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Abstract

Background: Recently two major manufacturers of hearing aids introduced two distinct frequency-lowering techniques that
were designed to compensate in part for the perceptual effects of high-frequency hearing impairments. The Widex
‘‘Audibility Extender’’ is a linear frequency transposition scheme, whereas the Phonak ‘‘SoundRecover’’ scheme employs
nonlinear frequency compression. Although these schemes process sound signals in very different ways, studies
investigating their use by both adults and children with hearing impairment have reported significant perceptual benefits.
However, the modifications that these innovative schemes apply to sound signals have not previously been described or
compared in detail.

Methods: The main aim of the present study was to analyze these schemes’technical performance by measuring outputs
from each type of hearing aid with the frequency-lowering functions enabled and disabled. The input signals included
sinusoids, flute sounds, and speech material. Spectral analyses were carried out on the output signals produced by the
hearing aids in each condition.

Conclusions: The results of the analyses confirmed that each scheme was effective at lowering certain high-frequency
acoustic signals, although both techniques also distorted some signals. Most importantly, the application of either
frequency-lowering scheme would be expected to improve the audibility of many sounds having salient high-frequency
components. Nevertheless, considerably different perceptual effects would be expected from these schemes, even when
each hearing aid is fitted in accordance with the same audiometric configuration of hearing impairment. In general, these
findings reinforce the need for appropriate selection and fitting of sound-processing schemes in modern hearing aids to suit
the characteristics and preferences of individual listeners.
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Introduction

Two major hearing-aid (HA) manufacturers have recently

introduced frequency-lowering sound processing schemes. Al-

though these schemes are technically dissimilar, they are both

intended for HA users who have relatively poor hearing at high

frequencies. Lowering selected high-frequency components of

sound has been shown to help some people with hearing

impairment to perceive them [1,2]. The perceptual benefits

potentially include improved ability to resolve and discriminate

between sounds as well as to detect them. As is well known, many

people with sensorineural impairment have poorer hearing at high

frequencies than at lower frequencies, as indicated by hearing

sensitivity recorded on a pure-tone audiogram. In such cases, other

aspects of auditory perception in addition to sound sensitivity are

often affected. For example, frequency resolution, which is related

to a listener’ ability to separate a signal of interest such as speech

from a background noise, is generally found to be poorer at

frequencies having worse thresholds [3]. As a consequence,

amplification by a HA may fail to enable every hearing-impaired

listener to identify all sounds reliably, even though the audibility of

those sounds is usually improved. Although various frequency-

lowering schemes have been developed over several decades in

attempts to address these problems, only two schemes are

presently in widespread use.

The purpose of the present study was to measure and report the

technical characteristics of these recently introduced digital

frequency-lowering schemes. The first scheme was devised by

Widex, a company based in Denmark, and is known as the

Audibility Extender. It is a linear frequency transposition (LFT)

scheme that has been reported to improve the understanding of

some phonemes in speech, at least after training. For example,

identification of fricative consonants increased by about 14

percentage points, on average, for eight adults after two months

of use [2]. The second scheme, called SoundRecover, is available

from Phonak, a company based in Switzerland. It is a nonlinear

frequency compression (NLFC) scheme that was developed after

promising perceptual results were reported for an experimental
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prototype [4]. Similar results have been published more recently

[1]. They showed, for instance, that activation of the NLFC

scheme increased mean scores by about 15 percentage points for

13 adults and 11 children in a test of plural-noun identification

based on detection of a final /s/. The findings of the present study

provide technical explanations for the perceptual benefits reported

with use of both the LFT and NLFC frequency-lowering schemes.

