[11]. Co-crystal structures with two inhibitors provided a first

glimpse of the interactions between bound inhibitors and the drug

binding site residues. However, much work remains to fully

understand the interaction of Pgp with drugs and inhibitors and

the molecular mechanism of drug export. For these endeavors,

large-scale production of the fully functional protein is essential.

Previously, we expressed Pgp in the yeast Pichia pastoris and

purified the protein in its fully active form [12,13]. This yeast

grows to very high densities in fermentor cultures providing ample

source material. However, the modest expression level of this

integral membrane protein still presents a bottleneck to large scale

protein production. Analysis of genes highly expressed in the yeast

Saccharomyces cerevisiae has revealed a strong relationship between

tRNA multiplicity and codon selection [14,15,16], suggesting that

codon usage bias may be one of the factors that lead to inefficient

translation and limit protein production. While effective E. coli

strains have been developed to overcome the codon bias problem

in that expression platform [17], relatively little has been done to

address the problem in P. pastoris [18,19,20,21,22]. Previous gene

optimization procedures were commonly based on the Kazusa

codon usage database (http://www.kazusa.or.jp/codon/), but an

important limitation is that it does not discriminate between poorly

and highly expressed genes. Because translation efficiency of more

highly expressed genes may be especially sensitive to codon usage,

attention to this aspect of gene sequence may be profitable for

maximizing protein expression.

In this study, we generated a codon usage table specific for highly

expressed genes in P. pastoris and found that codon usage bias for this

subgroup is significantly more stringent than the average codon usage

of genes present in the Kazusa database and in the recently published

P. pastoris genome [23,24]. We then codon-adjusted the sequence of

the Pgp-encoding mdr3 gene, taking into account relative codon

frequencies for each amino acid, as well as optimizing GC content

and controlling for mRNA instabilities. We demonstrate that

expression of Pgp was significantly increased using this strategy.

Previous studies found that silent single nucleotide polymorphisms

can alter Pgp function and tertiary structure; therefore it was

imperative to ascertain that Opti-Pgp retained its functionality,

polyspecific drug interactions and folded state. Opti-Pgp was fully

active in vivo in yeast drug resistance and mating assays. Furthermore,

the quality of the purified protein was improved as judged by size-

exclusion chromatography and by ATP hydrolysis rates. Consistent

with its activity, the codon-optimized protein exhibited secondary

and tertiary structure similar to wild-type (WT) Pgp based on circular

dichroic spectroscopy and differential scanning calorimetry analysis

of its thermal unfolding properties, respectively.

Materials and Methods

Materials
n-Dodecyl-b-D-maltopyranoside (DDM) was obtained from

Inalco Pharmaceutical (Milan, Italy), and E. coli polar lipid extract

from Avanti Polar Lipids (Alabaster, AL). Doxorubicin and trypsin

were from Sigma-Aldrich (St. Louis, MO). FK506 and valinomy-

cin were from AG Scientific (San Diego, CA).

Optimization of the Pgp gene
The mouse mdr3 nucleotide sequence (accession number

NM_011076), with all three N-glycosylation sites N83, N87 and

N90 replaced by glutamine [25] was optimized. Codon substitutions

were based on a usage frequency table we calculated for 30 native

genes (15,863 codons) known to be highly expressed in P. pastoris.

These include ACO1 (Pas_chr1-3_0104), ACS1 (Pas_chr2-

1_0767), AOX1 (Pas_chr4_0821, PPU96967); CAT2 (Pas_

chr3_0069), CCP1 (Pas_chr2-2_0127), CDC19 (Pas_chr2-

1_0769), CTA1 (Pas_chr2-2_0131), ENO1 (Pas_chr3_0082),

FBA1 (Pas_chr1-1_0072), FDH1 (Pas_chr3_0932), FLD1

(AF066054), GDH3 (Pas_chr1-1_0107), GPM1 (Pas_chr3_0826),

GUT2 (Pas_chr3_0579), HSP82 (Pas_chr1-4_0130), ICL1

(Pas_chr1-4_0338), ILV5 (Pas_chr1-1_0432), KAR2 (Pas_chr2-

1_0140, AY965684), MDH1 (Pas_chr2-1_0238), MET6 (Pas_chr2-

1_0160, AY601648), PDI1 (Pas_chr4_0844, AJ302014), PGK1

(Pas_chr1-4_0292), PIL1 (Pas_chr1-4_0569), RPP0 (Pas_chr1-

3_0068), SSA3 (Pas_chr3_0230), SSB2 (Pas_chr3_0731), SSC1

(Pas_chr3_0365), TDH3 (Pas_chr2-1_0437, also called GAP,

PPU62648), TEF2 (Pas_FragB_0052, AY219033), YEF3

(Pas_chr4_0038, also called TEF3, AB018536) ([26,27,28,29,30]

and Mattanovich, unpublished results). Codon usage frequency of

the collective open reading frames was calculated using the

Entelechon software (http://www.entelechon.com/2008/10/codon-

usage-table-analysis/). For gene optimization, the software Leto was

used (version 1.0.11, Entelechon, Germany), imposing the codon

usage for the 30 highly expressed genes (see Fig. 1) except in cases

where codons were retained in order to preserve desirable restriction

enzyme sites. Furthermore, extended secondary mRNA structure,

long range repeats including AT-rich and GC-rich regions and

cryptic splice sites were removed and the GC content adjusted to

45%. The Leto software identifies inverted repeats (hairpin stems)

with #10% mismatches with a distance between inverted repeats

(hairpin loops) of at least four nucleotides. For identification of cryptic

splice acceptor and donor sites, a hidden Markov model is built in

using confirmed splice sites in S. cerevisiae gene sequences retrieved

from NCBI Entrez. The software is a multi-objective gene algorithm

and takes into account all these parameters at all times to

simultaneously optimize over the entire sequence of the gene. Unique

restriction sites were introduced (Fig. S1A) to facilitate later genetic

manipulations. The optimized ‘‘opti-mdr3’’ gene was synthesized by

GeneArt (Regensburg, Germany).

