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Abstract

MicroRNAs (miRNAs) are short (,22 nucleotides) regulatory RNAs that can modulate gene expression and are aberrantly
expressed in many diseases including cancer. Previous studies have shown that miRNAs inhibit the translation and facilitate
the degradation of their targeted messenger RNAs (mRNAs) making them attractive candidates for use in cancer therapy.
However, the potential clinical utility of miRNAs in cancer therapy rests heavily upon our ability to understand and
accurately predict the consequences of fluctuations in levels of miRNAs within the context of complex tumor cells. To
evaluate the predictive power of current models, levels of miRNAs and their targeted mRNAs were measured in laser
captured micro-dissected (LCM) ovarian cancer epithelial cells (CEPI) and compared with levels present in ovarian surface
epithelial cells (OSE). We found that the predicted inverse correlation between changes in levels of miRNAs and levels of
their mRNA targets held for only ,11% of predicted target mRNAs. We demonstrate that this low inverse correlation
between changes in levels of miRNAs and their target mRNAs in vivo is not merely an artifact of inaccurate miRNA target
predictions but the likely consequence of indirect cellular processes that modulate the regulatory effects of miRNAs in vivo.
Our findings underscore the complexities of miRNA-mediated regulation in vivo and the necessity of understanding the
basis of these complexities in cancer cells before the therapeutic potential of miRNAs can be fully realized.
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Introduction

MicroRNAs (miRNAs) are members of an abundant class of

small (,22 nts) regulatory RNAs believed to play significant roles

in a variety of biological processes and diseases in both plants and

animals [1]. Of recent interest, is the possible contribution of

aberrantly expressed miRNAs to cancer initiation and develop-

ment [2,3]. Numerous in vitro studies have demonstrated that

miRNAs are capable of inhibiting the translation and/or

facilitating the degradation [4,5,6,7] of their targeted mRNAs

making them attractive candidates for potential use in cancer

therapy [8,9]. However, the potential clinical utility of miRNAs in

cancer therapy rests heavily upon our ability to understand and

accurately predict the consequences of fluctuations in levels of

miRNAs within the context of tumor cells in vivo. The general

expectation that changes in levels of miRNAs will be inversely

correlated (IC) with changes in levels of their mRNA targets

[10,11,12,13,14] has yet to be conclusively tested within the

context of tumor cells in vivo. For example, previous independent

estimates of relative miRNA levels in ovarian cancers vs. controls

often have been inconsistent, possibly due to differences in sample

type (e.g., bulk tissue samples vs. micro-dissected cells, etc.),

biological variability among different cancer sub-types and

individual patient samples (e.g., [15,16,17,18,19,20]) or due to

inaccuracies in the prediction of the mRNA targets [21,22].

In an effort to reduce variation that may obscure biologically

significant trends, we have conducted microarray (Affymetrix)

analyses of miRNAs and mRNAs from the same ovarian cancer

epithelial (CEPI) cells isolated from patient samples by laser

capture micro-dissection (LCM). We monitored differences in

levels of miRNA expression between CEPI and ovarian surface

epithelial (OSE) cells (collected from ovaries of normal patients)

with expression levels of their putative mRNA targets as

determined by various prediction algorithms and by experimental

validation. While ovarian cancers may arise from either the

fimbrial epithelium of the oviduct or OSE, it has recently been

shown that both classes of cells are part of a transitional epithelium

of common origin and thus either may serve as a precursor to

CEPI [23]. Since OSE can be harvested from the surface of

ovaries with minimal contamination, they were selected as

appropriate controls in our study.

We found that only ,11% of mRNA targets displaying

significant (p,0.005) changes in levels of expression in CEPI

relative to normal were IC with changes in levels of their

regulating miRNAs (p,0.01). The levels of the majority (,79%)

of target mRNAs were unchanged in CEPI while the rest (,10%)
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of the mRNA targets displayed changes in levels positively

correlated (PC) with their respective regulating miRNAs. We

conclude that the low predictability of miRNA regulatory effects in

CEPI isolated from patient samples is attributable to the

complexity of miRNA function in vivo.

Results

The majority of miRNAs differentially expressed in CEPI
relative to OSE are up-regulated

Unsupervised hierarchical clustering of the expression profiles of

miRNAs detected on the miRChip (Asuragen Inc, Austin, TX)

was performed on three CEPI and three OSE patient samples

(Figure 1; see Table 1 for clinical information regarding samples).

The miRChip contains a total of 13,349 probes including 467

annotated human miRNAs (Sanger miRBase V9.2 [24,25,26]),

455 miRNAs annotated in various other species and 12,894

(exploratory) probes of predicted, but as yet not validated/

annotated miRNAs. Using a threshold of 2-fold or greater change,

42 miRNA probes were found to be differentially expressed

(p,0.01) between our cancer and control samples. Of these, 33

were up-regulated and 9 down-regulated in the CEPI relative to

OSE, including 12 previously annotated human miRNAs (9 up-

regulated and 3 down-regulated). A heat map of the 42

differentially expressed miRNA probes is presented in Figure 2a

(the miRNA sequences of these 42 probes, log2 difference between

CEPI and OSE, and p-values from t-test are provided in Table

S1). To independently test the validity of the differential miRNA

expression patterns determined by microarray, we conducted

measurements of miRNA levels using quantitative (real-time)

polymerase chain reaction (qPCR). Five (miR-141, miR-429, miR-

205, miR-383 and miR-320) of the 12 previously annotated human

miRNAs shown to be differentially expressed by microarray were

selected for qPCR analysis in three cancer and three control

samples. The qPCR results confirmed the differences detected in

the microarray study (Figure 2b).

In contrast to some earlier studies [15,16,18,19,20], our results

indicate that the majority of miRNAs displaying significant

differences in levels of expression between CEPI and OSE are

up-regulated in ovarian cancer. The basis of this discrepancy is

unknown but may be due to differences in sample type (e.g., bulk

tissue samples vs. micro-dissected cells, etc.) and/or biological

variability among individual patient samples. Our finding that the

majority of miRNAs are up-regulated in ovarian cancer is

consistent with the fact that miRNA targets are significantly

enriched (hypergeometric distribution, p,0.05) among mRNAs

down-regulated in our cancer samples, while up-regulated genes

have relatively few miRNA targets (Figure S1; heat maps showing

hierarchical clustering of the samples using all probesets is

presented in Figure S2 and using only differentially expressed

mRNAs in Figure S3; a list of all differentially expressed mRNAs is

presented in Table S2). A possible biological explanation of why

miRNAs are up-regulated in CEPI may lie in the fact that in

contrast to other cancers [27,28], the transition from OSE to

CEPI is postulated to involve changes from a less differentiated to

a more differentiated state [29,30,31].

