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Abstract

Background: Streptococcus suis causes invasive infections in pigs and occasionally in humans. The host innate immune
system plays a major role in counteracting S. suis infections. The main components of S. suis able to activate the innate
immune system likely include cell wall constituents that may be released during growth or after cell wall integrity loss,
however characterization of these components is still limited.

Methology/Principal Findings: A concentrated very potent innate immunity activating supernatant of penicillin-treated
S. suis was SDS-PAGE fractionated and tested for porcine peripheral blood mononucleated cell (PBMC) stimulating activity
using cytokine gene transcript analysis. More than half of the 24 tested fractions increased IL-1b and IL-8 cytokine gene
transcript levels in porcine PBMCs. Mass spectrometry of the active fractions indicated 24 proteins including 9 lipoproteins.
Genetic inactivation of a putative prolipoprotein diacylglyceryl transferase (Lgt) gene resulted in deficient lipoprotein
synthesis as evidenced by palmitate labeling. The Lgt mutant showed strongly reduced activation of porcine PBMCs,
indicating that lipoproteins are dominant porcine PBMC activating molecules of S. suis.

Conclusion/Significance: This study for the first time identifies and characterizes lipoproteins of S. suis as major activators of
the innate immune system of the pig. In addition, we provide evidence that Lgt processing of lipoproteins is required for
lipoprotein mediated innate immune activation.
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Introduction

Streptococcus suis causes severe infections in pigs, including

meningitis, septicemia, endocarditis, pneumonia and arthritis.

Occasionally, S. suis infects humans as well, resulting in compara-

ble disease manifestations as are seen in pigs [1,2,3]. To date, 33

serotypes of S. suis have been described based on differences in

polysaccharide capsule. Isolates even of the same serotype may

vary in virulence. The majority of isolates that causes disease

belong to serotype 2, although in Europe serotype 9 isolates are

emerging [4,5,6].

Based on the existence of a strong inflammatory response

during an acute S. suis infection, a significant activation of innate

immunity is expected early after infection. The innate immune

system uses pattern recognition receptors (PRRs) to recognize

pathogen associated molecular patterns (PAMPs) of microbes. One

group of PRRs able to sense a diverse set of bacterial PAMPs is the

Toll-like receptor (TLR) family. Activation of these TLRs results

in nuclear translocation of transcription factors (e.g. nuclear factor

kappa B, NF-kB) which ultimately causes enhanced production of

pro-inflammatory cytokines, chemokines and antimicrobial pep-

tides. Besides these direct mechanisms to eliminate invading

microbes, the innate immune system plays a decisive role in

initiating and strengthening humoral and cell-mediated protection.

The capsule of S. suis may be one of the first structures to be

recognized by the innate immune system. However, capsule by

itself is a poor activator of the innate immune system [7]. Capsule-

deficient S. suis strains display even higher levels of innate activa-

tion compared to wild type strains in human monocytes and

macrophages [7,8]. The main components of S. suis involved in

activating the innate immune system therefore likely include cell

wall or cell membrane constituents. Indeed, cell wall extracts of

S. suis have been shown to be potent cytokine inducers in murine

macrophages, human endothelial brain cells, human monocytes

and in a porcine whole blood model [8,9,10,11]. Furthermore, we

recently provided evidence that components of S. suis released after

cell wall integrity loss specifically activate the human TLR2/6

complex that mostly recognizes bacterial lipoproteins [12].

Lipoproteins of Gram-positive bacteria are processed by two

key enzymes; the prolipoprotein diacylglyceryl transferase (Lgt)

enzyme and the lipoprotein signal peptidase (Lsp) enzyme. The

Lgt enzyme recognizes a so-called lipobox motif (LXXC) in the C-

terminal region of the signal peptide of a premature lipoprotein

and transfers a diacylglyceryl moiety to the cysteine residue of the

lipobox [13,14]. Subsequently, the Lsp enzyme cleaves the signal

peptide resulting in a mature lipoprotein [15,16]. Lipid modifica-

tion of Gram-positive bacterial lipoproteins via Lgt has been

described to be essential for innate immune activation [17,18].
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The objective of this study was to identify components of S. suis

that activate porcine peripheral blood mononucleated cells

(PBMCs). We used mass spectrometry and genetically defined

lipoprotein-processing defective strains as research instruments.

Results

S. suis activates porcine PBMCs efficiently
Porcine PBMCs were isolated from pig blood and incubated

with S. suis and collected bacterial culture supernatant. Penicillin

was used to enhance the possible release of PBMC activating

components. PBMC activation was determined by measuring

changes in IL-1b and IL-8 mRNA transcripts using qRT-PCR.

