
Real-Time PyMOL Visualization for Rosetta and
PyRosetta
Evan H. Baugh1, Sergey Lyskov1, Brian D. Weitzner1, Jeffrey J. Gray1,2*

1 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Program in Molecular

Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America

Abstract

Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to
those not directly involved in the field. A key missing component has been the ability to visualize the progress of
calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time
visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools,
PyMOL (Schrödinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL
directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel
solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as
separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When
Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL
instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows
remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive
environment for protein structure prediction and design.

Citation: Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-Time PyMOL Visualization for Rosetta and PyRosetta. PLoS ONE 6(8): e21931. doi:10.1371/
journal.pone.0021931

Editor: Vladimir N. Uversky, University of South Florida, United States of America

Received April 12, 2011; Accepted June 9, 2011; Published August 16, 2011

Copyright: � 2011 Baugh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by National Institutes of Health grant R01-GM073151 and a National Science Foundation CAREER grant to JJG (CBET 0846324).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pyrosetta@graylab.jhu.edu

Introduction

The Rosetta software suite, an object-oriented protein structure

prediction tool [1], can effectively perform protein structure

prediction and design [2] [3]. Common tasks such as design,

docking, and folding produce text files containing the Cartesian

coordinates of each atom of the protein. Molecular visualization

tools are used later to interpret the output [4]. Thus, visualization

is typically separated from Rosetta. Output structures could be

viewed after a simulation, but not during a calculation or protocol.

Real-time structural visualization would facilitate development of

new methods and make Rosetta more accessible to new users.

Rosetta protocols are useful to a broad range of scientists, but

many protocols are complex. Scientists who are not trained in

computation can become frustrated with Rosetta’s steep learning

curve. Two new interfaces to Rosetta were built to bridge this gap.

PyRosetta [5] is a Python-based interface to Rosetta objects and

protocols enabling users to easily develop custom algorithms and

to explore Rosetta through the Python interpreter. RosettaScripts

[6] provides an XML-scriptable interface to Rosetta allowing users

to design custom algorithms. PyRosetta and RosettaScripts have

successfully lowered the barrier to learn Rosetta by providing an

interactive and scriptable layer. To further improve access to

Rosetta, the next step is to provide an intuitive way of observing

protocols with elegant informative graphics.

Several visualization tools have been previously employed

which were ideal for some users, but lacked universal appeal.

FoldIt [7] is a Rosetta-based interactive video game with rich

graphics intended for end users to explore protein structures and

energetics. It does not allow the loading of arbitrary proteins, lacks

access to many Rosetta features, and removes the user from the

underlying code, so it is not appropriate as a development

environment. Rosetta graphics mode is an undocumented optional

feature of Rosetta protocols used by the internal Rosetta

community for error checking. Running a protocol in graphics

mode produces an image of the manipulated structure, enabling

the viewer to see changes, but not to interact with them. Using

graphics mode requires knowledge of the Rosetta build system,

limiting it to advanced users and developers. PyMOL [8] has a

very large user base, is not restricted to the visualization of Rosetta

output, and is maintained by Schrödinger, but viewing Rosetta

structures in PyMOL requires outputting the atomic coordinates

to a PDB file and then loading it into PyMOL. A new software

plug-in called ePMV [9] unifies and visualizes molecular and

cellular simulations including Rosetta.

In this paper, we describe a new solution that allows real-time

visualization of Rosetta via PyMOL using UDP network sockets.

The versatile communication presents structural and energetic

information on demand making Rosetta more accessible to all

users.

Materials and Methods

Since both PyRosetta and PyMOL are Python-based, a possible

visualization solution is to run PyRosetta from within the PyMOL

interpreter window. However, Python is notorious for compati-

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e21931

bility issues between different versions, and thus technical obstacles

prevent a robust implementation of this idea. We developed a

completely different approach: use a network protocol to transfer

data from PyRosetta to PyMOL (Figure 1). Both TCP/IP and

UDP/IP implementations were viable. The latter was chosen

because it does not require implicit ‘‘hand-shaking’’ and tolerates

lost transmissions, making it more robust. Both programs can

transmit, open or close, and even crash without dependence on the

other. Accordingly, since the UDP protocol does not guarantee

reliability, data must be validated for proper delivery. Restrictions

on packet size also forces large packets to be split and sent

separately.