Cloning of Opti-Pgp and Expression in S. cerevisiae
The full-length coding sequence of opti-mdr3 was first cloned into

the P. pastoris vector pLIC-H6 via ligation-independent cloning as

described in [31], introducing a Kozak-like sequence around the

ATG start codon and a His6-tag at the C-terminus (Fig. S2). For

direct comparison of gene expression, WT mdr3 was also cloned

into pLIC-H6 using the same strategy (simultaneously removing

59- and 39-untranslated regions). The resulting plasmids were

named pLIC-opti-mdr3-H6 and pLIC-mdr3-H6. Then, opti-mdr3

(including flanking BstBI and AgeI restriction sites) was PCR

amplified using PfuUltra II (Stratagene) and primers 59-

TTCGAAAAAAAAATGGAGTTGG-39 (forward) and 59-AC-

CGGTTCAATGGTGGTGATGGTGGTGCTCGAGAGATC-

TTTTGGC-39 (reverse), then cloned into the PvuII and BamHI

sites (blunt-ended with T4-DNA polymerase) of the pVT vector

[12,32] to generate pVT-opti-mdr3. The integrated full-length

ORFs from three individual plasmids were confirmed by DNA

sequencing. These three plasmids as well as the pVT vector

control and the WT gene in pVT (previously named pVT-mdr3.5

[12]), were transformed into S. cerevisiae strain JPY201 (MATaste6-

Dura3) and selected on uracil-deficient medium as described [12].

50 to 100 colonies of each transformant were collected into 5 ml of

uracil-deficient medium and the mass populations stored at 4uC
for up to two weeks; aliquots were frozen as glycerol stocks at

Gene-Optimized P-Glycoprotein
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270uC. Mass populations were grown overnight in uracil deficient

medium to an OD600 of 1 for protein expression and functional

analyses. For Western blot analysis, microsomal membranes were

processed from 10 ml cultures [13] and the protein concentrations

determined with the Bradford protein assay (BioRad) using BSA as

a standard. Equal amounts of membrane protein (15 mg) were

resolved on SDS-gels, transferred to a nitrocellulose membrane

and stained with Ponceau S (total protein loading control). After

washing, the immunoblots were developed with the monoclonal

C219 antibody (Covance SIG-38710) and the enhanced chemi-

luminescence SuperSignal West Pico ECL kit (Pierce). The films

from different exposure times were scanned and analyzed using

the NIH software package ImageJ (http://rsbweb.nih.gov/ij/).

Functional analysis of Opti-Pgp in S. cerevisiae
FK506 resistance and mating assays were as previously

described [12] with the following modifications. To measure

FK506-resistant growth, overnight cultures were grown in uracil-

Figure 1. Comparison of codon usage. 1) Codons with low frequency (,10%) are highlighted in red. The most preferred codon for each amino
acid is highlighted in dark blue. Most frequent codons (and second most frequent, if within 10% of the first) in WT-Pgp are highlighted in light blue. 2)

From [23]. Five codons occur at low frequencies in the Kazusa and Genome databases, which do not discriminate between poorly and high expressed
genes, e.g. the codons for Ala (GCG), Leu (CUC), Arg (CGG and CGC) and Ser (UGG). Some preferred codons differ between the Kazusa and the Pichia
genome databases, namely the codons for Gly, Lys and Asn; this is likely due to the limited number of 137 CDS’s represented in the former. 3) From
[15]. 4) The codon usage analysis was updated March 2011 to include the 30 most highly expressed genes in P. pastoris (see Table S1) based on
proteome analysis [26,27,28]. Incidentally, all 30 genes are also among the 100 most highly transcribed genes seen in microarrays (Mattanovich,
unpublished observations). 5) In highly expressed genes, an additional 18 codons occur at low frequencies, e.g. the codons for Ala (GCA), Gly (GGG
and GGC), Ile (AUA), Leu (CUA, CUC and UUA), Pro CCG and CCC), Arg (AGG and CGA), Ser (AGU, AGC and UCA), Thr (ACA and ACG) and Val (GUA and
GUG). Comparison of the preferred codon between highly expressed Pichia genes and the Kazusa/genome databases revealed an inverted
preference for the Asp codon AAC over AAU, CAC over CAU for His and UUC over UUU for Phe. There was also a strong preference for the Lys codon
AAG over AAA, AAC over AAU for Asn, and UAC over UAU for Tyr among highly expressed Pichia genes. Notably, the codon choice for Glu differed
between highly expressed genes of the two yeasts with S. cerevisiae showing a clear preference for GAA (92%) whereas P. pastoris has a more
balanced distribution of 61:39% between GAA and GAG. 6) The native Pgp revealed extensive codon bias, with pronounced over-representation of
codons occurring at low frequency among highly expressed Pichia genes; viz. codons used for Ala (GCG), Gly (GGG, and GGC), Ile (AUA), Leu (CUA and
CUC), Pro (CCC and CCG), Arg (AGG, CGA, CGG and CGC), Ser (AGC, AGU, UCA and UCG), Thr (ACG), and Val (GUA). The native gene also under-
represented the Pichia higher frequency codons including the preferred codons (compare dark and light blue in columns 4 and 5). For example, the
three codons for Ala (GCA, GCU and GCC) are used at about equal frequencies (30–32%) in WT-Pgp whereas highly expressed Pichia genes show a
clear preference for GCU (59%) over GCC (31%) and GCA (9%). 7) For gene optimization all low-frequency codons (,8%) were set to zero and the
distribution of frequencies adjusted to those of highly expressed Pichia genes. In some cases, desirable restriction enzyme sites required the presence
of a low-frequency codon. 8) The C-terminal His6-tag and STOP codons were provided by the pLIC-H6 vector (Fig. S2) and were CAT CAT CAT CAT CAT
CAT TGA.
doi:10.1371/journal.pone.0022577.g001
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Figure 2. Protein expression levels and in vivo biological activity of WT- and Opti-Pgp in S. cerevisiae. A) Three independent pVT-opti-
mdr3 clones were transformed into S. cerevisiae, microsomal membrane proteins (15 mg) of mass populations resolved on a 10% SDS-gel and the
Western blot probed with the Pgp-specific monoclonal C219 antibody (Covance SIG-38710). Mass populations transformed with pVT vector alone or

Gene-Optimized P-Glycoprotein
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deficient medium, diluted to an OD600 of 0.05, seeded into sterile

96 well plates in triplicate and grown in YPD medium at 30uC in

the absence or presence of FK506, valinomycin [12,33], or

doxorubicin. OD600 was measured at 2 hour intervals for 30 hours

in a microplate reader (Benchmark Plus, BioRad) after vigorous

mixing. Drugs were dissolved in dimethylsulfoxide and diluted into

the plate medium such that the final concentration of solvent was

#1%.