Stimulation of PBMCs with penicillin treated S. suis increased IL-

1b and IL-8 cytokine transcripts to similar levels as obtained after

stimulation with FSL-1, a synthetic lipopeptide (Fig. 1). Activating

components were not exclusively cell bound since bacterial culture

supernatant stimulated the PBMCs as well (Fig. 1). These results

indicate that penicillin-treated S. suis is sensed efficiently by the

porcine innate immune system and that activating component(s)

are released into the supernatant.

Identification of innate immunity activating proteins
To gain more insights into the nature of the porcine PBMC

activating component(s), we concentrated the supernatant of

penicillin-treated S. suis and size fractionated it into 24 fractions

by SDS-PAGE. The obtained fractions were analyzed for their

ability to stimulate porcine PBMCs. More than half of the

fractions increased IL-1b and IL-8 cytokine transcript levels as

measured by qRT-PCR (Fig. 2A, B). The kinetics of the changes in

IL-1b and IL-8 mRNA were very similar. The fractions that

caused a more than 5-fold increase in IL-1b and IL-8 mRNA were

individually analyzed by mass spectrometry. Mascot scores were

determined using the identified peptides in all the fractions

simultaneously to increase the sensitivity and specificity of the

analysis. A total of 24 S. suis proteins with MASCOT scores .50

(Table 1) were identified. Among these 24 proteins, nine (37.5%)

putative lipoproteins were present, including two lipoproteins

previously shown to be recognized by porcine convalescent sera

[19,20]. In the genome of S. suis strain P1/7, 45 putative

lipoprotein coding genes are present (Table S1, [21]) which

corresponds to 2.5% of the proteome [21]. This large enrichment

of lipoproteins in the porcine PBMC activating fractions suggests

that S. suis lipoproteins contribute to the observed PBMC

activation.

Porcine PBMC activating fractions also activate human
TLR2/6 expressing HeLa cells

To investigate the specificity of the (lipo)proteins for porcine

PBMC activation, we analyzed the same fractions as used in the

PBMC experiment to stimulate HeLa cells expressing human

TLR2/6 and a NF-kB luciferase reporter [22]. Human TLR2/6

recognizes bacterial lipoproteins including those of S. suis [12]. As

shown in Fig. 2C, all fractions able to initiate a porcine IL-1b and

IL-8 response (Fig. 2A, B) also activated the TLR2/6-expressing

HeLa cells (Fig. 2C), while fractions with low activity yielded a

poor response in both porcine PBMCs and human TLR2/6-

expressing cells. None of the tested fractions was able to activate

transfected HeLa cells lacking TLR2/6 expression (Fig. 2D). The

comparable activation of the porcine PBMCs and the human

TLR2/6 cell system strongly suggests that lipoproteins have a

major role in activating porcine PBMCs, although these results do

not exclude that also non-lipoproteins activate porcine PBMCs.

Generation and characterization of a S. suisDlgt mutant
To distinguish between lipoprotein and non-lipoprotein medi-

ated innate immune activation of porcine PBMCs, we constructed

a mutant S. suis serotype 9 isolate deficient in the expression of the

lipoprotein processing enzyme Lgt. Lgt in Gram-positive bacteria

is required for lipid modification of the cysteine residue present

within the lipobox of prelipoproteins. In the genome of S. suis

serotype 2 strain P1/7 gene SSU_1418 had been annotated to

encode the Lgt protein. This putative Lgt protein showed 67%

amino acid sequence identity to the Lgt protein of S. pneumoniae

strain D39 [23]. The lgt gene is the second gene transcribed of an

operon expressing 4 genes also encoding two putative exported

proteins and a phosphorylase enzyme. We inactivated the

corresponding lgt gene in S. suis serotype 9 strain 8067 by

Figure 1. Porcine PBMC stimulation with wild type S. suis.
Porcine PBMCs were stimulated with whole S. suis strain 8067 bacteria
(cells) in the presence of penicillin or with supernatant (sup.) derived
from penicillin treated bacteria. At 2 (light grey bar) and 4 h (dark grey
bar) post stimulation IL-1b (A) and IL-8 (B) mRNA expression levels were
determined by quantitative real time PCR. The diacylatedlipopeptide
FSL was used as a positive control. Data represent fold inductions
calculated by dividing the normalized cytokine levels of stimulated cells
by the normalized cytokine levels of medium-stimulated negative
control cells. Values represent the mean 6 SD of two experiments
performed in duplicate.
doi:10.1371/journal.pone.0022299.g001
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homologous recombination generating Dlgt mutant bacteria. A

positive control was made by re-introducing an intact lgt gene in

the Dlgt mutant strain by plasmid complementation generating

Dlgt::pGA14-lgt. As a negative control we complemented the Dlgt

mutant with vector lacking the lgt insert, generating Dlgt::pGA14-

cm. Inactivation of lgt resulted in viable S. suis bacteria able to grow

efficiently in THB after a slightly increased lag phase (Fig. 3).

