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Abstract

Background: Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the
last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid
metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may
assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol
crystals in foam cells.

Methodology/Principal Findings: Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy,
we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid
lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid
inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by
cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were
maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped
ones.

Conclusions/Significance: Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of
neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the
parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation.
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Introduction

Intracellular traffic of cholesterol has been widely studied in

mammalian cells [1,2,3]. Cholesterol represents a key point in

cellular physiology, since it is involved in membrane fluidity,

regulation of membrane traffic, microdomain signaling events [4]

as well as in many pathologies, such as lysosomal storage diseases,

hypercholesterolemia and atherosclerosis [5,6]. Although mam-

mals are capable to synthesize cholesterol, it is mostly obtained

from diet. Intracellular acquisition of cholesterol is carried out

through low density lipoprotein (LDL) receptor-mediated endo-

cytosis [7]. From the plasma membrane LDL particles are

transported to the early endosomal network and move through

multivesicular bodies (MVB) in late endosomes/lysosomes (LE/

LY) direction [8,9]. Interestingly, MVB comprise 60% of

cholesterol reservoir in the endosomal system [1,2]. Cholesteryl

ester hydrolysis may begin in early endosomes and free cholesterol

would be almost completely available in LE/LY [10]. Cholesterol

efflux for cellular distribution is guaranteed by the participation of

the transmembrane NPC1, soluble NPC2 proteins and by sterol-

sensing proteins, although the precise mechanism is not well

understood yet [11]. Cholesterol excess is stored as cholesteryl

esters in lipid droplets, well characterized in adipocytes and

steroidogenic cells [12].

Trypanosoma cruzi, the etiologic agent of Chagas disease, does not

synthesize cholesterol. Remarkably, the major sterol produced by

this protozoan is ergosterol, whose biosynthetic pathway is an

important target for chemotherapy [13]. Nonetheless, epimasti-

gotes, the proliferative noninfective forms that live in the insect-

vector midgut, acquire cholesterol through the uptake of LDL
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from the hematophagus insect diet [14]. However, the cellular

implications of lipid uptake are unknown. LDL, as all other

macromolecules, uptake occurs at two unique membrane invagina-

tions: the cytostome and the flagellar pocket [14,15]. From both entry

sites, cargo-containing vesicles are originated and fuse with early

endosomes [15]. Afterwards, the cargo is delivered to the last

organelle of T. cruzi endocytic pathway, the reservosome (for a recent

review see [16]). Reservosomes are lysosome-related organelles [17]

responsible for cellular digestion of endocytosed material and for

providing substrates to cellular metabolic demands and metacyclo-

genesis, in a modulated manner [18]. Proteomic analysis of isolated

reservosomes and their membranes confirmed the presence of many

proteases and identified enzymes associated with lipid metabolism, as

well as ABC transporter family members and mammalian Rab 18

homologue, which are involved in lipid transport [19].

Morphologically, reservosomes are rounded organelles (400–

600 nm) placed at the posterior region of the parasite [20].

Organelle protein matrix is interposed with internal membranes

and unusual lipid inclusions displaying disk or rod-like rectangular

shapes [21]. Moreover, reservosome lipid inclusions are surround-

ed by a phospholipid monolayer, thus resembling the cholesterol

crystals present in lysosomes of foam cells, as a result of the intense

acquisition of lipoproteins by endocytosis [22,23]. When choles-

terol and cholesteryl ester masses reach a critical point, the

crystallization of lipids is favored.

Preliminary biochemical analysis of isolated reservosomes

revealed cholesterol (cholesteryl esters) and ergosterol as the major

neutral lipids in these organelles [24]. However, the biochemical

composition of reservosome lipid inclusions remains unknown, as

well as their function in the parasite biology.

In this work we established a protocol for lipid inclusion

isolation, starting from a purified reservosome fraction, in order to

determine their composition by GC-MS. We showed that

rectangular and spherical lipid droplets are formed mostly by

cholesterol and their formation is dependent on serum supply.

Moreover, we demonstrated that epimastigotes are capable of

consuming cholesterol stock in reservosomes, including rod like

inclusions, during periods of serum starvation.

Materials and Methods

Parasites
T. cruzi epimastigotes (Y strain) were cultivated for 4–5 days at

28uC in LIT (liver-infusion tryptose) medium [25], supplemented

with 1, 10 or 50% fetal calf serum (FCS) (Vitrocell, São Paulo,

Brazil). Alternatively, parasites were grown in 10% delipidated

FCS (dFCS) supplemented with different purified LDL concen-

trations. In order to determine epimastigote proliferation in

different serum concentrations, 16106 epimastigotes per mL were

cultivated in LIT supplemented with 1, 10 or 50% of FCS at 28uC

Figure 1. Effect of FCS concentration on the epimastigote growth. Epimastigotes were cultivated as usual (LIT supplemented with 10% FCS)
or in LIT supplemented with 1% or 50% FCS (A). Alternatively, parasites were cultivated in LIT supplemented with delipidated FCS and growing
concentrations of purified LDL (B). Each point corresponds to the mean of three independent experiments in quadruplicate. The data was analyzed
with Two-way ANOVA test and post analyzed by Bonferroni test (P,0.01).
doi:10.1371/journal.pone.0022359.g001
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for 24, 48, 72 and 96 h. Cellular growth was measured by direct

counting in a Neubauer chamber.