Frequency-lowering Techniques
The Widex LFT scheme functions by shifting components of

sounds present within a source octave into a predetermined target

octave [2]. As described in the Materials and Methods section, the

settings chosen for the measurements reported below defined the

source octave to encompass 2.5–5.0 kHz, and the target octave to

be one octave lower (i.e., 1.25–2.5 kHz). In the LFT scheme, the

contents of the source octave are analyzed periodically to identify a

dominant spectral peak. The frequency of that peak is determined,

and the amount of lowering is calculated such that the selected

frequency is shifted down by one octave. Other frequency

components in the source octave are shifted by an equal number

of hertz. For example, if the peak frequency is 4 kHz, the extent of

the downward shift is 2 kHz, resulting in the peak component

being lowered to 2 kHz. At the same time, a source component at

5 kHz would be lowered by 2 kHz to 3 kHz. Note that, in general,

only the frequency of the peak is shifted by exactly one octave.

Consequently, it is possible that some components in the source

octave would fall outside the target octave after shifting. For

instance, in the above example a source component at 3 kHz

would be lowered to 1 kHz. However, the signals resulting from

the shifting process are filtered to ensure that they remain within

the boundaries of the target octave. Thus a source component at

3 kHz would be discarded if the amount of lowering was 2 Hz (or

any amount greater than about 1.75 kHz). After transposition, the

contents of the target octave are mixed with any sound

components already present in the same frequency region.

Subsequently the usual processes of amplification, such as

amplitude compression, are applied to the composite signal. An

important characteristic of the LFT scheme is that the amount of

frequency shifting generally varies over time in accordance with

the frequency of the dominant peak in the source octave.

The Phonak NLFC scheme is based on different principles [4].

The processing has two adjustable parameters: the cut-off frequency

and the frequency-compression ratio. For the present study, a cut-

off of 2.3 kHz was chosen. This means that frequencies below

2.3 kHz are unaffected by the NLFC processing, whereas those

above are compressed in frequency. The amount of lowering is

progressive, such that frequencies much higher than the cut-off are

shifted by a larger amount than frequencies only slightly above the

cut-off. For example, the selected frequency-compression ratio of

1.7:1 would result in a component at 1.7 oct above 2.3 kHz (i.e.,

7.47 kHz) being lowered to a frequency 1 oct above 2.3 kHz (i.e.,

4.6 kHz). The transfer function relating input to output frequencies

is completely determined during fitting by selection of the above two

parameters; it does not change in response to any signal

characteristics. Signal components processed by the NLFC scheme

do not overlap any other components present at the same time.

Together with components below the cut-off frequency, signals that

have been compressed in frequency are amplified and additionally

processed as usual.

Results

To obtain the measurements reported below, each HA was

programmed according to the manufacturer’ guidelines to provide

an appropriate fitting for a sloping, severe-to-profound hearing

loss (see Table 1). The input signals delivered to each HA

comprised a sinusoid with slowly increasing frequency, a sequence

of notes played on a flute, and four words chosen to contain many

phonemes with dominant high-frequency components. Recordings

from the Widex HA with and without LFT are available as Audio

S1 and Audio S2 respectively, and the corresponding recordings

for the Phonak HA are in files Audio S3 and Audio S4.

Measurements with Sinusoid
Measurements on each HA with the frequency-lowering

functions disabled confirmed, as expected, that the gains and

output levels were very similar. Therefore, the spectrum for this

condition shown in Figure 1 (dashed curve, right panel) is an

average of the spectra obtained for each HA separately. The

output of each HA for the swept sinusoid (not shown in the figures)

conformed generally to expectations of the LFT and NLFC

processing functions. For the Widex HA with LFT, the maximum

output frequency was approximately 2.5 kHz, corresponding to a

1-oct lowering of the highest frequency in the source octave. For

the Phonak HA with NLFC, the maximum output frequency was

approximately 4.4 kHz, corresponding to an input frequency of

about 6.8 kHz.

The short-term spectra for a brief portion of the swept sinusoid

at which the input frequency to the HAs was around 3 kHz are

shown in the left panel of Figure 1. The output of the Widex HA

with LFT (gray) showed a high-level component at 1.5 kHz, which

is 1 oct below the input frequency, as anticipated. Also evident

were two lower-level components at 3 and 4.5 kHz which may

have been at least partly artifacts of the processing. In comparison,

the output of the Phonak HA with NLFC (black) had a single

dominant peak at approximately 2.7 kHz, which is the output

frequency expected for an input tone at 3 kHz with the selected

parameter settings.