To verify that lipoprotein processing had been abolished in

the Dlgt mutant, lipidation of lipoproteins in the wild type and

mutant was analyzed. Bacteria were grown in the presence of

[3H]palmitic acid and subsequently treated with penicillin.

Similar amounts of protein were released from wild type and

(complemented) Dlgt mutant bacteria (Fig. 4). Several radiola-

beled proteins were detected in the supernatant of the wild type

and the Dlgt::pGA14-lgt mutant (Fig. 4), whereas no radiola-

beled (lipo)proteins were detected in the supernatant of the Dlgt

mutant and the Dlgt::pGA14-cm mutant. These data confirm

that Lgt is responsible for lipid modification of prelipoproteins

in S. suis.

Disruption of lgt abolishes activation of human TLR2/6
To investigate whether lipid modification of S. suis prelipopro-

teins is a prerequisite for human TLR2/6 activation, we compared

the abilities of the (penicillin-treated) wild type, Dlgt mutant and

the complemented Dlgt mutant strains to activate HeLa cells

expressing human TLR2/6. Both S. suis wild type and the

Dlgt::pGA14-lgt mutant induced significant TLR2/6 activation

(Fig. 5A), in contrast to the Dlgt mutant and the Dlgt::pGA14-cm

strain. In all cases, stimulation of HeLa cells transfected with the

vectors lacking the TLR gene yielded only background levels of

NF-kB activity (Fig. 5B). These data indicate that the presence of a

protein bound lipid moiety is a prerequisite for activation of

human TLR2/6 and that the S. suis lipoproteins are the primary

ligands that activate the human TLR2/6 complex.

Figure 2. Porcine PBMC and human TLR2/6 stimulation of innate immunity activating fractions. Porcine PBMCs were stimulated with an
innate immunity activating fraction of S. suis strain 8067 (concentrated supernatant of penicillin treated bacteria) subdivided into 24 fractions of
different molecular sizes. At 4 h post stimulation IL-1b (A) and IL-8 (B) mRNA expression levels were determined by quantitative real time PCR. HeLa
57A cells expressing human TLR2/6 (C), and control cells transfected with vector without insert (D) were stimulated (5 h) with the same 24 fractions.
Data represent relative fold activation calculated by dividing the normalized test samples by the normalized activity of medium-stimulated negative
control samples. Values represent the mean 6 SD of two experiments performed in duplicate. Fractions that induced .5 fold porcine PBMC
activation were analyzed by mass spectrometry (Table 1).
doi:10.1371/journal.pone.0022299.g002
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Inactivation of lgt reduces PBMC activation
In contrast to the transfected HeLa cells expressing human

TLR2/6, porcine PBMC express multiple innate immune receptors

that may respond to various S. suis components. To assess the

contribution of lipoproteins to PBMC activation, we stimulated

porcine PBMCs with (penicillin-treated) supernatants and cells of

wild type, Dlgt mutant, Dlgt::pGA14-cm mutant and Dlgt::pGA14-lgt

mutant bacteria. Stimulation with the wild type and the

Dlgt::pGA14-lgt mutant bacterial supernatants resulted in efficient

induction of IL-1b and IL-8 mRNA at 2 h and 4 h post stimulation

(Figs. 6A and B). As expected, only minimal induction of IL-1b and

IL-8 mRNA was observed after stimulation with the Dlgt mutant

and Dlgt::pGA14-cm mutant derived supernatant. In line with the

activation kinetics of the supernatants, PBMCs stimulation with wild

type and Dlgt::pGA14-lgt mutant bacteria also resulted in efficient

induction of IL-1b and IL-8 mRNA at 2 h and 4 h post stimulation

(Fig. 6C and D). The IL-1b and IL-8 mRNA levels induced by the

Dlgt mutant and the Dlgt::pGA14-cm mutant were once more

strongly reduced compared to the wild type strain especially at 2 h

post stimulation. These results suggest S. suis lipoproteins as the

principal activators of the porcine PBMC innate immune response.

Contribution lipoproteins in activating porcine PBMCs in
the absence of penicillin

The above results were obtained with penicillin-treated S. suis to

enhance the release, and enable the identification, of immune

activating bacterial factors. To assess the contribution of lipopro-

teins as activators of the porcine PBMC response in the absence of

antibiotics, we stimulated porcine PBMCs with live S. suis and

supernatants of S. suis grown to stationary phase without penicillin.

Stimulation of PBMCs with both cells and supernatant of wild type

and Dlgt::pGA14-lgt mutant bacteria resulted in efficient induction

of IL-1b and IL-8 mRNA (Fig. 6E–H). Much less induction of IL-1b
and IL-8 mRNA was observed after stimulation with the Dlgt

mutant and the Dlgt::pGA14-cm mutant cells and supernatants,

consistent with the results obtained in the presence of penicillin.

Together, these results indicate that S. suis lipoproteins are major

activators of the innate immune system of the pig.