For mating assays, mass populations were diluted to OD600 of

0.6, and 0.75 ml were spotted with 0.25 ml of a-type tester strain

DC17 (OD600 of 1.2) onto a 22 mm 0.45 mm HA filter (Millipore,

cat no SA1J791H5), placed on a YPD plate and incubated for

4 hours, then plated in duplicate on minimal and uracil-deficient

medium as described [12,34]. Mating frequency was calculated as

the ratio of transformed cells forming diploid colonies on selective

medium to the total number of cells introduced in the assay.

Statistical analysis of the functional assays was done with the

SigmaPlot 11 software using One Way ANOVA with the pairwise

multiple comparison Tukey test.

Expression and purification of WT- and Opti-Pgp from
P. pastoris

Transformation of P. pastoris strain KM71H and expression

analysis were as previously described [31,35]. Selected strains were

grown in a BioFlow IV fermentor and the proteins purified as

previously described [13] with the following modifications: 10 mM

DTT was included during cell breakage in a glass bead beater to

fully reduce the proteins, and all buffers for membrane

preparation and chromatography were supplemented with

1 mM b-mercaptoethanol and 0.1 mM tris(2-carboxyethyl)pho-

sphine (TCEP) to keep proteins reduced. Proteins were concen-

trated to approximately 1 mg/ml using YM-100 Ultrafilters

(Millipore). The concentrated protein was aliquoted and stored

at 280uC. For gel filtration chromatography, protein was

concentrated to 4 mg/ml and 0.5 ml chromatographed on

Superose 6B (106300 mm, GE Healthcare) in 20 mM Hepes-

NaOH pH 7.4, 10% glycerol, 50 mM NaCl, 1 mM DTT and

0.2% n-Dodecyl-b-D-maltopyranoside (DDM) using an Äkta

Purifier chromatography system (GE Healthcare). Pgp concentra-

tions were routinely determined by UV spectroscopy at 280 nm

using a calculated extinction coefficient of 1.28 per mg/ml. Serial

dilutions of WT- and Opti-Pgp preparations were further assayed

side-by-side with the colorimetric BCA protein assay (Pierce) using

BSA with appropriate buffer controls as a standard; the two assays

gave essentially the same results. Finally, increasing concentrations

of different protein preparations were resolved side-by-side on

Coomassie-stained SDS-gels, individual lanes were scanned and

the amount of protein in the Pgp and other protein bands

quantitated using ImageJ (http://rsbweb.nih.gov/ij/). The latter

method permits visual inspection as well as quantitative validation

of samples and allows for direct comparison of the Pgp content of

the samples.

ATPase assays
Purified Pgp in 0.1% DDM was mixed with 10 mM DTT on

ice for 5 min, then activated with 1% E. coli polar lipids for 15 min

at room temperature followed by 30 s bath sonication as described

[13]. ATPase activity was measured at 37uC in a coupled assay

utilizing an ATP-regenerating system [36]. For each well of a 96-

well plate, 10 ml (5 mg) of activated wild type (WT) Pgp or Opti-

Pgp was added to 200 ml of assay medium containing 10 mM

ATP, 12 mM MgSO4, 3 mM phosphoenolpyruvate, 0.3 mM

NADH, 0.5 mg/ml of lactate dehydrogenase, 0.5 mg/ml of

pyruvate kinase, 0.1 mM EGTA and 40 mM Tris-HCl, pH 7.4,.

Verapamil was added from stock solution in water; cyclosporine A

was added from concentrated stock in DMSO such that the final

DMSO concentration was 2%; control samples contained 2%

DMSO. The decrease in NADH absorbance recorded at 340 nm

in a microplate reader (Benchmark Plus, BioRad) was linear

between 5 and 20 min. ATPase activity was calculated as

described previously [37] and plotted with SigmaPlot 10 (Systat

Software, Inc.).

Circular Dichroism (CD)
CD spectra were recorded at 20uC at a protein concentration of

0.18–0.28 mg/ml in a 0.05 cm cuvette using a thermostated CD

spectrophotometer (Olis DSM 1000, USA). Reference and sample

buffers contained 5 mM HEPES, pH 7.6, 12 mM NaCl, 2.5%

glycerol, 0.05% DDM and 0.25 mM DTT. The a-helical content

was determined by the method of Chen et al., (37).

the WT gene served as controls. The positions of the MW protein markers are indicated in kDa. B) Growth resistance to the fungicide FK506 (50 mg/ml)
was monitored at A600 for wild-type Pgp (WT-Pgp), gene-optimized Pgp (Opti-Pgp) and control pVT vector transformants. Data points represent the
mean 6 standard deviations of three independent transformants assayed in triplicate in four independent experiments; where not visible, error bars
are smaller than the plot symbol. C) Growth of individual mass populations in the absence or presence of increasing concentrations of FK506 (25, 50
and 75 mg/ml) was measured at A600 after 25-26 hours and is expressed as growth relative to WT-Pgp. D) Growth resistance in the absence or
presence of doxorubicin (15, 30 and 45 mM) was measured relative to WT-Pgp. E) Mating frequency represents the proportion of transformed a-type
JPY201 cells that formed diploids upon mating with R-type tester cells DC17, followed by plating on minimal medium [34]. Values are expressed as a
percentage of the WT frequency 6 the standard deviation of four experiments using three independent transformants. Asterisks indicate significant
differences between WT- and Opti-Pgp (p,0.05).
doi:10.1371/journal.pone.0022577.g002

Table 1. Comparison of WT- and Opti-Pgp.

WT-Pgp Opti-Pgp

Yield per
100 g cells

4.361.6 mg 13.063.2 mg

Maximal
ATPase activity
(mmol min21 mg21) 1)

1.860.24 2.160.28

Half-maximal stimulation by
Verapamil
(mM) 2)

9.164.6 4.262.2

Half-maximal inhibition by
cyclosporine A
(mM) 2)

0.9860.24 1.160.26

1)Average and standard deviations (n.30) from at least three independently
purified preparations.