Lipoprotein purification
Low density lipoprotein (LDL) was purified from fresh human

plasma as described [26] with some modifications. Briefly, KBr

was added to 15.0 mL of human cell-free plasma to adjust the

density to 1.3 g/cm3. The plasma was added to a vertical angle

centrifuge tube with 20.0 mL of saline solution (150 mM NaCl,

1 mM EDTA). This material was ultracentrifuged at 150,000 g in

a vertical angle Beckman RPVTi 50 rotor (Beckman Coulter Inc,

Fullerton, CA, USA) at 4uC for 18 hours. The LDL fraction was

localized and removed. KBr was added again to adjust the density

to 1.2 g/cm3, and the material was ultracentrifuged at 150,000 g

in the same rotor at 4uC for 18 hours. The purified lipoprotein

were extensively dialyzed against PBS with 1 mM EDTA. The

lipoprotein concentration was quantified using DC Protein Assay

(Bio Rad). For the uptake assays and culture, the LDL was

sterilized by filtration with a 0.22 mm membrane (Millex-GV,

Millipore S.A., Molsheim, France). The integrity of the sterile

LDL was verified in a polyacrylamide (3–15%) slab gel under

denaturing conditions.

Fetal calf serum delipidation
Lipid extraction of fetal calf serum (FCS) (Cultilab Ltda.,

Campinas, SP, Brazil) without protein precipitation was per-

formed as described [27].

Nile Red staining and fluorimetric analysis
Trypanosoma cruzi epimastigotes (56106 cells) from LIT medium

supplemented with 1, 10 or 50% FCS were washed twice in PBS

(phosphate-buffered saline: 10 mM sodium phosphate buffer,

pH 7.2, plus 150 mM sodium chloride) and fixed in 4% freshly

prepared formaldehyde in PBS for 20 min at room temperature.

After washing twice in PBS, cells were incubated in 10 mg/mL

Nile Red for 15 min at room temperature, protected from light.

The parasites were washed in PBS, pH 7.2, and incubated in

DAPI (5 mg/mL) for 5 min. The cellular suspensions were

transferred to a black 96-well microplate and Nile Red

fluorescence was determined in a Microplate Reader Spectra

Max M2 (Molecular Devices): yellow-gold fluorescence of neutral

lipid inclusions were acquired (excitation: 485 nm; emission

535 nm). An aliquot of each cell suspension was collected and

adhered to 0.1% poly-L-lysine coated glass coverslips. Samples

were mounted on 0.2 M n-propylgallate in glycerol:PBS (9:1) and

the yellow-gold fluorescence images of neutral lipid inclusions were

acquired using appropriated filters in a Zeiss Axioplan epifluor-

escence microscope coupled to an Olympus X30 CCD camera.

Images were further processed using Adobe Photoshop CS2

(Adobe Systems, Inc.). Nile Red had already been used to quantify

and image lipid inclusion formation inside acidic organelles [23].

Reservosome and lipid inclusion isolation
A reservosome purified fraction from parasites cultivated in 10

and 50% FCS medium were obtained as described [19,24] and

resuspended in TMS buffer (20 mM Tris-HCl, pH 7.2, 2 mM

MgCl2, 250 mM sucrose) supplemented with protease inhibitor

cocktail (Sigma-Aldrich P2714). For lipid inclusion isolation, three

milliliters of isolated reservosomes (1.5–2 mg/mL) were washed in

TMS, pH 7.2, and centrifuged at 120,0006g for 15 min at 4uC in

a Beckman SW28 centrifuge tube. The pellet was resuspended in

3 mL 200 mM Na2CO3, pH 11.5, at room temperature for

15 min. The sample was then sonicated at 10% of total amplitude

(Sigma, GEX 600 Model) using a standard probe (13 mm

radiating diameter), for three cycles of 10 s, with 5-s rest between

cycles. Sample volume was completed to 7 mL with the alkaline

solution and the suspension was transferred to a SW 40 centrifuge

tube. Sample was overlaid with 3.5 mL 20 mM Tris-HCl, pH 7.5,

containing 100 mM KCl and 2 mM MgCl2, and the tube was

centrifuged at 274.0006g for 1 h a 4uC. A white band was

collected at the top of the gradient, mixed with 3 mL TMS,

pH 7.5, and deposited at the bottom of a Beckman SW50.1

centrifuge tube, overlaid with additional 2 mL 20 mM Tris-HCl,

pH 7.5, 100 mM KCl and 2 mM MgCl2, and centrifuged at the

same conditions described before. The white band was recovered

and processed for electron microscopy or frozen at 220uC to

subsequent biochemical analysis.