Measurements with Flute Sounds
The right panel of Figure 1 shows the averaged spectra from

each HA with and without frequency-lowering for one of the notes

produced by the flute (C5). A 300-ms steady portion of this note

was analyzed. As the fundamental frequency was approximately

523.3 Hz, and the signal waveform was essentially periodic,

harmonics were present at frequencies of 1046.5, 1569.8,

2093.0 Hz, and so on. In both HAs, the first four harmonics

produced almost identical outputs for the conditions with

frequency-lowering disabled, and, for the Phonak HA, with NLFC

enabled. With LFT, the same four frequency components were

evident at similar levels, but the fifth harmonic (approximately

2.6 kHz) would have fallen into the source octave. As it was

apparently identified as the dominant peak, it was shifted down by

1 oct to about 1.3 kHz. It therefore appeared between the second

and third harmonics. There is evidence that a shift of the same

amount (i.e., 1.3 kHz) was applied to the seventh harmonic

(3.7 kHz) to produce an output component near 2.4 kHz. The

unshifted fifth harmonic was also present in the output signal, but

Table 1. Hearing threshold levels used to program the two
hearing aids.

Frequency (kHz) 0.25 0.5 1 1.5 2 4 8

Hearing Threshold Level (dB HL)50 60 70 80 90 100 100

doi:10.1371/journal.pone.0022358.t001
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higher frequency components were at much lower levels. With

NLFC, the fifth harmonic was shifted down to approximately

2.5 kHz, while the higher harmonics were shifted further and

output at lower levels, corresponding to the relatively low level of

harmonics above the fifth in the input signal.

Measurements with Speech
Figure 2 shows spectrograms of two of the words used in the

tests (i.e., fish, says). The upper panel shows a spectrogram of the

original signal, whereas the two lower panels show the outputs of

the HAs with NLFC and LFT activated, respectively. The main

effect of each type of processing is most evident in a comparison of

a vowel sound, such as /i/ in approximately the 0.2–0.4 s portion

of the spectrograms, and a consonant sound, such as /#/ in the

following portion up to about 0.7 s. Averaged spectra estimated

from these two signals are shown in Figure 3. The spectra for /i/

(left panel) were obtained from a 50-ms steady portion near the

vowel onset, whereas those for /#/ (right) were obtained from a

200-ms steady portion within the consonant sound. As in Figure 1,

the dashed curves show averages of the spectra for each HA with

the frequency-lowering functions disabled.

For the vowel, a comparison of the spectra with the frequency-

lowering functions enabled and disabled shows minimal effect for

signal components near the first formant frequency (i.e., around

0.5 kHz). With LFT, components near the second formant (about

2.9 kHz) were lowered to approximately 1.5 kHz. The general

effect of linear frequency transposition is clearly evident in that the

shape of the spectrum in the source octave above 2.5 kHz with LFT

disabled is similar to that with LFT enabled in the target octave

below 2.5 kHz. With NLFC, the second-formant spectral peak was

lowered to approximately 2.6 kHz, while higher-frequency compo-

nents were lowered by progressively larger amounts.

For the consonant, the spectrum without frequency lowering

shows two local peaks at about 2.8 and 4.1 kHz. With LFT, a peak

is evident near 1.4 kHz, presumably corresponding to the lower

input peak shifted down by 1 oct. There is also a second, relatively

broad peak around 2.2 kHz which seems to have resulted from

some combination of shifted and unshifted input components.

With NLFC, the two input peaks were shifted to approximately

2.6 and 3.2 kHz, respectively. Some interpretations and implica-

tions of these results are discussed next.

Discussion

In general, the above measurements are consistent with most

expectations of the function of both LFT and NLFC processing.