2)Concentrations required for half-maximal stimulation or half-maximal
inhibition of ATPase activity were calculated from the fits shown in figures 5
and 6, respectively. Standard deviations are given for individual fits from three
independent experiments.

doi:10.1371/journal.pone.0022577.t001
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Figure 3. Purification and size exclusion chromatography of WT- and Opti-Pgp from P. pastoris. A) Proteins were purified from P. pastoris
fermentor cultures by chromatography on Ni-NTA and DE52 resin. Increasing amounts of proteins (1 to 5 mg) were resolved on a 10% SDS-gel and
stained with Coomassie Blue. The positions of the MW protein markers are indicated in kDa; the protein band labeled ‘‘Imp.’’ (impurities) did not
cross-react with the Pgp-specific antibody C219. B) Two milligrams (500 ml) of purified, detergent soluble proteins were loaded on a Superose 6B
column and resolved in buffers containing small amounts of detergent (see Materials and Methods). A representative of four independent runs is
shown for WT-Pgp (solid line) and Opti-Pgp (dotted line). Molecular mass markers were resolved under identical buffer conditions, the elution
volumes were as follows: Blue-dextran (void volume) 6.7 ml, thyroglobulin (669 kDa) 12.4 ml, ferritin (440 kDa) 14.2 ml. aldolase (158 kDa) 15.8 ml,

Gene-Optimized P-Glycoprotein
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Scanning Calorimetry (DSC)
Calorimetry was routinely carried out in 20 mM HEPES,

pH 7.6, 50 mM NaCl, 10% glycerol, 0.1% DDM and 5.5 mM

DTT in 0.13 mL cells at a heating rate of 2 K/min with the VP-

Capillary DSC System (MicroCal Inc., GE Healthcare). An

external pressure of 2.0 atm was maintained to prevent possible

degassing of the solutions on heating. Thermal unfolding was

irreversible, as determined by sample cooling and reheating. Heat

capacity curves were corrected for instrumental baseline obtained

by buffer scans. Separated DSC scans were conducted for buffer

containing 1% lipids and no transition was detected in the

temperature range of thermal unfolding for the proteins in

presence of lipids. DSC data were analyzed with the MicroCal

Origin software to obtain the unfolding temperature (Tm) and the

total unfolding enthalpy (DHcal).

Trypsin digestion and SDS-PAGE
Pgp (5 mg), activated with 1% E. coli lipids, was mixed with 2 ml

of trypsin (serially diluted in 1 mM HCl from 1.6 to 0.0001 mg/

ml). After 15-minute incubation at room temperature, digestion

was stopped with 2 ml (5 ug) of trypsin inhibitor (Type I-P from

bovine pancreas, Sigma-Aldrich). Samples were mixed with $0.3

volumes of sample buffer (125 mM Tris-Cl, pH 6.8, 5% (w/v)

SDS, 25% (v/v) glycerol, 0.01% pyronin Y, and 160 mM DTT),

incubated for 10 min at RT, then resolved on 10.5-14%

polyacrylamide gradient Criterion precast gels (BioRad), and

stained with Coomassie Blue.

Results

Codon usage bias in P. pastoris
We compiled a codon usage table for 30 native genes known to

be expressed at high levels in P. pastoris [29,30,38,39] (Fig. 1).

Although the table was based on a modest number of genes, the

resulting codon usage frequencies were quite comparable to those

of 263 highly expressed genes in the related yeast S. cerevisiae [15].

For example, the most abandoned codon for each amino acid

(highlighted in blue, Fig. 1) as well as the codons used at low

frequency (,10%, highlighted in orange) were very similar in both

species of yeasts (compare columns 3 and 4, Fig. 1). However,

codon frequencies were distinctly different from those in the

Kazusa or the Pichia genome databases, which do not discriminate

between poorly and highly expressed genes. Besides five low

frequency (,10%) codons seen in the Kazusa database, an

additional 18 codons occur only at low frequency among highly

expressed genes (compare columns 1 and 2 versus 4, Fig. 1). Thus,

codon usage was considerably more stringent for high level

compared to low or medium level expression. Also, among highly

expressed genes certain high frequency codon preferences were

inverted: CAC over CAU (73:27%) for His, UUC over UUU

(67:33%) for Phe, GAC over GAU (59:41%) for Asp and GAG

over GAA (58:42%) for Glu (for more details see Fig. 1 legend).

Consequently, adoption of codon frequencies seen in highly

expressed genes may represent a better choice for optimization of

genes for high level expression.

Optimization of the Pgp gene
Codon frequencies within the 3828 bp coding sequence of the

native mouse mdr3 gene (also called mdr1a or abcb1a) differed

markedly from those of P. pastoris highly expressed genes, with

pronounced over-representation of yeast low frequency codons

and under-representation of yeast preferred and higher frequency

codons (see column 5, Fig. 1). In addition, the native gene

sequence showed 38 tandem codon repeats, 99 regions of

extended secondary mRNA structure (hairpin loops) that can

hinder translation, 86 AT-rich or GC-rich regions (up to 10 bases

in length), 9 cryptic splice sites, and a GC content of 48% which is

somewhat higher than that found in highly expressed Pichia genes

(45%). These structural elements, along with the codon bias,

appeared unfavorable for high-level expression in P. pastoris, and

our strategy to optimize the mdr3 sequence was as follows: We

omitted all occurrences of the 19 low frequency codons (,8%) and

we set the relative frequencies among the remaining codons

similar to those of highly expressed genes. We also avoided codon

repeats and AT-rich regions, and adjusted the GC content to 45%

(balanced to 610% within a 40 bp window throughout the gene)

(Fig. S2B). The resulting gene sequence (‘‘opti-mdr3’’) is given in

Fig. S3 (GenBank JF834158) and the final codon usage is shown in

Fig. 1, column 6.