Among the 12 previously annotated miRNAs displaying a

significant change in levels in the CEPI samples, miR-205, miR-

141, and miR-429 are all significantly up-regulated consistent with

previous studies linking these miRNAs with the maintenance of

cells in the differentiated epithelial state [32]. Of the miRNAs that

are down-regulated in CEPI relative to OSE, miR-320 and miR-

383 are located in regions associated with frequent DNA copy

number losses in ovarian cancer [19]. miR-320 previously has

been identified as an inhibitor of lung carcinoma proliferation

[33]. Its down-regulation in CEPI suggests that it may act as a

tumor suppressor in ovarian cancers as well.

Only ,11% of the predicted mRNA targets of miRNAs
differentially expressed between the CEPI and OSE
display the expected inverse pattern of change in gene
expression

Previous studies have established that human miRNAs repress

gene expression by pairing with complementary sequences located

within the 39 untranslated regions (39 UTR) of targeted mRNAs

resulting in translational repression and mRNA degradation [6,7].

Based on these findings, changes in the expression levels of

miRNAs are generally predicted to be inversely correlated with

changes in the expression levels of their targeted mRNAs

[10,11,12,13,14]. To test this hypothesis in the context of cells

isolated from patient samples, we compared changes in the levels

of the previously annotated human miRNAs with levels of their

predicted target mRNAs in our CEPI samples relative to the OSE

controls. The putative mRNA targets of these previously

annotated human miRNAs were initially identified using the

miRanda algorithm [34,35,36]. The results indicate that only

,11% of the changes in mRNA expression between CEPI and

OSE were inversely correlated (IC) with the observed changes in

miRNA levels (Tables 2 & S3). Earlier studies of levels of miRNAs

and their targeted mRNAs in a series of cell lines reported similar

findings [13,37,38]. The expression of the majority (No Change,

NC: ,79%) of the predicted mRNA targets was not significantly

different (p.0.005 and/or fold change ,2) between the CEPI and

OSE samples, while ,10% of the targeted mRNAs displayed

changes positively correlated (PC) with their putatively regulating

miRNAs.

To determine if the unexpectedly low percentage of IC changes

may be a computational artifact of our use of the miRanda

algorithm to predict targeted mRNAs, we repeated the analysis

independently using the PicTar (www.pictar.org) and TargetScan

(www.targetscan.org) miRNA target prediction algorithms. In

both instances, the results were consistent with our original finding

that only a minority of the changes in mRNA expression between

CEPI and OSE are inversely correlated (IC) with the observed

changes in miRNA levels (PicTar: IC 9.4%, PC 10.1%, NC

80.5%; TargetScan: IC 10.4%, PC 10.3%, NC 79.3%; see

Tables 3, S4 & S5). To increase the stringency of target

predictions, we reanalyzed the data using only miRNA targets

that were commonly predicted by all three algorithms (intersec-

tion). We found that by overlapping the three independent

prediction algorithms, each miRNA had fewer predicted targets,

yet using these commonly predicted targets, only ,7% of the

mRNA changes between CEPI and OSE were found to be

inversely correlated (IC) with the observed changes in miRNA

levels (Table 4). We also analyzed our data using intersections of

predictions from two algorithms at a time (miRanda+TargetScan,

miRanda+PicTar, and PicTar+TargetScan), and again we found

that changes in levels of only 6–9% of the predicted mRNA targets

were inversely correlated with changes in miRNA levels (Tables

S6, S7 and S8).

Experimental validation is currently considered the most

stringent method to validate miRNA targets [39,40]. Thus, to

further test the possibility that the low inverse correlation between

changes in miRNA levels and target mRNAs observed in the tissue

samples was merely a reflection of the limited accuracy of target

prediction algorithms, we conducted a series of transfection

experiments using two miRNAs that were significantly up-
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regulated in CEPI (miR-7 and miR-128) to identify experimentally

validated targets of these miRNAs in CEPI.

A series of independent transfection experiments was carried

out with miR-7, miR-128 and a matched set of negative control

miRNAs in a well-established ovarian cancer cell line (HEY) [41].

To determine the effectiveness of our transfections (positive

controls), we monitored expression levels of two previously

confirmed mRNA targets of miR-7 (epidermal growth factor

receptor, EGFR [42] and miR-128 (B lymphoma Mo-MLV

insertion region 1 homolog, BMI1 [43]) regulation. The results

confirm the effectiveness of both transfections (Figure S4). RNA

was collected from cells after transfection and the relative levels of

mRNAs present were determined by Affymetrix microarray

analyses (HG-U133 Plus 2.0; Tables S9 and S10).

Consistent with the results from CEPI tissue samples, only a

minority of predicted mRNA targets were found to be significantly

reduced (IC) after miR-7 or miR-128 transfection (Table 5). The

predicted mRNA targets that were significantly down-regulated in

these transfection experiments were taken as ‘‘experimentally

validated’’ mRNA targets of miR-7 and miR-128 respectively.

Using only these targets, we reanalyzed the microarray data from

the tissue samples and found that only ,8% (range 0–18%) of the

‘‘experimentally validated’’ mRNA targets displayed changes in

expression IC with changes in miR-7 and miR-128 expression in

Figure 1. Unsupervised hierarchical clustering of CEPI and OSE samples based on probesets expressed on the Ambion miRChip. An
unsupervised hierarchical clustering of the CEPI and OSE samples was carried out using all detected probesets on the Ambion miRChip array,
regardless of differential expression. Probesets with standard deviation ,0.5 across all samples were removed prior to clustering. The clustering
shows that the CEPI and OSE samples cluster into separate groups, which suggests the variance between the groups is greater than that within the
groups.
doi:10.1371/journal.pone.0022508.g001
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CEPI (Table 6). Collectively our results indicate that the low

inverse correlation between changes in levels in miRNAs and their

target mRNAs in vivo is not merely an artifact of inaccurate target

predictions but rather a reflection of the complexity of miRNA

function in cancer cells.