Alternatively, reservosome fraction was adhered to 0.1% poly-

L-lysine coated glass coverslips for 20 min and fixed in 4%

formaldehyde in PBS for 10 min at room temperature. The

samples were washed in PBS, followed by Nile Red incubation

(10 mg/mL in PBS) for 15 min, protected from light. Finally,

reservosomes were washed in PBS and Nile Red labeled lipid

inclusions observed as described before.

To quantify the neutral lipid content of isolated reservosomes

from 10 and 50% FCS by fluorimetric analysis, reservosomes

isolated from both cultures were washed in PBS and prepared for

Nile red fluorimetric analysis as described in the previous section.

Electron Microscopy
a) For ultrathin sections. Epimastigotes (1, 10 and 50%

FCS) and isolated reservosomes were fixed in 2.5% glutaraldehyde

and 4% formaldehyde in 0.1 M sodium phosphate buffer, pH 7.2,

for 60 min at room temperature, postfixed in 1% osmium

tetroxide, 0.8% potassium ferrocyanide, 5 mM calcium chloride

in 0.1 M cacodylate buffer, pH 7.2, for 60 min, dehydrated in an

acetone series and embedded in Epoxi resin. Ultrathin sections

were stained with 5% uranyl acetate and lead citrate and observed

in a Zeiss 900 transmission electron microscope operating at

80 kV.

b) Uranyl Acetate Stained Preparations. Isolated lipid

inclusions were visualized under the electron microscope as

described [28] with some modifications. The fraction was put

onto a Formvar coated nickel grid for 25 min at room

temperature, washed by inversion over deionized water and

Figure 2. Neutral lipid content as a function of FCS concentra-
tion. Fluorimetric analysis using Nile Red reveals that epimastigotes
cultivated in 50% FCS store more neutral lipids than those grown in 10
and 1% FCS. Fluorescence intensity was expressed in arbitrary units. The
results are from two independent experiments in triplicate. The data
was analyzed with One-way ANOVA test (P,0.05).
doi:10.1371/journal.pone.0022359.g002
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fixed in 2% glutaraldehyde in 0.1 M phosphate buffer, pH 7.6, for

15 min and washed again in water. Subsequently, the fraction was

stained in 2% OsO4 in 0,1 M sodium phosphate buffer, pH 7.6,

for 20 min, washed in water, incubated for 10 min in 4% uranyl

acetate and observed in a Zeiss 900 transmission electron

microscope operating at 80 kV.

Morphometric analysis
Morphometric measurements were performed with images

acquired at the magnification of 30.0006(1 micrometer corre-

sponds to 533 pixels) at 80 kV using MET ZEISS 900. All cells

in each random section were registered until reaching 50

different cells. The areas occupied by reservosomes and by the

Figure 3. Fluorescence microscopy of epimastigotes cultivated in different FCS concentrations and incubated with Nile Red. (A, C, E)
Differential interferential contrast (DIC) and DAPI images of epimastigotes grown in 1%, 10% and 50% FCS, respectively, showing kinetoplast and
nucleus position; (B) Lack of staining in reservosomes treated with Nile Red. (D, F) Reservosomes of epimastigotes cultivated in 10% and 50% FCS,
respectively, typically localized in the posterior region of the cells and positively stained in yellow with Nile Red. Bars: 10 mm.
doi:10.1371/journal.pone.0022359.g003
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lipid inclusions inside them were measured and processed using

Image J.

Lipid extraction
Isolated reservosomes and lipid inclusions (in 136100 mm

PYREX clear borosilicate glass tubes with Teflon-lined screw

cap) were extracted three times in 10 volumes of chloroform

(CHCl3)/methanol (CH3OH) solutions: CHCl3:CH3OH:H2O

(1:2:0.8, v/v/v) and CHCl3:CH3OH (2:1, v/v) [29]. After adding

each solvent solution, the tube was vortexed for approximately

1 min, then centrifuged at room temperature for 30 min at

20006g. Following centrifugation, the organic phase was

transferred to a clean glass tube with Teflon-lined cap and stored

at 220uC until further use. The sample was dried under highly

pure nitrogen stream after the last extraction in each step as

described by [30].

Samples were analyzed by one-dimensional thin-layer chroma-

tography (TLC) on Silica Gel 60 plates (E. Merck, Darmstadt,

Germany) for neutral lipids using n-hexane:diethyl ether:acetic

acid (60:40:1 v/v). Cholesterol, cholesteryl-oleate, glycerol-tryole-

ate, diolein, oleoyl-glycerol and oleic acid (Sigma Chemical Co, St

Louis, MO, USA) were used as standards. The lipids were

visualized using a charring reagent (CuSO4) after heating at 200uC
for 20 min. After that, the chromatography plates were digitized.