Functional analysis of Opti-Pgp in S. cerevisiae
Because codon usage of highly expressed genes is so similar in S.

cerevisiae and P. pastoris, we expected our optimization approach to

improve expression in both yeasts. For three mass populations of

independent S. cerevisiae transformations, Pgp-specific signal

intensities in Western blots of microsomal membranes indicated

that Opti-Pgp transformants expressed the protein at two- to

three-fold higher levels than did WT-Pgp transformants (Fig. 2A).

This indicated that gene optimization indeed enhanced expression

levels in yeast.

Although the optimized gene encodes identical primary amino

acid sequence to the WT protein, co-translational effects might

cause changes in protein folding [40]. Therefore, it was important

to demonstrate that Opti-Pgp retained full biological activity.

Procedures to test in vivo Pgp function in P. pastoris have not been

developed, so to take advantage of established biological assays

[12,33,34] and to examine substrate specificity, we first tested

Opti-Pgp function in the yeast S. cerevisiae. We previously showed

that expression of native Pgp in S. cerevisiae confers drug resistance

against fungicides [12,33,41], so we first measured growth-

resistance of mass populations to the macrolide immunosuppres-

sant FK506. In four independent experiments Opti-Pgp transfor-

mants grew faster than WT-Pgp in the presence of FK506, i.e.

they entered log-phase growth approximately 22 h after inocula-

tion and reached stationary phase at approximately 28 hours, two

hours sooner than WT-Pgp (Fig. 2B). Similarly, growth of Opti-

Pgp transformants in the presence of the cyclic peptide ionophore

valinomycin (80 mg/ml) appeared to be as good as or better than

WT-Pgp transformants (data not shown). To better assess potential

differences in growth resistance between WT- and Opti-Pgp

transformants we grew the cultures in the presence of increasing

concentrations of FK506 (Fig. 2C). At concentrations of 25 mg/ml

FK506 no difference was evident (pairwise Tukey test comparison

p = 0.577) but at the higher concentrations of 50 or 75 mg/ml

FK506 Opti-Pgp cultures grew significantly faster than Wt-Pgp

(p = 0.025 and 0.003, respectively). Pgp is known to convey

multidrug resistance by transporting a wide variety of structurally

unrelated compounds. To demonstrate that polyspecificity was

maintained in the Opti-Pgp we also measured its ability to confer

S. cerevisiae with resistance to the anticancer drug doxorubicin. At

conalbumin (75 kDa) 16.8 ml and ovalbumin (43 kDa) 17.1 ml. The calculated molecular mass of monomeric Pgp (including the His6-tag) is 142 kDa,
the predicted detergent micelle size for DDM is about 70 kDa.
doi:10.1371/journal.pone.0022577.g003
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Figure 4. Stimulation and inhibition of ATPase activity. A) The ATPase activity of purified WT- and Opti-Pgp was assayed in the presence of
increasing concentrations of verapamil. The solid lines are non-linear regression fits to the equation f = d+(a*xb/(cb+xb)), where d is the activity in the
absence of verapamil (basal activity), a is the maximum verapamil-stimulated activity, b is the Hill coefficient, c is the concentration for half-maximal
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concentrations of 15 and 30 mM doxorubicin, a pairwise

comparison (Tukey test) between WT- and Opti-Pgp revealed

no significant difference (p = 0.809 and 0.197) but at the higher

concentrations of 45 mM doxorubicin Opti-Pgp cultures grew

significantly faster than WT-Pgp (p = 0.034, Fig. 2D). The data

demonstrate that Opti-Pgp, like WT-Pgp, transported a range of

fungicidal and anticancer drugs. Higher protein expression levels

in the Opti-Pgp strains (Fig. 2A) likely accounted for their

enhanced drug resistance compared to the WT-Pgp strains.

Pgp also imparts S. cerevisiae with the capacity to export a-factor

mating peptide, permitting diploid formation that can be

efficiently measured in a mating assay [12,33]. Thus we also

compared the capacity of Opti-Pgp to restore mating in the sterile

ste6D yeast strain JPY201. Mating frequencies of Opti-Pgp

transformants were about 1.5-fold higher than WT-Pgp controls

(p = 0.021, Fig. 2E) indicating that Opti-Pgp can export this

pheromone more efficiently than WT-Pgp. Together, the results of

functionality studies were consistent with higher protein expres-

sion, more effective folding and/or more complete trafficking of

Opti-Pgp to the cell surface where it executes its biological activity.

Purification of Opti-Pgp from P. pastoris
For large-scale protein production, fermentor cultures of WT-

and Opti-Pgp expressing strains of P. pastoris were grown and the

proteins purified as described in Materials and Methods [13].

Consistently higher yields of purified proteins were obtained from

the Opti-Pgp strain (1363.2 mg per 100 g cells, n = 6) than WT-

Pgp (4.361.6 mg per 100 g cells, n = 3) (Table 1). Perhaps as a

result of yield, purified Opti-Pgp preparations also exhibited lower

residual contaminant levels than the 5–10% seen in WT-Pgp

preparations on Coomassie-stained gels (labeled ‘‘imp.’’ in Figs. 3A

and 8) and on size exclusion chromatography (SEC) (Fig. 3B).

WT-Pgp preparations showed a peak at the void volume of the

column (Fig. 3B, solid line) that was not seen with Opti-Pgp

(dotted line) suggesting that the latter protein is less prone to

aggregation. In both cases the major protein peak appeared

monomeric with an elution volume (15.3 mL) indicating an

apparent size of approximately 200 kDa, and a minor peak at

13.5 mL consistent with Pgp oligomer [42]. Thus, gene-optimi-

zation improved the quality of the purified protein, as collectively

evidenced by the higher yield and purity of Opti-Pgp preparations,

its monodispersity, and its resistance to aggregation.