Discussion

In the present study we identified 9 S. suis lipoproteins within a

fraction able to activate porcine PBMCs efficiently. Disruption of

the lgt gene required for lipoprotein synthesis strongly reduced

activation of porcine PBMCs. This effect was restored after

complementation of the gene defect. Altogether, these results

provide conclusive evidence that lipoproteins are potent and

dominant innate immunity activating molecules of S. suis.

The identification of S. suis lipoproteins as major activators of

porcine PBMCs resulted from detailed analysis of active fractions of

bacterial culture supernatant. Mass spectrometry results and the

finding that similar fractions activated porcine PBMCs and the

human TLR2/6 complex pointed towards possible lipoproteins as

activating molecules. We possibly only identified the most

abundantly expressed or released lipoproteins of S. suis by mass

spectrometry. As shown for several bacterial species including S. suis,

expression levels may vary between different lipoproteins and are

influenced by the bacterial environment. In a recent study, three

divalent-cation-binding lipoproteins of S. suis were shown to be up

regulated after divalent-cation deprivation in vitro [24] and a fourth

divalent-cation-binding lipoprotein was shown to be up regulated in

mice [20]. Of the 9 lipoproteins we identified here, the basic

membrane lipoprotein (SSU0934 in S. suis P1/7) and a putative

high affinity metal binding lipoprotein (SSU1869 in S. suis P1/7)

have been demonstrated to be recognized by convalescent pig sera

[19,20], indicating their expression and immunogenicity in vivo.

Porcine PBMCs are expected to express a wide range of PRRs

including TLRs. Activation of TLRs by bacterial PAMPs generally

results in nuclear translocation of NF-kB followed by transcription

of pro-inflammatory cytokines and chemokines such as IL-1b and

IL-8. Efficient activation and differences in transcript levels of IL-

Figure 3. Growth of wild type and Dlgt mutant bacteria. Growth
of wild type, Dlgt mutant, and the complemented Dlgt mutant
(Dlgt::pGA14-cm; Dlgt::pGA14-lgt) bacteria was assessed in THB by
following optical densities in time.
doi:10.1371/journal.pone.0022299.g003

Figure 4. Lipidation of wild type and Dlgt mutant bacteria.
Lipidation was assessed by incubating the wild type and mutant
bacteria with [3H]palmitic acid, followed by penicillin treatment and
SDS-PAGE. Lipidation was visualized using autoradiography. As a
control, total protein release of wild type and mutant bacteria was
visualized with Silver staining.
doi:10.1371/journal.pone.0022299.g004
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1b and IL-8 mRNA were already observed at a S. suis to PBMC

ratio of 1:1 at the start of infection and as early as 2 and 4 h post

infection. As expected, other NF-kB dependent cytokines, such as

IL-6, TNF-a and IL-10 showed similar kinetics when compared to

IL-1b and IL-8 expression profiles (Fig. S1). Cell damage at

prolonged infection prevented measurements of accurate cytokine

release into the medium. The increase in IL-1b and IL-8 in the

porcine PBMCs is likely mediated via porcine TLR2/6, although

this could not be measured as the porcine TLR read out systems

have not been validated in a porcine cell background. However, we

successfully demonstrated that the identified S. suis lipoproteins

activate human TLR2/6, which has a high level of sequence

identity with porcine TLR2/6.

During this study, we initially used penicillin to enhance the

release of possible innate immunity activating components of

S. suis. Penicillin inactivates the penicillin binding proteins essential

for the crosslinking of bacterial peptidoglycan, skewing the release

of components normally tightly attached to the cell wall or cell

membrane. This procedure resulted in increased release of

(lipo)proteins in the culture supernatant and facilitated the

identification of the innate immunity activating (lipo)proteins.

The effect of increased innate sensing after penicillin treatment has

also been reported for S. pneumoniae [25]. Our finding that PBMC

activation also occurred in the absence of penicillin (Fig. 6)

excludes adverse effects of penicillin (e.g. cell lysis) on the immune

activation. In the absence of penicillin, the effects of immune

activation were most pronounced during stationary growth phase.

This likely explains the lack of activation of human TLR2/6 by

logarithmic phase-derived bacteria [12].

In S. suis a significant group of lipoproteins is predicted to have

substrate binding and transport functions (Table S1) which

suggests lipoproteins to be involved in nutrient acquisition.

Interestingly, the in vitro growth data of the Dlgt mutant bacteria

suggest that nutrient acquisition mediated by lipoproteins is not

critical for growth in rich media such as THB or that lipid

modification of lipoproteins is not essential for lipoprotein

function. The in vitro growth ability of the S. suis Dlgt mutant

bacteria resembles observation of several other lgt mutants in

Streptococcal species such as S. pneumoniae, S. equi, S. agalactiae,

S. sanguinis and S. uberis [17,26,27,28,29]. Probably lipoproteins

without lipid moiety are still anchored in the bacterial membrane

and able to fulfill (partly) their roles in nutrient acquisition. The

observations of reduced innate immune activation, observed for

the S. suis Dlgt mutant strain, is in agreement with observations in

other Gram-positive bacterial species, including Staphyloccoccus

aureus, Listeria monocytogenes and S. agalactiae [17,18,30].