Sterol purification
Glass columns prepared in Pasteur pipettes were packed with

fine glass wool and approximately 100 mg silica gel resin (pore size

60 Å, 70–230 mesh, Sigma Aldrich). After washing with CH3OH

and acetone columns were equilibrated with CHCl3. Following

equilibration, the lipid sample dissolved in 1 mL CHCl3 was

loaded onto the column. Neutral lipids and free fatty acids were

Figure 4. Electron microscopy of epimastigotes cultivated in LIT medium supplemented with 1, 10 or 50% FCS. (A) Epimastigotes
grown in 1% FCS - Reservosomes at the posterior region of the parasite are devoid of lipid particles. The images suggest fusion events (arrow). (B, C,
D) Epimastigotes grown in 10% FCS – reservosomes show many lipid inclusions, some of them having a rectangular shape. Cytoplasmic lipid bodies
were also observed (asterisks). (E, F, G) Epimastigotes grown in 50% FCS - Reservosomes loaded with many rectangular inclusions. (G) Sword-shaped
lipid inclusions in reservosomes that are crossing the organelles. Note the presence of a phospholipid monolayer (arrows) involving the inclusions,
while a phospholipid bilayer surrounds the organelle (arrowheads) R, reservosome; N, nucleus. Bars: 0.5 mm.
doi:10.1371/journal.pone.0022359.g004
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eluted out with 2–3 mL CHCl3. This was followed by 2–3 mL

acetone to elute glycolipids and ceramides, and 2–3 mL methanol

to elute phospholipids [31]. All samples were dried under nitrogen

stream and stored at 220uC until further use.

Gas chromatography–mass spectrometry (GC–MS)
analysis

The analysis of the sterol fraction by GC-MS was carried out as

described [32]. For analysis of fatty acids by GC-MS, total lipids of

reservosomes were isolated as described above. Alkaline hydrolysis

of total fatty acids was carried out following a method adapted

from [33]. Twenty-five-microliter aliquots of the total lipid extracts

were dried under nitrogen stream, resuspended in 100 mL 13N

ammonium hydroxide: methanol (1:1, v:v), incubated for 1 h at

37uC and then dried under nitrogen stream. The samples were

washed twice with 100 mL dry methanol, with complete drying

under nitrogen stream between each wash. For the methylation,

100 mL 0.5N methanolic HCl (Supelco, Sigma-Aldrich) was

added, and the reaction mixture was incubated for 1 h at 75uC.

The reaction mixture was allowed to cool to room temperature

and then neutralized with 100 mL 0.5 N NaOH. To remove HCl

from the reaction, samples were washed each with 1 mL deionized

water and dichloromethane (DCM). The aqueous phase was

extracted and samples were washed two more times with water.

Finally, the organic phase was transferred to a fresh tube and

briefly dried under nitrogen stream [33].

For GC-MS analysis, samples were redissolved in 100 mL DCM

and 1 mL was used for analysis in a Trace-GC gas chromatog-

rapher (Thermo Fisher Scientific, Austin, TX) coupled to a mass

spectrometer (Polaris Q, Thermo Fisher Scientific) (GC-MS).

Samples were separated in a SP-2380 fused silica column

(30 m6250 mm60.20 mm, Supelco, Sigma-Aldrich). The injector

was set at 200uC, and the following gradient was used: 70uC for

5 min, followed by 4uC/min up to 140uC, 2uC/min up to 185uC,

and 185uC for 10 min. Helium was used as the carrier gas, with a

flow rate of 1 mL/min. The molecules were ionized by electron

impact at 70 eV and 200uC. The spectra were collected in the 30–

400 m/z range, and a chromatogram was generated by plotting

the spectra of diagnostic fragment-ion species for m/z 41, 43, and

55. Fatty-acid species were identified by comparison with the

FAME 37 methylated FA mix standard (Supelco, Sigma-Aldrich).

Lipid consumption
Aiming to determine the lipid reservoir consumption of

epimastigotes from medium supplemented with 10 or 50% FCS,

parasites were washed in PBS, transferred to serum-free LIT

medium and incubated for 0, 8, 24, 48, or 72 h at 28uC. After

each time, 56106 cells were washed in PBS and incubated in Nile

Red (10 mg/mL in PBS) for 15 min in the dark. Then, the

parasites were washed in PBS, followed by incubation with 1 mM

Sytox Blue (Invitrogen) for 5 min to determine cell viability. For

positive control, 56106 cells were permeabilized for 5 min with

0.1% Triton X-100 in PBS. The quantification of fluorescence

was determined as describe before. In addition, parasites were

processed for observation by transmission electron microscopy and

morphometric analysis as described above.