ATPase activity of purified Opti-Pgp
ATPase activity of Opti-Pgp in the presence of 150 mM

verapamil was 2.160.28 mmol/min/mg (n.30) and was some-

what higher than WT-Pgp (1.860.24 mmol/min/mg, n.30),

consistent with the low-level impurities and aggregation products

present in WT-Pgp preparations (Fig. 3A and B). The half-

maximal stimulatory concentrations for verapamil were 4.2 and

9.1 mM for Opti- and WT-Pgp, respectively (Fig. 4A), not

significantly different in the two tail test (p = 0.24). Inhibition of

stimulation, and 6 is the concentration of verapamil. No cooperativity was observed with Hill coefficients close to 1.0 (0.998 and 1.05, respectively).
Each data point represents the mean from at least 3 independent experiments (from three different protein purifications) 6 standard deviation. B)
Purified proteins were assayed in the presence of 150 mM verapamil to maximally stimulate ATPase activity but with increasing concentrations of the
inhibitor cyclosporine A. The solid lines are non-linear regression fits to the equation f = a-(e*yb)/(cb+yb)), where e is the maximum inhibition, and y is
the concentration of cyclosporine A. No cooperativity was observed with Hill coefficients close to 1.0 (0.95 and 0.98, respectively).
doi:10.1371/journal.pone.0022577.g004

Figure 5. CD spectra of WT- and Opti-Pgp. CD spectra of the purified proteins were recorded after buffer exchange by size-exclusion
chromatography (peak fractions from Fig. 3B). Protein concentrations were determined by UV spectroscopy, as well as the colorimetric BCA protein
assay using BSA as a standard; the two assays gave essentially the same results. Each spectrum represents an average of 10 scan from three different
protein preparations. Molar ellipticity values were calculated according to [H] = H (1006MRW/lc), where H is the measured ellipticity in degrees,
MRW is the molecular weight of Pgp (141,000 g/mol), l is the path length in centimeters, and c is the concentration of the protein in grams per liter
[43].
doi:10.1371/journal.pone.0022577.g005
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Figure 6. Differential Scanning Calorimetry of WT- and Opti-Pgp. Purified proteins were exchanged into buffer containing a defined DDM
concentration (as in Fig. 3B), and the temperature dependence of the molar heat capacity recorded; protein concentrations ranged between 0.45–
0.78 mg/ml for WT-Pgp and 0.58–0.78 mg/ml for Opti-Pgp, respectively. Panels A and C: no lipid added. Panels B and D: Proteins were preincubated
with 1% (w/w) E. coli lipid (lipid to protein ratio of 16:1, w/w) for 15 min at RT followed by 30 s bath sonication as described [13]. Panels E and F: Opti-
Pgp was preincubated with 0.13% or 0.52% (w/w) E. coli lipid (lipid to protein ratios of 2.2:1 and 8.4:1, w/w)). Control samples containing the same
amount of lipid had no detectable transition in the temperature range of protein unfolding.
doi:10.1371/journal.pone.0022577.g006
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the verapamil-stimulated ATPase activity by the immunosuppres-

sant cyclosporine A was also comparable for the two proteins, with

half-maximal inhibition seen at 0.98 mM and 1.1 mM for Opti-

and WT-Pgp, respectively (p = 0.588, Fig. 4B). The enzymatic

data indicate unaltered affinities for substrates and inhibitors in the

purified proteins.

CD spectroscopy
To monitor potential differences in secondary structure, WT-

and Opti-Pgp were investigated by far-UV CD (Fig. 5). The shape

of the curves was essentially identical, as was the size of the peak

near 220 nm, suggesting the presence of a significant amount of a-

helicity. In fact, the a-helical content was estimated to be

approximately 41% for WT- and 46% for Opti-Pgp using the

method of Chen et al. [43]. These values are very close considering

that accurate protein concentration determination is critical for

these estimates.

Thermal Unfolding of WT- and Opti-Pgp
Thermal unfolding was monitored by DSC to directly probe

protein stability and cooperativity of unfolding. At the least, a

detectable DSC transition supports the presence of a folded,

cooperative tertiary structure. Comparison of the upper and

middle panels of Fig. 6 shows that the unfolding Tm and the shape

of the unfolding transitions are essentially the same for WT- and

Opti-Pgp, whether in detergent solution (panels A and C) or after

addition of 1% lipids (panels B and D), i.e. under conditions giving

maximum ATP hydrolysis rates [13]. The presence of lipid shifted

the Tm from ,40uC (with a minor transition apparent at ,50uC)

to higher temperatures, with the concurrent appearance of two

clear transition maxima near 50uC and 58uC (Table 1). The

significant increase in the total unfolding enthalpy DHcal for both

proteins upon lipid addition indicated improved stability and

suggested an increase in stable tertiary structure of Pgp when

surrounded by lipids. Further measurements of the thermal

unfolding of Opti-Pgp at limiting lipid concentrations (panels E

and F, Fig. 6) demonstrated that the Tm and DHcal increased

gradually, with a single but asymmetric peak seen at 0.13% lipid

while the second transition appeared at lipid concentrations of

$0.52%. Similarly, verapamil-stimulated ATPase activity of Opti-

Pgp showed an increase from 11% in the absence of lipids to 40%

and 80% in the presence of 0.13% and 0.52% lipid (Fig. 7). The

observation of two defined transitions in the presence of lipid is

consistent with the presence of at least two structural domains of

different stabilities which, in the absence of lipid, may be

energetically equivalent or may not manifest as distinct domains.

These are only two possible explanations; others may be equally

feasible. Taken together, the thermal unfolding profiles are

consistent with a folded protein that gains stability and, most

likely, structure as a function of lipid concentration.

Tryptic digestion profiles of purified WT- and Opti-Pgp
To disclose subtle differences in folding between WT- and Opti-

Pgp, we compared their relative susceptibilities to limited

proteolysis by trypsin. Figure 8 shows the disappearance of the

Pgp band as a function of trypsin; the concentration required for

50% degradation (expressed here as the ratio of Pgp:trypsin) was

the same for WT- and Opti-Pgp. Coincident appearance of the N-

and C-terminal half fragments produced by the action of trypsin at

the first cleavage sites in the linker region [44] as well as of smaller

fragments (36 kDa, 31 kDa and smaller, arrows) at a given

concentration of trypsin argues that the principle cleavage sites

were equally accessible in the two proteins. This result implied that

the two had similar tertiary structures, which was completely

consistent with the CD and DSC results.