Discussion

It is well known that genes and their mRNA products are

subject to a vast array of regulatory controls. The relative

contribution of malfunctions in these controls to the onset and

progression of diseases, such as cancer, can be varied and complex

[44]. miRNAs and other small non-coding RNAs recently have

been shown to be important regulators of gene expression, and

disruption of miRNA expression has been implicated in many

diseases including cancer [3,45,46,47,48]. While it is well

established that miRNAs can serve as useful biomarkers for the

diagnosis and staging of a variety of human cancers (e.g.,

[2,49,50]), the manner and extent to which miRNAs contribute

to the processes underlying cancer is only beginning to be

understood [2,45]. For example, the regulatory function of

miRNAs was initially believed to operate exclusively at the

translational level [51,52], but more recent findings have

demonstrated that these small regulating RNAs also play a role

in the modulation of mRNA stability and that these two modes of

control may be inter-related [7,53]. We still do not rule out the

possibility that regulation of some target genes may occur at the

translational level without significant changes in mRNA level, and

therefore may have been ignored in our analyses.

Extensive in vitro and in vivo studies previously have demonstrat-

ed that human miRNAs can repress gene expression by pairing

with sequences located within the 39 untranslated regions of

targeted messenger RNAs (mRNAs) resulting in translational

repression and subsequent mRNA degradation [1,6,7]. Thus far,

there are few examples of miRNAs increasing the transcription or

translation of target genes [54,55], resulting in positive correlations

between miRNAs and target mRNAs. Therefore, a generally held

expectation is that changes in the expression levels of mRNAs will

be inversely correlated with changes in the levels of their targeting

miRNAs [56]. However, the fact that individual miRNAs may

target multiple mRNAs and that individual mRNAs may be

targeted by multiple miRNAs creates the potential for a complex

network of interactions in cancer cells replete with a variety of

positive and negative feedback loops [57,58]. In addition, the fact

that miRNAs are well known to target mRNAs encoding a variety

of cellular transcription factors and other regulatory proteins

increases the likelihood that the direct regulatory effects of

miRNAs may be modulated by indirect or ‘‘down-stream’’ effects

within the context of cancer cells. This is not to say that the

mechanisms demonstrated to underlie miRNA regulation in vitro

are inoperative in vivo, but rather that the functional consequences

of these mechanisms may be masked and/or modulated by the

regulatory complexities that characterize cancer cells. The extent

to which these complexities may mitigate our ability to accurately

predict the molecular consequence of changes in levels of miRNAs

within the context of cancer cells has relevance to the potential use

of miRNAs in cancer therapy.

The purpose of our study was to evaluate the extent to which the

molecular consequences of changes in miRNA levels in cancer cells

isolated from patient tissues can be predicted from current models of

miRNA function. The fact that prior efforts to obtain expression

profiles of miRNAs and their mRNA targets were typically carried

out on samples obtained from different patients and/or from mixed

(bulk) tissues have contributed to inconsistent findings (e.g.,

[15,16,17,18,19,20]). In an effort to reduce experimental variation,

we assayed changes in levels of miRNAs and their targeted mRNAs

in ovarian cancer cells isolated from the same patients by LCM.

Our results indicate that only ,11% of the changes in levels of

mRNAs are IC with changes in levels of their regulating miRNAs in

the same ovarian cancer (CEPI) cells. To eliminate the possibility

that our results are merely an artifact of incorrectly identified

mRNA targets of miRNA regulation, we repeated our analyses

using targets predicted by a variety of prediction algorithms, as well

as, targets experimentally validated in a series of transfection

experiments conducted in a well-documented ovarian cancer cell

line (HEY). Our results consistently support the conclusion that the

expected IC between changes in miRNA levels and levels of their

target mRNAs occurs relatively infrequently in ovarian cancer cells

isolated from patient samples and that this low inverse correlation is

not merely an artifact of inaccurate miRNA target predictions.

Rather, our results indicate that the low inverse correlation between

changes in miRNA levels and levels of their target mRNAs is the

likely consequence of indirect cellular processes that modulate or

mask the regulatory effects of miRNAs in vivo. Our findings

underscore the complexities of miRNA-mediated regulation in vivo

and the need for better understanding the basis of these complexities

in cancer cells before the therapeutic potential of miRNAs can be

fully realized.

Materials and Methods

Tissue samples
Ovarian tumor samples were collected at Northside Hospital

(Atlanta, GA) during surgery and snap frozen in liquid nitrogen

within 1 minute of removal from patients. All ovarian tumor

Table 1. Clinical information of patient samples used in this
study.

Patient
ID Ovarian Histopathology Stage/Grade

Age at Surgery
(years)

551a,b,c papillary serous carcinoma IIIc/IV/3 59

588a,b,c papillary serous carcinoma IIIc/2-3 71

489a,b papillary serous carcinoma IV/3 48

620c papillary serous carcinoma III/IV/3 62

434a within normal limits N/A 41

440a within normal limits N/A 50

475a within normal limits N/A 63

470a Ov-within normal limits;
hx of endometrial ca.

Ov-N/A
Endo-1b/1

44

437a Ov-within normal limits;
hx of cervical ca.

Ov-N/A
Cerv-1b/3

54

482b within normal limits N/A 44

665b within normal limits N/A 84

783b,c within normal limits N/A 52

838c within normal limits N/A 51

846c within normal limits N/A 51

amRNA microarray;
bmicroRNA microarray;
creal-time PCR.
Clinical information relevant to this study for each patient is shown. In addition,
a legend is given to identify which patient was used for each microarray and
qPCR experiment. Abbreviations used- Cerv: Cervix; Endo: Endometrium; Ov:
Ovary; ca.: Carcinoma; hx: History.
doi:10.1371/journal.pone.0022508.t001
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samples used in this study were from patients diagnosed with

serous papillary epithelial ovarian carcinoma. Brushings of normal

ovarian surface epithelial cells (OSE) were preserved immediately

in RNAlater (Ambion, Austin, TX). Patient consent and approval

from the Institutional Review Boards of Georgia Institute of

Technology and Northside Hospital were obtained. The written

consent and our protocol (#H09227) were approved by the IRB.

Detailed clinical information for each patient used in this study is

provided in Table 1.