Results

1. Epimastigote lipid content depends on lipid supply
We decided to modulate FCS concentration in epimastigote

studies in vitro to verify cell proliferation in low and high

concentrations of serum. Statistical analysis showed that cell

proliferation is dependent on serum concentration, as observed in

Figure 1A. After 24 hours, it is possible to note a significant

difference in culture growth (P,0.01). We observed that

epimastigotes were capable to divide either in low (1%) or high

(50%) serum concentrations, although they were more prolifera-

tive in 10% FCS at 96 h of growth. To evaluate the influence of

other serum components in parasite proliferation, we cultivated

epimastigotes in LIT supplemented with 10% delipidated fetal calf

serum (dFCS) and added purified low density lipoprotein. The

necessary control of medium delipidation and supplentation with

purified LDL was performed by TLC (Figure S1). The result

confirmed that parasites survive and proliferate in low LDL

concentration as well as in concentrations as high as 1 mg/mL

(Figure 1B). Thereafter, we decided to work modulating serum

concentration.

Subsequently, we hypothesize that the epimastigote total lipid

content would vary in concentration according to sterol uptake

from the parasite diet. To test this hypothesis we collected the

parasites from medium with 1, 10 and 50% FCS and incubated

cells in Nile Red for neutral lipid fluorescence staining and

performed a fluorimetric analysis (Figure 2). We observed that

epimastigotes grown in 50% FCS stored more neutral lipids than

parasites cultivated in medium supplemented with 10% FCS, as

usual, and much more than parasites cultivated with 1% FCS. We

have also quantified neutral lipid content of epimastigotes

cultivated in LIT with 10% dFCS, supplemented or not with 1

or 2 mg/mL LDL and compared with control parasites cultivated

in 10% complete FCS. The results (Figure S2) confirmed the

hypothesis that epimastigote neutral lipids come from medium, as

those incubated in 10% dFCS for only 48 h hours contain about

half the lipid content of control parasites. On the other hand, after

staying in 10% dFCS for 48 hours, the incubation with 1 mg/mL

LDL for 24 additional hours raised neutral lipid content about 6

times and incubation with 2 mg/mL LDL in the same conditions

resulted in neutral lipid concentration 8 times higher than in

Figure 5. Fluorimetric analysis of isolated reservosomes from
epimastigotes maintained in 10 and 50% FCS. Fluorescence
intensity was measured by its emission at 535 nm and expressed in
arbitrary units. To make Nile Red fluorescence measurements compa-
rable, each sample corresponded to 50 mg of reservosome protein
fraction (DC Protein Assay, Bio Rad). Results are from three independent
experiments. The data was analyzed with T-test and post analyzed by
One-tailed test (P,0.05).
doi:10.1371/journal.pone.0022359.g005
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control parasites. Moreover, the fluorescence microscopy analysis

showed a yellow-gold fluorescence concentrated in internal

compartments of epimastigotes from 10 and 50% FCS supple-

mented media (Figures 3C–F), while no internal stocks were

detected in 1% FCS epimastigotes (Figures 3A–B). Ultrathin

sections showed reservosomes devoid of lipid inclusions from

epimastigotes cultivated in 1% FCS (Figures 4A). Images

suggestive of reservosome homotypic fusion were frequently

observed in these parasites. Epimastigotes cultivated with 10%

FCS had both round and rod shaped lipid inclusions (Figures 4B–

D). In these parasites we could also observe cytoplasmic lipid

bodies (Figure 4C). In comparison, large and lipid-loaded

reservosomes from parasites supplemented with 50% of FCS

(Figures 4E–G) presented many rod, disc or sword shaped lipid

inclusions that could protrude from organelle limits. Additionally,

fluorimetric analysis of isolated reservosomes from epimastigotes

grown in 50% FCS showed over twice the amount of neutral lipids

than reservosomes from parasites cultivated in 10% FCS (Figure 5).

Together, these results corroborate the idea that the neutral lipid

storing in reservosomes is dependent on serum content uptake by

endocytosis.

2. Cholesterol is the major neutral lipid in reservosomes
In order to determine the biochemical nature of reservosome

lipid inclusions, we had first obtained a purified fraction of isolated

reservosomes as previously performed before by our group [19,24].

Here, we developed a protocol to isolate the internal lipid inclusions

starting from the reservosome purified fraction. As expected, the

reservosome fraction was positively stained with Nile Red

(Figures 6A–B). Moreover, the electron lucent lipid particles were

further visualized by ultrathin section inside the reservosome and by

whole mount electron microscopy (Figures 6C–F). Based on the

Figure 6. Isolation of reservosome lipid inclusions. (A) DIC and (B) Nile Red fluorescence of reservosomes isolated from epimastigotes
cultivated with 10% of FCS. (C) Ultrathin section of an isolated reservosome. (D, E, F) Whole mount osmium tetroxide and uranyl acetate-stained
electron microscopy of the reservosome lipid inclusion fraction, showing rectangular and spherical forms. Note the morphological similarity between
isolated inclusions and those inside intact reservosomes (C). Bars (A, B) 5 mm, (C) 0.15 mm, (D, E) 0.2 mm, (F) 0.15 mm.
doi:10.1371/journal.pone.0022359.g006
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microscopy analysis, the predominant structures were rectangular

or spherical, like those found inside isolated whole organelles and in

situ. Thus, our protocol appears to produce an enriched fraction of

reservosome lipid inclusions, since no other structures, such as

contaminant membranes and organelles, were evident.