Discussion

As a eukaryotic expression system, P. pastoris has many

advantages, such as efficient protein folding, membrane targeting,

proteolytic processing, disulfide formation and glycosylation [45]. It

is a cost-effective system that provides high biomass in fermentor

cultures and thus greater amounts of protein per culture volume

than any other system, and therefore proved an ideal choice for Pgp

production for X-ray crystallography and functional studies

[11,12,37,46,47,48,49,50]. Still, as for any membrane protein,

production of pure protein for biophysical and enzymological study

is a relentless challenge and any improvements in yield, quality and

stability of the protein will greatly facilitate downstream analysis.

To maximize protein expression at the translational level we

optimized codon usage in the Pgp gene (mouse mdr3) according to

codon frequency found among highly expressed P. pastoris genes,

and we also removed mRNA instability motifs and secondary

structure that may impair translation [51]. The main purpose of

this study was to rigorously analyze the function of gene-optimized

‘‘Opti-Pgp’’ in vivo and at the purified protein level to detect any

potential differences in function or solution structure, if any,

compared to WT-Pgp. Opti-Pgp was expressed at two- to three-

fold higher levels and was fully able to convey in vivo drug

resistance against a broad range of anticancer drugs and fungicides

in the related S. cerevisiae yeast (Fig. 2). Indeed the growth resistance

profiles together with the enhanced capacity of Opti-Pgp to export

a-factor mating peptide suggested that cotranslational folding

and/or trafficking to the cell surface was improved compared to

WT-Pgp. Gene-optimization increased Pgp protein production

from P. pastoris by about three-fold. ATP hydrolysis by the purified

protein was strongly stimulated by verapamil (,15-fold) and

inhibited by cyclosporine A with binding affinities indistinguish-

able from WT-Pgp (Fig. 4, Table 1). Moreover, ATP hydrolysis

rates were enhanced (,1.2-fold) likely due to the higher purity

and/or stability of Opti-Pgp preparations. SEC of Opti-Pgp

samples that were frozen and thawed once showed a symmetrical

peak with a retention volume corresponding to monomeric

protein, and no aggregated protein was detected at the void

Figure 7. Lipid dependence of ATPase activity. ATP hydrolysis of
Opti-Pgp was assayed after activation with increasing concentrations of
E. coli lipids as described in Materials and Methods. Averages 6 range of
two independent experiments are given. 1% lipids added correspond to
a lipid: protein ratio of 16:1.
doi:10.1371/journal.pone.0022577.g007
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volume of the column in contrast to WT-Pgp samples (Fig. 3). The

functionality data, together with the higher yield and purity, as

well as its monodispersity in SEC and lower background protein

aggregates in crystallization trays (not shown) suggest that Opti-

Pgp will be a most valuable tool for future biophysical studies

requiring large amounts of high quality protein.

These important findings were extended further by analyzing

purified Pgp conformation by CD, DSC and limited proteolysis.

WT- and Opti-Pgp showed very similar CD profiles suggesting an

a-helical content of about 41–46% in DDM solution [43], a value

somewhat lower than the ,60% a-helical content calculated from

X-ray structures solved in the same detergent [11]. Higher

flexibility of the protein in solution and/or the absence of cholate,

transport substrate, nucleotide, inhibitors or additives necessary for

crystallization may account for this lower helicity value [52,53,54].

We previously demonstrated a strong dependence of Pgp ATPase

activity on the presence of lipid [13], indicating that lipids promote

an active conformation of Pgp, possibly through interactions with

the hydrophobic TMDs. Here we show for the first time that the

presence of 1% E. coli lipid increased the thermal stability of the

protein as indicated by a shift in Tm from ,40uC to 49uC, as well

as a significant increase in the total unfolding enthalpy DHcal of

both WT- and Opti-Pgp (Fig. 6, Table 2). Strikingly, a distinct

second unfolding transition appeared at ,58uC suggesting

sequential unfolding of at least two domains in the protein

[55,56]. It is tempting to assign the higher transition to unfolding

of the TMDs which, under these conditions, are expected to reside

within the hydrophobic core of the lipid bilayer. This environment

may promote the acquisition of a more cooperative and/or more

folded structure by providing better aqueous solvent exclusion for

the TMDs than detergent, and/or there may be specific lipid-

protein interactions which would thermodynamically favor a more

folded structure. Other explanations for TMD stabilization are

also possible [57,58]. Titration of Opti-Pgp with lipid showed that

the lipid-dependent changes in Tm occurred progressively, with an

intermediate Tm seen at 0.13% lipid (48uC) and two distinct Tm

maxima resolving at lipid concentrations $0.52% (Fig. 6C–F).

The increase in thermal stability was paralleled by an increase in

Figure 8. Determining the sensitivity of WT- and Opti-Pgp to trypsin. Five mg of purified lipid-activated proteins were incubated with
increasing concentrations of trypsin. Samples were resolved on 10.5–14% gradient gels and stained with Coomassie-Blue. The positions of the MW
protein markers are indicated in kDa. Arrows indicate the position of the full-length proteins (Pgp), the N-terminal or C-terminal half size proteins, and
the position of major tryptic fragments; Imp., impurities.
doi:10.1371/journal.pone.0022577.g008
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ATPase activity with increasing lipid concentrations (Fig. 7).

Together, the data suggest that an increase in stable ternary

structure over the entire Pgp molecule may be responsible for the

robust ATPase activity seen when the protein is surrounded by

saturating lipid molecules. However, phospholipids also serve as

transport substrates of Pgp [59] and we cannot exclude the

possibility that some lipid-substrate molecules bound to the drug

binding site may promote folding in the manner of chemical

chaperones, in addition to hydrophobic interactions at the protein-

lipid interface [60].

Previously, human Pgp single-nucleotide polymorphisms (SNPs) that

introduce rare codons were suggested to alter the structure of substrate

and inhibitor interaction sites by affecting the timing of cotranslational

folding and membrane insertion [40,61,62,63]. In these studies, the

human MDR1 haplotype consisting of the synonymous polymorphisms

C3435T (Ile1145) and C1236T (Gly412) in combination with

G2677T, which changes Ala893 to Ser led to reduced Pgp affinity

for verapamil and the inhibitor cyclosporine A. Additionally, this

haplotype altered susceptibility of the protein to trypsin cleavage [40].