Laser capture micro-dissection (LCM)
Fresh frozen tissues from tumors were cut into seven-micron

sections, applied to non-charged slides, then fixed in 75% ethanol

for 30 seconds, stained and dehydrated using the HistoGene LCM

Frozen Section Staining Kit (Arcturus, Mountain View, CA).

LCM was performed with an AutoPix Automated Laser Capture

Microdissection System using the CapSure Macro Caps (Arctu-

rus). Approximately 10,000 cells were captured on each of 5–6

caps per sample. miRNA was extracted from captured cells using

the mirVana miRNA Isolation Kit (Ambion). mRNA was isolated

from cells from the same patients using the PicoPure RNA

Isolation Kit (Arcturus).

RNA extraction from ovarian surface epithelial cells
For miRNA qPCR and microarray, normal ovarian surface

epithelial cells were spun down and resuspended in lysis buffer

from the mirVana miRNA Isolation Kit (for small RNA

enrichment), following the manufacturer’s recommended protocol

(Ambion). cDNA for qPCR was synthesized from RNA (10ng)

using the TaqMan miRNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA).

For mRNA qPCR and microarray total RNA extraction from

OSE was carried out using the PicoPure RNA Isolation Kit,

following the manufacturer’s recommended protocol (Arcturus).

Due to limited number of cells collected from surface epithelial

brushings, OSE RNA was extracted from 5 patients with non-

malignant ovaries for mRNA microarray and from two different sets

of three patients with non-malignant ovaries for miRNA (one set

for miRNA microarray, another for qPCR) (See Table 1 for more

details on patient information).

Quantitative (real-time) PCR
Total RNA (10ng) extracted from LCM captured ovarian tumor

cells and normal OSE cells was converted to amplified cDNA for

qPCR. TaqMan miRNA Assays (Applied Biosystems) were

conducted following manufacturer’s protocol for hsa-miR-141,

hsa-miR-429, hsa-miR-205, hsa-miR-320, hsa-miR-383 and for

RNU6B endogenous control using the StepOnePlus Real-Time

PCR machine (Applied Biosystems). The primer specificities for

these miRNAs have been previously demonstrated [58–63] and

Table 2. Summary values of IC, PC and NC targets in CEPI vs.
OSE using miRanda.

miRNA
Total Targets
(miRanda)

Inversely
Correlated
Targets (%)

No
Change
(%)

Positively
Correlated
Targets (%)

miR-7 2363 10.62 79.94 9.44

miR-18a 1738 11.10 79.86 9.03

miR-18b 1710 11.40 79.24 9.36

miR-126 84 14.29 75.00 10.71

miR-128 2691 11.82 79.23 8.96

miR-141 3074 13.53 77.91 8.56

miR-205 2268 13.49 78.31 8.20

miR-429 3316 13.48 78.62 7.90

miR-93* 2252.00 13.14 77.00 9.86

Average (for up-
regulated miRNAs)

2166.22 12.54 78.34 9.11

miR-383 2118 9.02 78.80 12.18

miR-320a 3073 8.30 79.08 12.63

miR-193a-5p 1216 12.01 78.45 9.54

Average (for down-
regulated miRNAs)

2135.67 9.77 78.78 11.45

Average (for
Up and Down)

2150.94 11.16 78.56 10.28

miRNA targets that were differentially expressed between CEPI and OSE based
on t-test p,0.005 and fold change of at least 2 were classified as being IC or PC
with their regulating miRNAs (while target genes that do not meet the above
criteria are classified as NC). Total number of targets from miRanda algorithm
present after removing probe sets with ‘‘Absent’’ calls in all samples is shown
along with fraction of IC, PC and NC targets for each miRNA. On average, 78.6%
of the target mRNAs are ‘‘No Change’’, or do not change significantly with
miRNAs, 11.2% are ‘‘inversely correlated’’ and 10.3% are ‘‘positively correlated’’
with miRNAs.
doi:10.1371/journal.pone.0022508.t002

Figure 2. Differentially expressed miRNAs in CEPI cells from ovarian cancer patients relative to OSE. (A) Hierarchical clustering of
normal and cancer patient samples based on differentially expressed miRNAs between CEPI cells and OSE cells (p,0.01, $2fold change). The
dendogram on the left shows that the probes cluster into two groups corresponding to the up-regulated and down-regulated miRNAs differentially
expressed between normal and cancer. IDs of selected probes are given on the right (including the annotated human miRNAs, see Table S1 for a
complete list). Key: hsa-miR-x: annotated human miRNAs; hsa-asg/cand-x: predicted candidate human miRNAs; ppy-: Pongo pygmaeus miRNA; cel-: C.
elegans miRNA. (B) Confirmation of expression patterns for selected miRNAs by qPCR. The relative expression of each miRNA in logarithmic units in
cells from 3 cancer patients is shown compared to cells from 3 normal ovaries after normalization to RNU6B (DDCt method). These were found to be
statistically significant by Relative Expression Software Tool (RESTH) by a randomization method. Randomization was performed 5000 times.
Consistent with the microarray results, miR-141, miR-205 and miR-429 were confirmed to be significantly up-regulated in cancer, while miR-320 and
miR-383 were found to be significantly down-regulated. Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0022508.g002

Table 3. Summary of average IC, PC and NC fractions based
on miRanda, PicTar and TargetScan predicted targets.

Inversely
Correlated
Targets (%) No Change (%)

Positively
Correlated
Targets (%)

miRanda 11.16 78.56 10.28

TargetScan (TS) 10.37 79.34 10.29

PicTar (PT) 9.41 80.48 10.11

Average of different
algorithms

10.31 79.46 10.23

Average fraction of IC, NC and PC targets in CEPI vs. OSE calculated for all 12
annotated miRNAs using miRanda, TargetScan (TS) or PicTar (PT) (See Tables 2,
S4 and S5 for details). The average IC, NC and PC fractions of the mean values
calculated from these 3 different algorithms are also shown.
doi:10.1371/journal.pone.0022508.t003
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RNU6B is a previously established control for human ovarian tissue

(http://www.ambion.com/techlib/tn/151/3.html; http://www3.

appliedbiosystems.com/cms/groups/mcb_marketing/documents/

generaldocuments/cms_044972.pdf). Statistical significance was

determined using the Relative Expression Software Tool (REST;

[59]).