Additionally, when the reservosome lipid fraction was subjected

to GC-MS analysis, we found out that the major neutral lipids

were cholesterol and cholesteryl esters (Figure 7). No other sterols,

like ergosterol or ergosterol ester, were detected. This highlights

the hypothesis that reservosome lipid inclusions were a result of

lipid endocytosis, storage and lipid crystallization of cholesterol

from medium inside the reservosomes. When we compared with

reservosome fraction, cholesterol appeared as the major sterol

(84.0%) (highest peak area), followed by cholesteryl esters (11.0%),

ergosterol (1.5%) and squalene (3.5%) (Figure 7).

The more predominant fatty acid species covalently linked to

cholesterol both in reservosome and lipid fractions was palmitate

(C16:0), followed by oleate (C18:1), stearate (C18:0) and myristate

(C14:0) (Figure 8).

3. Epimastigotes are able to disassemble the lipid
inclusions inside reservosomes

Epimastigotes originated from 10 and 50% FCS cultures were

maintained in LIT medium without serum for 0, 8, 24, 48 and

72 hours. We could follow lipid consumption by fluorimetric

analysis of Nile Red fluorescence (Figure 9) and observe the

reservosomes by electron microscopy. Epimastigote lipid content

decreased 32.5% in parasites grown in 50% FCS after 8 h of

serum starvation, whereas no significant difference was found in

epimastigotes cultivated in 10% FCS after the same period. After

24 h, the reduction was 42.4% and 77.9% in parasites grown in 10

and 50% FCS, respectively. Interestingly, reservosome neutral

lipid consumption reaches, approximately, 80% and 90% in 10%-

and 50%- FCS culture, respectively, after 48 h (Figure 9).

Figure 7. Neutral lipid analysis of reservosome fractions. Lipid inclusions and isolated reservosomes were subjected to lipid extraction with
chloroform/methanol and chloroform/methanol/water and fractionated in a Silica 60 column. The sterol-rich fraction was dried under nitrogen
stream, resuspended in dichloromethane and analyzed by GC-MS (Trace GC - Polaris Q Thermo Fisher Scientific, column TR5-ms, Thermo). Sitosterol
was used as internal standard. Cholesterol (52.9%) and cholesteryl ester (47.1%) are the only neutral lipids detected in isolated reservosome lipid
inclusions.
doi:10.1371/journal.pone.0022359.g007

Figure 8. Fatty acid analysis of neutral lipids of the reservosome fraction. Sterol-rich fraction was hydrolyzed with NH4OH and methylated
with methanolic HCl, extracted in dichloromethane and analyzed by GC-MS, revealing palmitate (C16:0) as the major fatty acid of reservosome
fraction.
doi:10.1371/journal.pone.0022359.g008
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Fluorescence images show few reservosomes positively stained with

Nile Red, probably due to the low amount of lipids in their lumen

(Figures 10 B and E). Using electron microscopy, we could find

some lipid-devoid reservosomes co-existing with organelles

displaying few lipid inclusions (Figures 10C and F). Together,

these results suggest the ability of epimastigotes to mobilize neutral

lipid reservoir in reservosomes according to cellular demand. In all

experiments, the percentile of cell death using Sytox Blue did not

overcome 13%. We have analysed the area occupied by lipid

inclusions in epimastigotes cultivated in LIT supplemented with

10% complete FCS serum (control parasites) before and after

incubation in LIT with 10% delipidated FCS. Morphometric

analyses (Table 1) showed a reduction of 70% in lipid inclusions.

Discussion

T. cruzi depends on exogenous lipids from host to play essential

roles in all developmental forms, as growth and host infection.

Changes in phospholipid and neutral lipid profiles resulting from

aging in culture or temperature shift of epimastigotes or

trypomastigotes were already reported [34,35]. Amastigotes

contain high amounts of cholesterol, probably derived from host

cells [36] and a complete absence of ergosterol, the major neutral

lipid present in epimastigotes from reduviid vector or grown in

axenic LIT medium [34,37,38]. LDL-endocytosis and accumula-

tion in reservosomes have only been documented in the

epimastigote form [14]. These works have shown the ability of

the parasites to modulate their lipid content according to the

medium and cell requirements. However, very little information

about lipid traffic in T. cruzi is available. In this way, reservosomes,

the final step in the epimastigote endocytic pathway, exercise a

pivotal role in storing and disposing lipids and proteins uptaken by

endocytosis [20, 39, reviewed in 16].