The effect of each scheme to reduce the bandwidth of output

signals from the HAs is evident particularly in the spectrograms of

Figure 2 and the spectra of Figure 3 (right). For LFT, the

maximum output frequency was limited by the upper boundary of

the target octave (i.e., 2.5 kHz), whereas that for NLFC was

approximately 4.4 kHz. Note, however, that the output bandwidth

of each HA is effectively adjustable by changing the parameter

values of the frequency-lowering functions.

The tests with the swept sinusoid indicated that the Widex HA

with LFT enabled produced at least two additional frequency

components higher than the one expected from transposition of

the input signal. Although this suggests some distortion in the LFT

processing, it is likely that the levels of the extra components would

be lower than the audibility threshold of a HA user with the

audiogram used to program both devices (see Table 1). The tests

with the flute sounds suggested that both HAs could provide

accurate pitch information to listeners within the lowest four

harmonics (including the fundamental) of the signal; see Figure 1

(right panel). Psychophysical studies have found that this frequency

range tends to dominate listeners’perception of pitch for complex

sounds [5]. Neither frequency-lowering scheme preserved accurate

frequency differences between all of the harmonics. However, it

seems plausible that the relatively small shift in the frequency of

Figure 1. Output spectra of each hearing aid (HA) for inputs consisting of a sinusoid (left) and a tone produced by a flute (right). The
sinusoid had a frequency of 3 kHz (vertical dashed line), corresponding to a brief portion of a sweep encompassing the frequency range 0.1–10 kHz.
The flute note was C5 (fundamental frequency: 523.3 Hz). In both panels, the black line shows the spectrum from the Phonak HA with NLFC, and the
gray line shows the spectrum from the Widex HA with LFT. The gray dashed line in the right panel shows the averaged spectrum from both HAs
without frequency lowering.
doi:10.1371/journal.pone.0022358.g001
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Figure 2. Spectrograms of the word sequence fish, says (top panel) and the corresponding outputs from each frequency-lowering
hearing aid (middle: Phonak Nonlinear Frequency Compression; bottom: Widex Linear Frequency Transposition).
doi:10.1371/journal.pone.0022358.g002
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the fifth harmonic caused by NLFC processing would be less salient

perceptually than the production by LFT of the component near

1.3 kHz. That component is not harmonically related to other

components present in the input signal, and, given its comparatively

high level, might reduce the ability of some hearing-impaired

listeners to resolve the adjacent second and third harmonics.

The spectra obtained using the vowel sound also showed that

some frequency ratios (or differences) between spectral peaks were

altered by both LFT and NLFC; see Figure 3 (left). As expected,

neither scheme changed frequencies near the first formant, but

LFT shifted the peak near the second formant to about 1.5 kHz.

In contrast, NLFC lowered that peak only slightly, with the result

that it remained well within the overall range of second-formant

frequencies for this vowel reported from measurements involving

many different speakers [6]. Similar observations apply to the

spectra of the consonant sounds (right panel). The relatively small

effect of NLFC compared to LFT suggests that it might be easier

for inexperienced listeners to adapt to the frequency-shifted

signals, particularly when listening to speech, at least for the

settings applied in the present tests.

In conclusion, both frequency-lowering schemes may provide

perceptual benefits to HA users with hearing impairment at high

frequencies. Although only one audiogram configuration was

applied in the experiments, it is likely that the findings would be

generally similar for other audiogram shapes, provided that they

represented types of hearing impairment that would be suitable for

fitting of either type of frequency-lowering HA. The technical test

results suggest that the Phonak NLFC processing may preserve

more details of the overall spectral shape than the Widex LFT

scheme, at least for the selected signals and settings. However, the

LFT scheme may be more suitable than NLFC for HA users with

minimal usable hearing at frequencies above approximately 1.5–

2 kHz. This is because the NLFC cut-off frequency is limited to a

minimum setting of 1.5 kHz; thus, NLFC is unable to modify

lower frequencies. In any case, selection of the optimum fitting for

each HA user should depend ultimately on perceptual assessments,

including tests of speech understanding in particular.