For mRNA qPCR, total RNA (1–5 mg) extracted from cells was

converted to cDNA using the Superscript III First Strand synthesis

system (Invitrogen). cDNA was then purified using the QIAGEN

PCR purification kit (QIAGEN) following manufacturer’s instruc-

tions. qPCR experiments were carried out for the EGFR, BMI1

and GAPDH genes using iQ SYBR Green Supermix (Bio-Rad,

Hercules, CA). The sequence specific primers used for SYBR

green assays are as follows: EGFR-forward: GGAGAACTGC-

CAGAAACTGACC, EGFR-reverse: GCCTGCAGCACACTG-

GTTG, GAPDH-forward: GGTCTCCTCTGACTTCAACA,

GAPDH-reverse: AGCCAAATTCGTTGTCATAC, BMI1-for-

ward: ACTTCATTGATGCCACAACC, BMI1-reverse: CA-

GAAGGATGAGCTGCATAA. The EGFR primers were as

designed by [60] and GAPDH primers were as designed by

[61]. BMI1 primers were obtained from the qPCR primer

database RTPrimerDB [62]. The GAPDH primer efficiencies

were calculated to be ,1. The specificity of the other primers can

be obtained from the relevant publications/database. All qPCR

reactions (for mRNA and miRNA) were optimized with non-

template controls and -RT (minus reverse transcriptase) controls

prior to experiment. GAPDH was chosen as endogenous control

as it displayed minimal change between cells transfected with miR-

NC and miR-7/128 in microarray.

All qPCR reactions were carried out with at least 2 biological

replicates and for each biological replicate at least 3 technical

replicates.

Cell culture and Cell Transfections
HEY cells were provided by Gordon B. Mills, Department of

Systems Biology, the University of Texas, M. D. Anderson Cancer

Center. The cells were cultured in RPMI 1640 (Mediatech,

Manassas, VA) supplemented with 10% v/v heat-inactivated fetal

calf serum (Invitrogen, Carlsbad, CA), 2 mM L-glutamine

(Mediatech), 10 mM HEPES buffer (Mediatech), penicillin

(100 U/ml), and streptomycin (100 mg/mL). Approximately 12h

before transfection, these cells (duplicates or triplicates per

transfection, 1.56105 per well) were seeded on six-well plates in

growth medium and allowed to adhere overnight at 37uC in a 5%

CO2 atmosphere. The following day after washing the wells with

PBS and replacing the growth medium with Opti-MEM

(Invitrogen), cells were transfected with the miRNA [hsa-miR-7

miRIDIAN mimic, miRIDIAN miRNA mimic negative control

#1 (miR-NC, a C. elegans miRNA, cel-miR-67, with confirmed

minimal sequence identity in humans), or hsa-miR-128 miRI-

DIAN mimic (Thermo Fisher Scientific, Lafayette, CO)] using

Lipofectamine 2000 transfection agent (Invitrogen) according to

Table 4. Summary values of IC, PC and NC targets in CEPI vs.
OSE using overlap of miRanda, TargetScan and PicTar target
predictions.

miRNA
Total Targets
(M_TS_PT)

Inversely
Correlated
Targets (%)

No Change
(%)

Positively
Correlated
Targets (%)

miR-7 105 10.48 84.76 4.76

miR-18a 59 13.56 83.05 3.39

miR-18b 59 13.56 83.05 3.39

miR-126 2 0.00 100.00 0.00

miR-128 237 11.81 79.75 8.44

miR-141 177 15.82 74.58 9.60

miR-205 73 21.92 67.12 10.96

Average (for
up-regulated
miRNAs)

101.71 12.45 81.76 5.79

miR-383 15 0.00 80.00 20.00

miR-320a 112 3.57 84.82 11.61

miR-193a-5p 2 0.00 50.00 50.00

Average (for
down-regulated
miRNAs)

43.00 1.19 71.61 27.20

Average (for
Up and Down)

72.36 6.82 76.68 16.50

miRNA targets that were differentially expressed between CEPI and OSE based
on t-test p,0.005 and fold change of at least 2 were classified as being IC or PC
with their regulating miRNAs (while target genes that do not meet the above
criteria are classified as NC). Total number of targets from the intersection
(M_TS_PT) of miRanda (M), TargetScan (TS) and PicTar (PT) predictions present
after removing probe sets with ‘‘Absent’’ calls in all samples is shown along with
fraction of IC, PC and NC targets for each miRNA. On average, 76.7% of the
target mRNAs are ‘‘No Change’’, or do not change significantly with miRNAs,
6.8% are ‘‘inversely correlated’’ and 16.5% are ‘‘positively correlated’’ with
miRNAs.
doi:10.1371/journal.pone.0022508.t004

Table 5. Summary values of IC, PC and NC targets in
transfection experiments using miRanda, TargetScan and
PicTar target predictions.

miRNA_prediction
algorithm

Total
Targets

Inversely
Correlated
Targets (%)

No Change
(%)

Positively
Correlated
Targets (%)

miR-7 transfection

miR-7_M 2432 7.98 91.24 0.78

miR-7_TS 259 23.55 75.29 1.16

miR-7_PT 238 16.39 83.19 0.42

miR-7_M_TS 234 20.51 78.63 0.85

miR-7_PT_TS 118 22.88 77.12 0

miR-7_M_PT 159 20.75 79.24 0

miR-7_M_TS_PT 99 23.23 76.77 0

miR-128 transfection

miR-128_M 2744 9.55 79.15 11.30

miR-128_TS 654 16.36 73.85 9.79

miR-128_PT 441 15.19 74.60 10.20

miR-128_M_TS 449 20.04 72.83 7.13

miR-128_TS_PT 301 16.94 73.75 9.30

miR-128_M_PT 306 17.32 74.18 8.50

miR-128_TS_M_PT 221 19.91 73.30 6.79

miRNA targets that were differentially expressed between miR-7 or miR-128
transfected cells compared to negative control miRNA transfected cells, based
on fold change of at least 1.4 and false discovery rate threshold of 5% were
classified as being IC or PC with their regulating miRNAs (while target genes
that do not meet the above criteria are classified as NC). Total number of targets
from miRanda (M), TargetScan (TS) and PicTar (PT) or their intersections (two at
time and all three) present after removing probe sets with ‘‘Absent’’ calls in all
samples is shown along with fraction of IC, PC and NC targets for each miRNA.
doi:10.1371/journal.pone.0022508.t005
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the manufacturer’s instructions at a final concentration of 25 nM.