Since trypanosomatids do not synthesize cholesterol (or

cholesteryl ester derivatives) [reviewed in 40] and as cholesterol

acquisition in epimastigotes has never been quantified, we decided

to analyze the reservosome neutral lipid content in response to

serum concentration in culture medium. Although epimastigotes

are able to proliferate in low-serum (1% FCS) concentrations, lipid

reservoir in these parasites diminished in comparison to control

(10% FCS), their reservosomes are devoid of lipid inclusions, and

some of them seem to fuse with each other (Fig. 4 A–B).

Homotypic fusion events suggest the reduction in reservosome

number. On the other hand, parasites cultivated in 50% FCS-

supplemented medium store over twice as much neutral lipids

than parasites grown in 10% FCS. Surprisingly, cell proliferation

was higher in epimastigotes from 10%-FCS than 50%-FCS

medium. The yellow-gold fluorescence concentrated in internal

compartments of these parasites (Fig. 3F) suggested that reservo-

somes and possibly cytoplasmic lipid bodies were the lipid storage

site. Nile red fluorimetry of isolated reservosomes from epimas-

tigotes grown in 50% FCS (Fig. 5) and electron microscopy (Fig. 4

E–G), confirmed this hypothesis. The biochemical composition of

reservosome lipid inclusions was further determined by GC-MS

and confirmed cholesterol and cholesteryl esters as the major

neutral lipids (Fig. 8). In higher eukaryotes, cholesterol reaches the

internal milieu by LDL receptor-mediated endocytosis. In T. cruzi,

the LDL receptor was not characterized, although LDL

endocytosis and accumulation in reservosomes have already been

demonstrated [14]. The bloodstream and procyclic forms of T.

brucei require lipoproteins (LDL and HDL) and other serum

components to growth and maintenance in axenic cultures,

providing cholesterol, cholesterol esters and phospholipids to the

parasites [41,42]. Many works characterized LDL or HDL

receptors in T. brucei and in other trypanosomatids such as T. b.

rhodesiense, Leishmania donovani and Crithidia luciliae [43,44,45]. In this

way, the sterol acquisition by T. cruzi epimastigote could operate

by similar mechanisms.

In our current analysis, ergosterol represented only 1.5% of

neutral lipids in reservosomes, being completely absent in the lipid

inclusion fraction. This clarifies the real nature of reservosome

lipid inclusions, and highlights the role of cholesterol from serum

in the formation of lipid rods. The low concentration of ergosterol

in reservosomes is in agreement with early work concerning

ergosterol distribution in epimastigote subcellular fractions [46]:

they found ergosterol associated with mitochondria and micro-

somes. We had found higher ergosterol content (22% of neutral

lipids) in the preliminary lipid analysis of reservosome fraction

[24], probably due to some contamination with mitochondria,

since we also identified the presence of a small content of

cardiolipin, a mitochondrion marker phospholipid. From 2002 to

now, we have improved our fractionation protocol, choosing to

work with another band (B1 instead of B2) of the reservosome

purification gradient that gives higher organelle enrichment,

although with lower yield [19]. Mitochondria are also the most

affected organelle in cells incubated in the presence of ergosterol

synthesis inhibitors [13]. Another important indication of the

coherence of our data comes from the careful examination of the

electron micrographs published by Lazardi and coworkers in 1990

[47, Figures 2A–C and 3A therein] that show the ultrastructural

alterations caused by the treatment of epimastigotes with

ketoconazol and terbinafine, potent ergosterol biosynthesis

inhibitors. Although the authors did not mention at that time, it

is possible to observe that reservosome lipid inclusions were not

affected.

In this work we have obtained the first fatty acid profile of

reservosomes. Like other lipids, fatty acid biosynthesis is constantly

submitted to environmental conditions, which includes tempera-

ture, availability in the culture medium and aging [48]. Indeed,

epimastigotes have C18:1 (oleate) and C18:2 (linoleate) in high

quantities [33,49]. In our analysis, fatty acid composition in

reservosomes is probably a result of lipid endocytosis and parasite

production, since the organelle is formed by fusion of Golgi

vesicles with endocytic vesicles from plasma membrane [50].

Taken together, these results support the idea that the neutral

lipid content of reservosomes is a consequence of intense

Figure 9. Lipid consumption of epimastigotes supplemented
with 10 or 50% FCS. Cells were placed in serum-free medium for 0, 8,
24, 48 and 72 h. Note that in both initial culture conditions, the
fluorescence decreases along time in parasites from 10% FCS or 50%
FCS. Results of two independent experiments, performed in triplicate.
The data was analyzed with two - way ANOVA test and post analyzed
by Bonferroni test (P,0.05). A.U., arbitrary units.
doi:10.1371/journal.pone.0022359.g009
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Figure 10. The neutral lipid stock inside epimastigotes decreases along time in serum-free medium. The Figure shows the absence of
fluorescence almost complete in epimastigotes from 10 (B) and 50% FCS (E) after 48 h of serum starvation. Ultrathin sections revealed that the
majority of reservosomes are devoid of lipid inclusions, while others still present rectangular lipid profiles in 10 (C) and 50% (F). Merged images of DIC
and DAPI fluorescence were used to point nucleus and kinetoplast position (A, C). The asterisks indicate the lipid inclusions. Bars: 10 mm (a–B, D–E)
and 0.5 mm (C–F).
doi:10.1371/journal.pone.0022359.g010
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acquisition of exogenous lipids. Reservosomes containing sword-