On the basis of our results, the absence of lipoprotein lipidation

may benefit S. suis as it may aid to evade sensing by the innate

immune system. On the other hand, the absence of lipoprotein

lipidation might affect lipoprotein functionality, which may affect

in vivo growth and virulence characteristics, interactions with

components in the host, and interactions with other surrounding S.

suis bacteria. These growth effects complicate the interpretation of

in vivo studies on the effect of S. suis on the innate immune

response. In S. sanguinis and S. pneumoniae inactivation of Lgt

processing of lipoproteins have been shown to moderately reduce

virulence [26,27]. In S. agalactiae and S. aureus Dlgt mutant bacteria

became hypervirulent at a low dose [17,31]. Whether virulence of

the S. suis Dlgt mutant is affected compared to wild type bacteria

and whether this is caused by an altered innate immune response

or growth characteristics awaits further study.

Materials and Methods

Ethics Statement
Fresh porcine blood was obtained in accordance with a protocol

(2008120.a) approved by the Animal Experiments Committee of

the Central Veterinary Institute (Lelystad, The Netherlands), in

Figure 5. TLR2/6 activating capacity of wild type and Dlgt
mutant bacteria. HeLa 57A cells expressing human TLR2/6 (A) and
control cells transfected with vector without insert (B) were stimulated
with wild type, Dlgt, Dlgt::pGA14-cm, and Dlgt::pGA14-lgt mutant
bacteria in the presence of penicillin (30 mg/ml). At 5 h post stimulation,
NF-kB luciferase activity was determined. The diacylated lipopeptide
FSL was used as a positive control. Data represent relative luciferase
activity calculated by dividing the normalized activity of the test
samples by the normalized activity of medium-stimulated negative
control samples. Values represent the mean 6 SD of three independent
experiments performed in duplicate. * P,0.05 compared to wild type
level.
doi:10.1371/journal.pone.0022299.g005
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agreement with the Dutch Experiments on Animals Act (Project

code: 2008149).

Bacterial strains and growth conditions
In this study we used a serotype 9 strain (strain 8067, virulent

pig isolate, Smith et al., unpublished results), which is previously

shown to activate the innate immune system via human TLR2/6

more efficiently compared to serotype 2 strains [12]. Wild type

bacteria, isogenic mutants as well as complemented mutant strains

were grown on Colombia agar plates (Oxoid Ltd, London, United

Kingdom) containing 6% horse blood at 5% CO2 and 37uC.

Liquid cultures were grown in Todd-Hewitt broth (THB) (Oxoid

Ltd.) for 18 h at 37uC without agitation. Escherichia coli were grown

on Luria-Bertani (LB) agar plates or in LB broth. When necessary,

antibiotics were added to culture media at the following

concentrations: for E. coli, ampicillin 100 mg/ml; chloramphenicol

8 mg/ml and spectinomycin 100 mg/ml; for S. suis, chloramphen-

icol 5 mg/ml and spectinomycin 100 mg/ml. For use in stimulation

experiments, bacteria were pelleted by centrifugation at 4,5006 g

for 10 min and resuspended to 1.06109 CFU/ml in Dulbecco’s

phosphate buffered saline (D-PBS).

General DNA techniques
Genomic DNA from S. suis was isolated as described previously

[32]. PCRs were conducted with Phusion High-Fidelity DNA

polymerase (BIOKE, Leiden, The Netherlands). Plasmid DNA

was isolated with the Plasmid DNA Purification System (Promega,

Leiden, The Netherlands). DNA purifications were performed

with the Zymogen clean up kits (BaseClear, Leiden, The

Netherlands). Ligations were performed with T4 DNA ligase

(Promega) and ligation mixtures were used to transform E. coli.

Plasmids were introduced into S. suis via electroporation [33].

Generation of Dlgt mutant
Primers used in this study are listed in Table S2. Primers 1 and

4 were used to amplify a fragment of the chromosomal DNA of

strain 8067 containing the intact lgt gene flanked on both sides by

1.5 kb regions. This fragment was ligated to the blunt cloning

vector pJET1.2 (Fermentas, St. Leon-Rot, Germany) and ligation

mixtures were transformed to E. coli. Plasmid DNA (designated

pJET-lgt) obtained from transformants was then used to replace an

internal fragment (about 300 bp) of lgt by a Spc resistance cassette.