Cells were incubated for four hours in this reduced serum

environment to optimize transfection, washed with PBS, and then

incubated at 37uC and 5% CO2 for 44 h (total 48 h) after adding

fresh growth medium to the wells. Transfection efficiency was

estimated from the relative knock-down of previously validated

targets (EGFR for miR-7 and BMI-1 for miR-128 [42,43]), based

on recommendations by the siRNA/miRNA reagent manufac-

turer (Thermo Fisher Scientific). Cell culture experiments were

carried out using at least two-three independent biological

replicates.

Microarray
Tissue mRNA microarray. Biotin labeled cRNA was

synthesized, hybridized to Affymetrix HG-U133 Plus 2.0

oligonucleotide arrays and analyzed with a GeneChip Scanner

3000 (Affymetrix, Santa Clara, CA).

HEY cell RNA isolation and mRNA microarray. Total

RNA was isolated using the RNeasy Mini RNA isolation kit

(QIAGEN, Valencia, CA) according to the manufacturer’s

instructions. The integrity of the RNA was verified using an

Agilent 2100 Bioanalyzer (1.8–2.0; Agilent Technologies, Palo

Alto, CA). mRNAs were converted to double stranded (ds)-cDNA

and amplified using Applause 39-Amp System (NuGen, San

Carlos, CA). This cDNA was then biotin labeled and fragmented

by using Encode Biotin Module (NuGen). The labeled cDNA was

hybridized to Affymetrix HG-U133 Plus 2.0 oligonucleotide arrays

and analyzed with a GeneChip Scanner 3000 (Affymetrix).

Microarray data analysis
Tissue miRNA microarray data analysis. Samples for our

miRNA profiling study were processed by Asuragen Services

(Austin, TX), according to the company’s standard operating

procedures. A custom-manufactured Affymetrix GeneChipH from

Ambion was designed to miRNA probes derived from the Sanger

miRBase and published reports [24,25,26,63,64,65]. Background

signal was estimated from antigenomic probe sequences provided

by Affymetrix and derived from a larger set of controls used on the

Affymetrix human exon array. Spike-in external reference controls

were based on non-miRNA control probes that lack homology to

the human genome. Arrays within a specific analysis experiment

were normalized according to the variance stabilization method

described in [66]. A Wilcoxon rank-sum test was used to

determine detection calls of the miRNA probe signal compared

to the distribution of signals from GC-content matched anti-

genomic probes.

A two-sample t-test, with assumption of equal variance, was

applied for statistical hypothesis testing. This test defined which

probes are considered to be significantly differentially expressed

based on a p-value of 0.01 and log2 difference $1. The signal

intensities from these differentially expressed probes were z-score

normalized prior to hierarchical clustering.

Unsupervised hierarchical clustering of the samples was

performed using Spotfire Decisionsite for Microarray Analysis

(DSMA) based on Z-score transformed signal values of all

probesets except those with standard deviation ,0.5. A ‘‘complete

linkage’’ clustering method was employed with ‘‘correlation’’

‘similarity measure’. Empty values were replaced with the constant

0.

Tissue mRNA microarray data analysis. CEL files

generated by the Affymetrix Gene Chip Operating System

(GCOS) were converted to expression level values using the

MAS 5.0 package implemented using the Affymetrix Expression

Console software. The log2 transformed expression values were

then normalized across samples by Z-score calculations using

DSMA. Probe sets with ‘‘Absent’’ call in all groups were removed

from further statistical analysis. Probe set intensities were filtered

with DSMA using a modulation threshold of 1.0 to include only

those probe sets with at least a log2 expression value of $1.0 or

fold change $2. Differentially expressed probe sets were identified

using the t-test function of the Profile ANOVA Tool of DSMA

(p,0.005). Annotations for probe sets were obtained from

the NetAffx website (http://www.affymetrix.com/analysis/index.

affx).

Unsupervised hierarchical clustering of the samples was

performed using DSMA based on Z-score transformed signal

values of all probesets except those with standard deviation ,0.5

and ‘‘Absent’’ call across all samples. A ‘‘complete linkage’’

clustering method was employed with ‘‘correlation’’ ‘similarity

measure’. Empty values were replaced with the constant 0.

HEY cell mRNA microarray data analysis. Raw data in

the form of CEL files were produced by Affymetrix GeneChip

Operating System (GCOS) software. Raw data from mRNA

microarray were analyzed using the Expression Console software

(Affymetrix) and R (www.r-project.org). Normalization was

performed using MAS 5.0, PLIER (Expression Console) and

GCRMA (R) algorithms. The log2 transformed expression values

from MAS5.0 were then analyzed for Affymetrix ‘‘Present/

Absent’’ calls using DSMA. Probe sets with ‘‘Absent’’ call in all

groups were removed from statistical analysis. Average probe set

Table 6. Summary values of IC, PC and NC mRNAs in CEPI vs.
OSE for miR-7 and miR-128 using ‘‘experimentally validated’’
targets only.

miRNA_prediction
algorithm

Total
Targets

Inversely
Correlated
Targets (%)

No Change
(%)

Positively
Correlated
Targets (%)

miR-7_M 180 12.22 80.56 7.22

miR-7_TS 60 6.67 88.33 5

miR-7_PT 37 0 91.89 8.11

miR-7_M_TS 47 6.38 87.23 6.38

miR-7_PT_TS 27 0 96.30 3.70

miR-7_PT_M 33 0 90.91 9.09

miR-7_M_TS_PT 23 0 95.65 4.35

Average for miR-7
(all methods)

58.14 3.61 90.12 6.26

miR-128_M 252 11.90 74.60 13.49

miR-128_TS 103 10.68 75.73 13.59

miR128_PT 63 17.46 69.84 12.70

miR-128_M_TS 87 12.64 72.41 14.94

miR-128_PT_TS 49 16.33 69.39 14.29

miR-128_M_PT 52 11.54 75 13.46

miR-128_M_PT_TS 43 11.63 72.09 16.28

Average for miR-128
(all methods)

92.71 13.17 72.73 14.11

Average (overall) 75.43 8.39 81.42 10.19

Targets that were predicted by miRanda (M), TargetScan (TS), PicTar (PT) or any
combination of the 3 programs and were down-regulated (FDR,5%, fold
change$2|1.4|) in miR-7 transfection or in miR-128 transfection were assumed
to be experimentally validated targets. The direction of change of these same
targets in CEPI vs. OSE were then used to calculate IC, NC and PC fractions using
a p-value,0.005 and a fold change of at least 2 in the tissue microarray data.
doi:10.1371/journal.pone.0022508.t006
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intensities for each group was calculated based on the log2

transformed values from PLIER and then filtered with DSMA

using a modulation threshold of 0.5 to include only those probe

sets with at least a fold change $1.4 [log2 difference $0.5]. The

false discovery rate (FDR) for each probe set was calculated from

the log2 transformed values after GCRMA normalization using

the SAM algorithm [67]. Finally, differentially expressed probe

sets were identified using a threshold 5% FDR correction, a fold

change $1.4 and at least ‘‘Present/Marginal’’ call in one sample.