shaped lipid inclusion profiles surrounded by a phospholipid

monolayer have already been shown by our group [21]. In

mammals, the high acquisition rate of cholesterol-loaded LDL and

its accumulation in lysosomes, where events of crystallization can

occur [51,52], contributes to the formation of foam cells and

development of atherosclerosis in arterial intima. Like late

endosomes and lysosomes, reservosomes are acidic organelles

and may render favorable milieu to crystal formation. However,

unlike human foam cell lysosomes, reservosomes may be capable

of disassemble cholesterol crystalloid inclusions. Previous work had

shown a progressive involution of reservosomes during metacy-

clogenesis [39], a period of parasite life cycle when the demand for

energy is high and external substrate supply is very low. Now we

have submitted epimastigotes harboring cholesterol-loaded reser-

vosomes to conditions of low cholesterol supply (serum-free

medium), but not sufficiently low to trigger metacyclogenesis.

After 48 h in this condition, 90% of epimastigote neutral lipids had

been consumed (Fig. 9). Parasites were alive and their reservo-

somes did not present crystalloid lipid inclusions anymore,

although some rectangular inclusions could be rarely found

(Fig. 10). The area occupied by inclusions inside reservomes was

reduced in 70% (Table 1). These results are in agreement with the

concept that the major role of reservosomes is nutrient storage to

be consumed according to cellular demand [39,53]. In our

experiments we did not observe metacyclic trypomastigote forms

as a result of serum starvation, which could be due to the rich

composition of the LIT medium.

The mechanisms used by T. cruzi epimastigotes to mobilize

reservosome lipid inclusions remain largely unknown. The

reservosome proteomic analysis failed to identify proteins usually

related to the efflux and cellular distribution of cholesterol, like

NPC1 and NPC2. However, other proteins were found that could

be involved in lipid transport from reservosomes into cytoplasm, as

an ABCA1 transporter and Rab18 [19,54]. The cellular function

of ABCA1 is correlated to its localization in plasma membrane,

aiding in cholesterol efflux [52], notably in macrophages. The

presence of ABCA1 in endocytic compartments has already been

reported by Neufeld and colleagues [55,56]. Moreover, the group

demonstrated that the ABCA1 transporter acts in lipid efflux from

late endosomes. In T. cruzi, ABCA1 was localized at the plasma

membrane, flagellar pocket and endocytic compartments. It could

function in extruding cholesterol excess back to extracellular

milieu, as it does in mammals. The presence of ABCA1 in

endocytic compartments may be correlated to its own turnover or,

alternatively, to the extrusion of cholesterol from reservosomes to

the cytosol. Rab18 is commonly found in lipid bodies and

endoplasmic reticulum of many cell types, where it is involved in

releasing lipids from these internal reservoirs [12,57]. The

presence of a Rab 18 homologue in T. cruzi reservosomes [19]

may also be correlated to lipid distribution to other organelles.

Additional studies are been performed to address this hypothesis.

Supporting Information

Figure S1 Thin layer chromatography from medium
and parasites in different culture conditions. A – Liver

Infusion Triptose (LIT) Medium; B – LIT with 10% Fetal Calf

Serum (FCS); C – LIT with 10% delipidated Fetal Calf Serum; D

– 10% Fetal Calf Serum; E – 10% delipidated Fetal Calf Serum

(dFCS); F – T.cruzi Epimastigotes in LIT+10% FCS (16108 cells);

G - T.cruzi Epimastigotes in LIT+10% dFCS for 48 h (16108

cells); H - T.cruzi Epimastigotes in LIT+10% dFCS+1 mg/mL

human LDL (16108 cells); I - T.cruzi Epimastigotes in LIT+10%

dFCS+2 mg/mL human LDL (16108 cells). Lipids: HC –

Hydrocarbon; CHOE – Cholesteryl-ester; ERGE – Ergosteryl-

ester; TG – Triacylglycerol; FA – Free Fatty Acids; CHO –

Cholesterol; ERG – Ergosterol; MG – Monoacylglycerol; PL –

Phospholipids; ND – Not Determined.

(JPG)

Figure S2 Fluorimetric analysis using Nile Red of
epimastigotes in different culture conditions. Control

epimastigotes, cultivated in 10% FCS, store twice as much neutral

lipids than those grown in 10% delipidated FCS. After incubation

with purified 1 mg/mL LDL the parasites presented 6 times more

neutral lipids and after incubation with 2 mg/mL LDL, the store

amount reaches 8 times the capacity of control epimastigotes.

Fluorescence intensity was expressed in arbitrary units. The results

are from two independent experiments.

(PPT)
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