To do this, we used an inverse PCR strategy on pJET-lgt using

primers 2 and 3. In addition, the Spc cassette was amplified from

pGA14-spc [22] using primers 9 and 10. The amplified fragments

were digested with XmaI and SalI and ligated together. Ligation

mixtures were introduced into E. coli to generate pJET-lgt-spc. The

entire insert fragment of pJET-lgt-spc was subsequently amplified

using primers 1 and 4 and ligated to the thermo sensitive shuttle

vector pSET5 [34], which was linerialized with the SmaI restriction

enzyme, generating pSET5-lgt-spc. The pSET5-lgt-spc plasmid was

then introduced into S. suis strain 8067 by electroporation and

transformants were selected on Columbia agar plates at 30uC in

the presence of spectinomycin. Several individual colonies were

grown overnight in THB (10 ml) containing spectinomycin at

30uC. The overnight cultures were then diluted 1:100 in THB

without antibiotics and incubated for 4 h at 38uC. Cultures were

serially diluted on Columbia agar plates containing spectinomycin

at 38uC to select for chromosomal integration. Individual colonies

that had lost the vector mediated chloramphenicol resistance were

confirmed to have the expected mutant genotype by PCR using

primer pairs 5,6 and 7,8 as well as by Southern blotting.

Complementation of the Dlgt mutant
To complement the Dlgt mutant with an intact lgt gene, we

constructed an expression plasmid containing the wild type lgt

gene including its putative promoter. Primers 13 and 14 were used

to amplify the lgt fragment, which was cloned into pJET1.2

generating pJET1.2-lgt-expr. Subsequently, pJET1.2-lgt-expr was

digested with SmaI and SalI and the lgt fragment was purified and

cloned into pGA14 [35] digested with SmaI and SalI, generating

pGA14-lgt-expr. Finally, the chloramphenicol resistance gene (cm)

of pSET5, amplified with primers 15 and 16 and digested with

SalI, was introduced at the SalI site of pGA14-lgt-expr to yield

pGA14-lgt-expr-cm. As a negative control, cm was introduced in

pGA14 digested with SalI, generating pGA14-cm. Both plasmids

were subsequently introduced into the Dlgt mutant generating

Dlgt::pGA14-lgt and Dlgt::pGA14-cm respectively. RNA expression

of the lgt gene in the Dlgt::pGA14-lgt mutant was confirmed by

quantitative real time PCR.

Growth analysis
Overnight cultures of wild type and mutant bacteria were 1:100

diluted in fresh THB and optical density at 600 nm (OD600) of

400 ml samples was followed in time using the Bioscreen C

(Thermo Scientific, Breda, The Netherlands) at 37uC. Overnight

cultures of wild type, Dlgt mutant and complemented mutants had

similar OD600 values and contained the same amounts of CFU.

[3H]palmitate labeling
Bacteria were grown for 18 h at 37uC in THB, pelleted,

resuspended to 1.06109 CFU/ml in D-PBS and then diluted 1:20

in chemical defined medium (CDM) consisting of a 1:1 mixture of

HAM-F12 nutrient mixture (Invitrogen, Breda, The Netherlands)

and NCTC-109 medium (Sigma-Aldrich, Zwijndrecht, The Nether-

lands) containing 10 mCi/ml [9,10-3H]palmitic acid (Perkin Elmer,

Groningen, The Netherlands). At an optical density of 0.4 (600 nm),

penicillin G (Sigma-Aldrich) was added to the culture to a final

concentration of 30 mg/ml. After 2 h of incubation at 37uC, the

bacteria and medium were separated by centrifugation (4,5006g,

10 min) and the supernatant was 40 times volume concentrated by

Amicon Ultra-15 centrifugal filter devices with a 3 kD cut-off

(Millipore, Amsterdam, The Netherlands). Subsequently, LDS

Sample Buffer (Invitrogen) was added to the concentrated fraction

and 30 ml samples were separated using SDS-PAGE. Finally, the gel

was fixed, dried, and exposed to an autoradiography film for 24 h.

Generation of (concentrated) bacterial supernatant
Wild type 8067, Dlgt mutant and complemented Dlgt mutant

strains were grown for 18 h at 37uC in THB, pelleted,

resuspended to 1.06109 CFU/ml in D-PBS and diluted 1:20 in

Figure 6. Porcine PBMC activating capacity of wild type and Dlgt mutant bacteria. Porcine PBMCs were stimulated with wild type, Dlgt,
Dlgt::pGA14-cm, and Dlgt::pGA14-lgt mutant bacteria. PBMCs were stimulated with supernatants derived from penicillin treated bacteria (A, B), cells in
the presence of penicillin (C, D), supernatants of stationary phase grown bacteria in the absence of penicillin (E, F) and cells in the absence of
penicillin (G, H). At 2 h (light grey bar) and 4 h (dark grey bar) after stimulation, IL-1b (A, C, E, G) and IL-8 (B, D, F, H) mRNA levels were determined.
The diacylated lipopeptide FSL was used as a positive control. Data represent relative fold activation calculated by dividing the normalized activity of
the test samples by the normalized activity of medium-stimulated negative control samples. Values represent the mean 6 SD of three independent
experiments performed in duplicate. * P,0.05 compared to wild type level.
doi:10.1371/journal.pone.0022299.g006
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CDM. Penicillin treated supernatant was obtained by adding

penicillin G (final concentration of 30 mg/ml) to cultures when

OD600 values reached 0.4. After 2 h of incubation at 37uC, the

bacteria and medium were separated by centrifugation (4,5006g,

10 min) and the supernatants were 0.2 mm filter sterilized.