These 3 different filtering approaches were used based on

recommendations from recent publication by Mieczkowski et al.

[68] and the combination of all three was used to achieve the most

stringent filtering.

All microarray data from this study are MIAME compliant and

have been submitted to GEO under the accession no. GSE23392.

miRNA target download
The miRNA targets prediction file based on miRanda was

downloaded from www.microrna.org (August 2010 release)

[34,35,36]. Information about the prediction algorithm, parameter

settings and raw data source is available on the above link. Only

predicted targets with ‘‘good’’ mirSVR score were used. ‘‘Good’’

mirSVR score refers to miRNA targets with ,20.1 score, and

‘‘non-good’’ mirSVR score refers to targets with .20.1 score

obtained from the support vector regression algorithm mirSVR,

available with target predictions in the above link. The miRNA

targets prediction file based on TargetScan (release 5.1) was

downloaded from www.targetscan.org [69,70,71]. Targets based on

PicTar [72,73,74,75] prediction were also bulk downloaded from

the UCSC database. miRNAs for which PicTar predictions were

not present in the bulk data file, were manually curated from the

tables available on the PicTar web interface (www.pictar.org).

Predicted target sites analysis
Target sites for 12 differentially expressed miRNAs were

selected from the downloaded target prediction files or from the

web interface (PicTar). Of those, target sites with Affymetrix

‘‘Absent’’ call in every sample were excluded from further analysis.

Each target mRNA was classified as IC, NC or PC depending on

the direction of its change in level of expression between OSE and

CEPI and that of each targeting miRNA.

Predicted targets of the miRNAs miR-7 and miR-128 identified

by miRanda, TargetScan, PicTar and all combinations of the 3

programs were used to calculated IC, NC, and PC fraction of

targets in HEY cells transfected by each miRNA (miR-7 or miR-

128) based on significance at a fold change threshold of 1.4 and

maximum FDR of 5%. Predicted targets that were down-

regulated in the transfection experiments were assumed to be

‘‘experimentally validated’’ and the expression patterns of these

experimentally validated targets were subsequently used in

comparisons between the CEPI and OSE samples (as described

above) to identify IC, PC and NC fractions based on significance

at a fold change threshold of 2 and t-test p-value ,0.005.

Supporting Information

Figure S1 Overlap between differentially expressed
genes in ovarian cancer and miRNA target genes.
Genomica was used to calculate significant (false discovery rate

corrected q,0.05) gene set overlaps between genes differentially

expressed in the ovarian cancer data set and gene sets containing

targets of individual miRNAs. This is analogous to a ‘‘GO’’ (gene

ontology) enrichment analysis (the miRNA identities are the

‘‘ontologies’’ in this case). The coloring represents the percentage

(%) of genes within the cancer data set that overlap with the

individual miRNA target gene set listed on the right. The miRNAs

listed here include differentially expressed miRNAs found in our

microarray experiment as well as additional miRNAs predicted

using Genomica.

(TIF)

Figure S2 Unsupervised hierarchical clustering of CEPI
and OSE samples based on probesets expressed on the
HG-U133 Plus 2.0 array. An unsupervised hierarchical

clustering of the 5 CEPI and 3 OSE samples was carried out

using all detected probesets on the HG-U133 Plus 2.0 array,

regardless of differential expression. Probesets with standard

deviation ,0.5 and ‘‘Absent’’ calls across all samples were

removed prior to clustering. The clustering shows that the CEPI

and OSE samples cluster into separate groups, which suggests the

variance between the groups is greater than that within the groups.

(TIF)

Figure S3 Differentially expressed mRNAs between
CEPI and OSE. Hierarchical clustering of differentially expressed

genes between CEPI samples and OSE samples. The ,3650

probesets correspond to ,2700 unique gene symbols and were

selected based on p-value ,0.005, fold change $2, and Affymetrix

‘‘Present/Marginal’’ call in at least one sample. The dendogram on

the left clusters the up-regulated genes and down-regulated genes into

two groups and the number of genes in each of these classes are

approximately equal. Gene symbols corresponding to representative

differentially expressed probesets are shown on the right (See Table

S2 for listing of all differentially expressed probesets).

(TIF)

Figure S4 Confirmation of successful miR-7 and miR-
128 transfection into HEY cells. Successful transfection of

miR-7 and miR-128 in HEY cells (positive control) was confirmed

by measuring levels of two previously demonstrated targets of

these miRNAs, EGFR and BMI1, by qPCR following transfection

of either miR-NC or miR7/miR-128 into HEY cells. The results

demonstrate that both BMI1 and EGFR were down-regulated by

,60% relative to miR-NC (*** p,0.005) after transfection with

miR-128 and miR-7 respectively.

(TIF)

Table S1 Differentially expressed miRNA probesets
detected by microarray. Forty-two differentially expressed

miRNA probesets in 3 CEPI and 3 OSE samples as analyzed by

microarray (Ambion miRChip V1). These probesets were selected

based on a p-value ,0.01, log2 difference $1, and Affymetrix

‘‘Present/Marginal’’ call in at least 1 sample. The mature miRNA

names and the sequences corresponding to each probeset, the

average log expression values from the OSE and CEPI samples, as

well as, the log2 difference and t-test p-value calculated from these

are given. Probesets that do not refer to miRNAs currently

annotated in Sanger miRBase are listed as ‘‘exploratory’’.

Sequences of these exploratory miRNAs are based on computa-

tional predictions from previous studies.