Materials and Methods

The hearing aids used for the present study were the Widex

mind440 m4-19 and the Phonak Naı́da V SP. Each was

programmed to suit the audiogram shown in Table 1, based on

default settings of the fitting software. This audiogram is well

within each manufacturer’ fitting guidelines for these HAs.

Furthermore, it is close to the average audiogram of the subjects

who participated in an evaluation of a prototype of the NLFC

processing [4], and is within the range of audiograms of the

subjects who participated in a published evaluation of the LFT

scheme [2]. To ensure that the technical performance of each HA

was not inadvertently affected by irrelevant aspects of the fitting,

both HAs were programmed to match as closely as possible the

gain and amplitude-compression characteristics recommended for

this audiogram by the NAL-NL1 prescription [7]. In addition,

signal-processing features such as feedback cancelation, noise

reduction, and occlusion compensation were disabled, and an

omni-directional microphone configuration was selected. These

settings were not altered during measurements in which the LFT

or NLFC schemes were either enabled or disabled. The selected

settings of the frequency-lowering parameters for each HA are

shown in Table 2.

Output signals were recorded from each HA in each condition

for three types of input signal: (1) a sinusoid swept from 0.1 to

Figure 3. Output spectra of each frequency-lowering hearing aid for inputs consisting of the vowel /i/ (left) and the consonant /#/
(right). Note that the abscissa in the right panel shows frequency on a log axis. Other details are as for Figure 1.
doi:10.1371/journal.pone.0022358.g003

Table 2. Settings of the frequency-lowering schemes in the
two hearing aids.

Widex LFT Phonak NLFC

Source octave Target octave
Cut-off
frequency

Compression
ratio

2.5–5.0 kHz 1.25–2.5 kHz 2.3 kHz 1.7:1

doi:10.1371/journal.pone.0022358.t002
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10 kHz logarithmically over 10 s; (2) a succession of notes played on

a flute; and (3) speech, comprising four monosyllabic words recorded

by a female speaker. The average level of all signals was 65 dB SPL.

The sounds were delivered to each HA in a Brüel & Kjær Type 4222

anechoic test chamber, and the output signals were recorded via a 2-

cm3 coupler for later analysis using Adobe Audition 3.0 software.

The swept sinusoid, which was used to verify the function of each

HA with and without each frequency-lowering scheme, was passed

through a low-pass filter with frequency response similar to the long-

term average speech spectrum [8] before delivery to the HAs. This

ensured that the level across frequency was well within the range at

which optimal processing could be expected for each HA. The flute

sounds were included to investigate the potential effects of frequency

lowering on musical pitch, and comprised a sequence of notes

ranging from G4 to G5 (i.e., fundamental frequencies 392–784 Hz).

The words in the speech material (thatch, fish, says, verge) were chosen

to include eight different fricative or affricate consonants that are

common in English and contain important acoustic components at

relatively high frequencies.

The audio signals recorded from the HAs were sampled at

44.1 kHz with 16-bit resolution. The spectra shown in Figures00201

and 3 were obtained using a 512-point Fast Fourier Transform (FFT)

preceded by a Blackman-Harris windowing function. The spectro-

grams shown in Figure 2 were obtained using a 256-point FFT after

the original signals had been down-sampled to 16 kHz.

Supporting Information

Audio S1 Sound recording from the Widex hearing aid
(HA) with the Linear Frequency Transposition (LFT)

function disabled. The input signals were four monosyllabic

words (thatch, fish, says, verge), a sequence of notes played on a flute,

and a swept sinusoid (0.1–10 kHz).

(WAV)

Audio S2 As for Audio S1, but with LFT enabled.

(WAV)

Audio S3 As for Audio S1, but for the Phonak HA with
the Nonlinear Frequency Compression (NLFC) function
disabled.

(WAV)

Audio S4 As for Audio S1, but with NLFC enabled.

(WAV)
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