Stationary phase-derived supernatant was obtained by incubating

1:20 diluted CDM cultures for 24 h at 37uC followed by

centrifugation (4,5006g, 10 min) and filtration (0.2 mm). Super-

natants were directly used for PBMC stimulation or used for

further concentration. For this, 10% TCA w/v was added to the

supernatants followed by overnight incubation at 4uC. After

centrifugation at 30,0006 g for 30 min, the pellets were washed

with 100% acetone and air dried. Finally, protein pellets were

dissolved in LDS Sample Buffer.

Identification of proteins within crude immune
stimulatory fraction

Proteins (1 mg) present in a concentrated bacterial supernatant

of S. suis strain 8067 were separated on a 10% SDS-polyacryl-

amide gel (15 cm in length, 12 cm wide) under non-reducing

conditions (no boiling). One cm of the gel was stained with the

Silver staining kit Plus One from GE Healthcare (Uppsala,

Sweden) and the remaining gel was cut into 0.5 cm strips of 24

different molecular size ranges. Each strip was homogenized with

a mortar in a 1% w/v SDS solution to solubilize proteins. Gel

residue was removed by centrifugation (12,0006g, 10 min) and

five volumes of cold acetone were added to the supernatant. After

overnight incubation at 220uC, precipitate was collected by

centrifugation (12,0006g 4uC for 10 min). Pellets were dissolved in

200 ml of 10 mM Tris-HCl pH 8. Fractions (50 ml) were tested for

activity using porcine PBMCs and human TLR2/6 expressing

HeLa 57A cells. Fractions that showed .5 fold porcine PBMC

activation were once more separated on a 4–12% polyacrylamide

gel (Invitrogen), stained with SimpleBlue Safe Stain (Invitrogen),

excised from the gel, and identified with mass spectrometry.

Briefly, proteins were reduced with dithiothreitol, alkylated with

iodoacetamide, and digested with trypsin (Roche) as described

[36]. Samples were subjected to nanoflow LC (Eksigent) using C18

reverse phase trap columns (Phenomenex; column dimensions

2 cm6100 mm, packed in-house) and subsequently separated

on C18 analytical columns (Reprosil; column dimensions,

20 cm650 mm; packed in-house) using a linear gradient from 0

to 40% B (A = 0.1 M acetic acid; B = 95% (v/v) acetonitrile,

0.1 M acetic acid) in 60 min and at a constant flow rate of 150 nl/

min. Column eluate was directly coupled to a LTQ-Orbitrap-XL

mass spectrometer (Thermo Fisher Scientific) operating in positive

mode, using Lock spray internal calibration. Data were processed

and subjected to database searches using MASCOT software

(Matrixscience) against Swiss Prot and non-redundant NCBI

database with a 10 ppm mass tolerance of precursor and 0.8 Da

for the fragment ion.

PBMC isolation and stimulation
Blood of three to four week old piglets from a specific pathogen

free (SPF) herd was aseptically collected and mixed with heparin

(LEO Pharma, Breda, Netherlands) to a final concentration of 5

IE/ml. Subsequently, PBMCs were isolated with lymphoprep

tubes (Lucron Bioproducts, Gennep, Netherlands), according the

manufactures instructions. The PBMCs were resuspended to

5.06106 cells/ml in RPMI 1640 supplemented with 2% v/v of

homologous serum (from the same animal as the PBMCs) and

30 mg/ml of penicillin. Cells (1 ml) were seeded into 24 well tissue

plates. After overnight incubation, cells were stimulated with 50 ml

of SDS-PAGE derived fractions, 5.06106 S. suis bacteria (in

presence or absence penicillin), or 50 ml of S. suis derived bacterial

supernatant. After stimulation (2 and 4 h) cells were lysed and

frozen (280uC) and stored until RNA isolation and cytokine

detection. We used quantitative real time PCR analysis, because

the available porcine cytokine ELISAs are much less sensitive,

particularly for stimulation experiments that last only 2–4 h. FSL-

1 (100 ng/ml) and medium-stimulated cells served as positive and

negative controls, respectively.