These studies suggested that the tertiary structures of wild-type and the

haplotype Pgp differed, which may affect the pharmacokinetics and

efficacy of cancer drug treatment [61]. Because of the potential impact

of even subtle conformational changes, it was important to confirm that

Opti-Pgp retained both substrate specificity (see Figs. 1 and 3) and

tertiary structure. Trypsin cleavage sites appeared equally accessible in

WT- and Opti-Pgp (Fig. 8), suggesting that the two proteins indeed

have a similar folded state. This was also corroborated in our DSC

study by their similar unfolding temperatures and enthalphies in the

absence or presence of lipids (Fig. 6A–D, Table 2). Interestingly, two of

these haplotype codons occur in the homologous positions of the native

mouse gene: Ile1141 (ATT) and Ser889 (TCT). It may be noted that

ATT and TCT actually represent preferred codons in Pichia yeast

(Fig. 1), in contrast to codons found in human genes. Thus,

introduction of these SNPs during codon-optimization of the mouse

(or human) gene for Pichia would not be expected to affect

cotranslational folding and membrane insertion of Pgp in yeast

expression systems.

Finally it is appropriate to comment on the superior

optimization procedure proposed in this study. Previous gene

optimization procedures aimed to adjust codon usage of the

heterologous gene sequence to that of the P. pastoris host either by

replacing codons with low usage percentage (,15%) by those with

higher usage frequency [21,64,65], or, more recently, by simply

changing all codons to the most frequently used synonymous

codon [66,67]. Codon analyses, including those offered by

commercial sources (e.g. GeneArt, GenScript) were commonly

based on the Kazusa codon usage database (http://www.kazusa.

or.jp/codon/). Neither the Kazusa database, currently containing

137 coding sequences (CDS’s), nor the more complete codon

usage table of the P. pastoris ORFeome with 5,313 CDS’s that was

recently obtained by genome sequencing [23,29], discriminates

between poorly and highly expressed genes. But codon usage in P.

pastoris (and in S. cerevisiae) appears significantly more stringent in

highly expressed genes, as evident from the larger number of low-

frequency codons (Fig. 1). Furthermore, there are inverted

preferences for certain yeast preferred and higher frequency

codons (see Fig. 1 legend), suggesting that preferred codons

assigned in the Kazusa database may not always represent the best

codon choice for high level expression [19,21,68]. The new

approach in this study was not only to omit 19 rare codons (,8%

frequency) but to completely harmonize the frequency of codons

to those of highly expressed P. pastoris genes, and so to maximize

translational efficiency by emulating the host’s evolutionarily

determined codon usage strategy [51,69].

In conclusion, these studies provide evidence that substrate

specificity and folding were preserved in the gene-optimized Pgp

expressed in P. pastoris. Together with transport function, higher

protein yield and purity warrant the use of this protein for

biophysical studies. Furthermore, the successful gene optimization

approach described here may provide a basis for yeast expression

of other ABC transporters and membrane proteins, especially in

those cases in which poor expression of the native gene have

precluded purification efforts [35]. Indeed, preliminary expression

analyses of poorer expressers than the mouse Pgp, e.g. the human

Pgp (MDR1) or the Cystic Fibrosis Conductance Regulator

(CFTR), a protein notorious for its low expression and high

turnover in cells [70], suggest that expression levels are increased

at least 5-fold compared to the respective WT proteins

(purification trials and functional analyses are currently in

progress). Finally, gene synthesis concurrent with gene optimiza-

tion may offer a cost effective alternative for expression of proteins

identified from genome sequencing projects for which a physical

cDNA is not yet available.

Supporting Information

Table S1 30 native P. pastoris genes known to be highly

expressed [26,27,28].

(DOC)

Figure S1 Restriction sites and GC content of the Opti-
Pgp gene. A) The 3,828 bp coding sequence (CDS) of mouse

mdr3 is shown with unique restriction enzyme sites; SacII, NruI,

AvrII, SalI and SpeI are not present in the Wt sequence, and the

gene is flanked by BstBI and XhoI sites. B) The plot shows the GC

content analyzed with GeneOptimizer (GeneArt, Germany) of the

Opti-Pgp gene in a 40 bp window centered at the indicated

nucleotide position.

(TIF)

Figure S2 Cloning strategy for pLIC-H6 vector and
expression in P. pastoris. Schematic representation of the

expression construct for ligation-independent cloning (LIC) using

the pLIC-H6 vector described in [31]. Single-stranded overhangs,

produced by the 39 to 59 exonuclease reactivity of T4 DNA

polymerase in the presence of dGTP and dCTP, are shown for the

PCR-amplified gene (top) and the corresponding counterparts in

the vector (bottom), respectively. After cloning, the pLIC-H6

Table 2. Thermal unfolding parameters of WT- and Opti-Pgp.

Sample
Added
lipids

Unfolding temperature

(6C)
DHcal

(kcal/mol) n b

T1
a T2

a

WT-Pgp None 43.061.6 ND 264687 5

1% lipid 50.460.9 57.860.1 51864.2 2 c

Opti-Pgp None 42.761.7 ND 264667 11 d

1% lipid 49.361.0 58.760.5 567633 5

aTemperatures corresponding to the two maxima of the unfolding profiles seen
in Fig. 6.

bNumber of independent experiments.
cAverages 6 range are given.
dExperiments were routinely conducted in 20 mM HEPES, pH 7.6, 50 mM NaCl,
10% glycerol, 0.1% DDM and 5.5 mM DTT. Four experiments were conducted
in buffers containing 40 mM imidazole, and three experiments were
conducted with reduced glycerol (5% instead of 10% glycerol); no significant
differences in the Tm or DHcal were observed under those conditions.

doi:10.1371/journal.pone.0022577.t002
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plasmid encodes a protein bearing a C-terminal His6 tag. In

addition, the vector contains Kozak-like bases in the region

around the ATG start codon (positions -3 and +1) important for

high-level expression in P. pastoris [31]. Integrity of the CDS was

confirmed by DNA sequencing. The resulting plasmids pLIC-

mdr3-H6 and pLIC-opti-mdr3-H6 were transformed into P. pastoris

strain KM71H and selected on 100 mg/ml Zeocin as described

[35].

(TIF)

Figure S3 Amino acid and nucleotide sequence align-
ment of wild-type mdr3 and Opti-mdr3.
(DOC)
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