(XLS)

Table S2 Differentially expressed mRNA probes in
CEPI compared to OSE. Differentially expressed mRNA

probesets between 3 CEPI samples and OSE from 5 normal

samples as analyzed by microarray (Affymetrix HG-U133 Plus

2.0). These probesets were selected based on a p-value ,0.005,

fold change $2, and Affymetrix ‘‘Present/Marginal’’ call in at

least one sample. The gene symbols corresponding to each

probeset ID, the average log expression values from the OSE and
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CEPI samples as well as the log2 difference and t-test p-value

calculated from these are given.

(XLS)

Table S3 IC, PC and NC targets of miRNAs in tissue
samples. Target predictions from miRanda (M), TargetScan

(TS) and PicTar (PT) programs were downloaded (see methods for

details) for each of the 12 annotated miRNAs. miRNA targets that

were differentially expressed between CEPI and OSE based on t-

test p,0.005 and fold change of at least 2 were classified as being

IC or PC with their regulating miRNAs (while target genes that do

not meet the above criteria are classified as NC). The IC targets

are shown in green, PC targets are shown in red, and blue

represents NC targets. Targets with ‘‘Absent’’ calls in all samples

have been removed. For miR-93*, TargetScan custom (TScustom)

(http://www.targetscan.org/vert_50/seedmatch.html) was used to

generate TargetScan predictions. For hsa-miR-429 and hsa-miR-

93* there were no PicTar predictions and thus targets of these

miRNAs were excluded for analysis when calculating intersections.

(XLS)

Table S4 Summary values of IC, PC and NC targets
using TargetScan. miRNA targets that were differentially

expressed between CEPI and OSE based on t-test p,0.005 and

fold change of at least 2 were classified as being IC or PC with

their regulating miRNAs (while target genes that do not meet the

above criteria are classified as NC). Total number of targets from

TargetScan algorithm present after removing probesets with

‘‘Absent’’ calls in all samples is shown along with fraction of IC,

PC and NC targets for each of the 12 annotated miRNAs. On

average, 79.3% of the target mRNAs are NC, 10.4% are inversely

correlated and 10.3% are positively correlated with miRNAs.

(XLS)

Table S5 Summary values of IC, PC and NC targets
using PicTar. miRNA targets that were differentially expressed

between CEPI and OSE based on t-test p,0.005 and fold change of at

least 2 were classified as being IC or PC with their regulating miRNAs

(while target genes that do not meet the above criteria are classified as

NC). Total number of targets from PicTar algorithm present after

removing probesets with ‘‘Absent’’ calls in all samples is shown along

with fraction of IC, PC and NC targets for each of the 12 annotated

miRNAs. On average, 80.5% of the target mRNAs are in the NC

group, 9.4% are in the IC group and 10.1% are in the PC group.

(XLS)

Table S6 Summary values of IC, PC and NC targets
using overlap of miRanda and TargetScan predictions.
miRNA targets that were differentially expressed between CEPI

and OSE based on t-test p,0.005 and fold change of at least 2

were classified as being IC or PC with their regulating miRNAs

(while target genes that do not meet the above criteria are classified

as NC). Total number of targets from the overlap of miRanda (M)

and TargetScan (TS) algorithms present after removing probesets

with ‘‘Absent’’ calls in all samples is shown along with fraction of

IC, PC and NC targets for each of the 12 annotated miRNAs. On

average, 79.2% of the target mRNAs are in the NC group, 9% are

in the IC group and 11.8% are in the PC group.

(XLS)

Table S7 Summary values of IC, PC and NC targets
using overlap of miRanda and PicTar predictions.

miRNA targets that were differentially expressed between CEPI

and OSE based on t-test p,0.005 and fold change of at least 2

were classified as being IC or PC with their regulating miRNAs

(while target genes that do not meet the above criteria are classified

as NC). Total number of targets from the overlap of miRanda (M)

and PicTar (PT) algorithms present after removing probesets with

‘‘Absent’’ calls in all samples is shown along with fraction of IC,

PC and NC targets for each of the 12 annotated miRNAs. On

average, 78.3% of the target mRNAs are in the NC group, 8.6%

are in the IC group and 13.1% are in the PC group.

(XLS)

Table S8 Summary values of IC, PC and NC targets
using overlap of TargetScan and PicTar predictions.
miRNA targets that were differentially expressed between CEPI

and OSE based on t-test p,0.005 and fold change of at least 2

were classified as being IC or PC with their regulating miRNAs

(while target genes that do not meet the above criteria are

classified as NC). Total number of targets from the overlap of

TargetScan (TS) and PicTar (PT) algorithms present after

removing probesets with ‘‘Absent’’ calls in all samples is shown

along with fraction of IC, PC and NC targets for each of the 12

annotated miRNAs. On average, 76.8% of the target mRNAs are

in the NC group, 6.4% are in the IC group and 16.7% are in the

PC group.

(XLS)

Table S9 Differentially expressed genes between miR-7
transfected and negative control transfected HEY cells.
Differentially expressed genes (fold change $1.4, 5% FDR) in

miR-7 transfected cells compared to miR-NC transfected cells.

‘Probeset ID’ refers to Affymetrix HG-U133 Plus 2.0 probeset

identifier. ‘Gene Symbol’ shows the official gene symbol for the

corresponding Probeset ID. ‘log difference (miR7-miR-NC)’ refers

to the difference between average log2 signal values of miR-7

transfected group and the miR-NC transfected group. ‘q-value

(%)’ shows the false discovery rate calculated using the SAM

algorithm. Targets of miR-7 predicted by miRanda (M),

TargetScan (TS), and PicTar (PT) programs are also shown.

(XLS)

Table S10 Differentially expressed genes between miR-
128 transfected and negative control transfected HEY
cells. Differentially expressed genes (fold change $1.4, 5% FDR)

in miR-128 transfected cells compared to miR-NC transfected

cells. ‘Probeset ID’ refers to Affymetrix HG-U133 Plus 2.0

probeset identifier. ‘Gene Symbol’ shows the official gene symbol

for the corresponding Probeset ID. ‘log difference (miR128-miR-

NC)’ refers to the difference between average log2 signal values of

miR-128 transfected group and the miR-NC transfected group. ‘q-

value (%)’ shows the false discovery rate calculated using the SAM

algorithm. Predicted targets from miRanda (M), TargetScan (TS),

and PicTar (PT) are also shown.

(XLS)
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