RNA isolation, cDNA synthesis, and quantitative real time
PCR

Total RNA was isolated with the High Pure RNA Isolation Kit

(Roche Diagnostics, Mannheim, Germany), according the man-

ufactures instructions. RNA quantity and quality was checked with

the NANOdrop (Thermo Fisher Scientific, Pitsburgh, USA). To

make cDNA, 200 ng RNA was reverse transcribed using OligoDt

and Superscript III (Promega), according the manufactures

instructions. For quantitative real time PCR analysis of IL-1b
and IL-8 cytokines, 5 ml of 20 times diluted cDNA was added to

16power cyber green mixture (Applied Biosystems, Nieuwe Kerk

aan de IJssel, The Netherlands) containing 0.625 mM of forward

and reverse primer (Table S2) in a total of 20 ml. Serial dilutions of

pGemTeasy plasmids containing the PCR fragment of interest

were used as internal standards. The PCR was performed on a

7500 Fast Real-Time PCR system (Applied Biosystems). The PCR

program consisted of a denaturation step at 95uC for 10 min

followed by 40 cycles of denaturation at 95uC for 15 sec,

annealing at 59uC for 30 sec, and elongation at 72uC for 36 sec.

Ct values for the tested cytokines in each sample were expressed as

cDNA quantity (ng) using the internal standards. Subsequently,

the IL-1b and IL-8 ng levels were normalized with the ng levels of

the house keeping gene gapdh. To calculate fold inductions,

normalized IL-1b and IL-8 levels of stimulated cells were divided

by normalized IL-1b and IL-8 levels of medium-stimulated control

cells.

Stimulation of human TLR2/6 transfected HeLa cells
The HeLa 57A cell line, stably transfected with a NF-kB

luciferase reporter construct [37], was generously provided by Dr.

R.T. Hay (Institute of Biomolecular Sciences, University of St.

Andrews, St. Andrews, Scotland, UK). Cells were propagated in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal bovine serum (FBS) and incubated at 37uC and 10%

CO2. For transfection experiments, cells were seeded in 48 well

tissue culture plates. When 50% confluence was reached, cells

were transfected with 250 ng DNA/well using FuGENE 6 (Roche

Diagnostics, Almere, The Netherlands) at a lipid to DNA ratio of 3

to 1. For TLR2/6 transfection, expression plasmids carrying the

human TLR2, human TLR6 and human CD14 gene [22] were

used, kindly provided by Dr. A.M. Keestra (Utrecht University,

The Netherlands). Cells transfected with empty vector were used

as negative controls and the pTK-LacZ vector was used for

normalization of the transfection efficiency. After 48 h of

incubation at 37uC, medium was replaced with fresh medium

containing 30 mg/ml penicillin (Sigma-Aldrich). Subsequently,

cells were stimulated for 5 h with 2.06107/ml bacteria or with

50 ml of SDS-PAGE derived cell wall fractions. The di-acylated

lipopeptide FSL-1 (InvivoGen, Toulouse, France) (100 ng/ml)

served as a TLR2/6 specific control. After stimulation, cells

were washed twice with D-PBS and lysed in 0.1 ml of passive

Reporter Lysis Buffer (Promega), according the manufactures

description. Subsequently, luciferase activity was determined with

a Victor 1420 multilabel counter (PerkinElmer, Groningen, The

Netherlands) by incubating 20 ml of lysed cells with 50 ml of
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luciferase assay substrate (Promega). Luciferase activity was

normalized for transfection efficiency by determination of ß-

galactosidase activity with the ß-galactosidase assay (Promega).

Relative fold activation was calculated as the normalized reporter

activity of the test samples divided by the normalized activity of

medium-stimulated control cells.

Statistical analysis
Statistical analysis was performed in GraphPad Prism. Normal

distribution of data was evaluated using Kolmogorov-Smirnov

test. Subsequently, normal distributed data were analyzed using an

unpaired Students’s t test and non-normal distributed data were

analyzed using the Mann-Whitney test. P-values ,0.05 were taken

as significant.

Supporting Information

Figure S1 IL-6, TNF-a and IL-10 cytokine responses of
porcine PBMCs stimulated with wild type S. suis. Porcine

PBMCs were stimulated with whole S. suis strain 8067 bacteria

(cells) in the presence of penicillin or with supernatant (sup.)

derived from penicillin treated bacteria. At 2 (light grey bar) and

4 h (dark grey bar) post stimulation IL-6 (A), TNF-a (B) and IL-10

(C) mRNA expression levels were determined by quantitative real

time PCR. The diacylated lipopeptide FSL was used as a positive

control. Data represent fold inductions calculated by dividing the

normalized cytokine levels of stimulated cells by the normalized

cytokine levels of medium-stimulated negative control cells. Values

represent the mean 6 SD of two experiments performed in

duplicate.

(TIF)

Table S1 Putative lipoproteins of S. suis strain P1/7.

(DOC)

Table S2 Primer sequences.

(DOC)
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