A Python script running in PyMOL provides a server that

listens for incoming UDP/IP traffic. Each packet (Table 1) is

recognized by this server, and specific actions, such as coloring or

model construction, occur when the server receives a complete

packet. Accumulated packets could be fragments of a large data

transfer, and the desired action happens only once all pieces are

assembled. Data from different PyRosetta instances and errors in

network communication can confuse interpretation, so any

incomplete information received is held in memory briefly and

later, if necessary, released in the rare case that a message is

aborted.

Rosetta’s preexisting Mover architecture is suited to manage the

communication because a Mover can accept a pose (Rosetta’s

container for a molecular object) and perform operations on the

pose data. Using the Mover architecture is intuitive for Rosetta

users and allows the PyMOL_Mover to interact with other

Rosetta objects. The PyMOL_Mover is a simple network client

which sends protein structure and energy information when its

apply() method is invoked. Rosetta builds each data packet in a

specific order (Table 1) for recognition by the PyMOL listener. We

considered sending Python commands directly to PyMOL,

however, restricting communication to specific packets reduces

security risks since PyMOL only understands and performs a small

set of commands.

Software Availability
The PyMOL script to interpret Rosetta results is included with

Rosetta (/mini/src/python/bindings) and PyRosetta (root direc-

tory). Rosetta is available for download at http://www.

rosettacommons.org/. PyRosetta is available for download at

http://www.pyrosetta.org. The PyMOL_Mover is contained in

Rosetta beginning with release 3.2 (revision 37389). Both

programs have free licenses for academic and nonprofit institu-

tions. PyMOL mus be obtained from Schrödinger (the PyMOL_

Mover has been successfully tested with PyMOL versions 1.0, 1.2,

and 1.3).

Protocol Capture
Proper usage requires (1) a sender, Rosetta or PyRosetta, with

the PyMOL_Mover; and (2) a listener, PyMOL, with the listener

script. We first demonstrate how to setup the PyMOL server

features. Then we present examples of PyMOL_Mover usage with

PyRosetta. Finally, we explain how to incorporate the PyMOL_

Mover into Rosetta protocols.

PyMOL Protocol. After loading PyMOL, use the command

line (e.g. Tk Window Upper Command Line) to run the script

PyMOLPyRosettaServer.py to start the listener:

run /path/to/PyRosetta/PyMOLPyRosettaServer.py

run /path/to/Rosetta/mini/src/python/bindings/Py-

MOLPyRosettaServer.py

If desired, Rosetta and PyMOL can run on different computers.

In this case, PyMOL must link to a new IP address using the

start_rosetta_server command with the desired IP address and

port number as arguments. A single instance of PyMOL can listen

to multiple IP addresses or ports by invoking start_rosetta_server

multiple times with different arguments.

start_rosetta_server 125.1.3.37, 9001

PyRosetta Protocol. In Rosetta and PyRosetta, a

macromolecule (and information on a single conformation) is

stored in a pose object. To explore the PyMOL_Mover, a user will

start PyRosetta and create a pose object from a PDB file.

from rosetta import*

init()

pose = Pose() pose = pose_from_pdb(pose,‘‘test_dock.pdb’’)

When the PyMOL_Mover is applied to a pose, the pose

coordinate data is sent to PyMOL rendering an image of the

structure.

pymover = PyMOL_Mover()

pymover.apply(pose)

The PyMOL_Mover can be applied repeatedly throughout a

custom protocol to update coordinates in the PyMOL window. In

this way, a user can view any intermediate step throughout a

structure prediction or design protocol.

To color the loaded structure based on the relative residue

energies, a PyMOL_Mover.send_energy method is provided. The

pose must have been scored before applying the PyMOL_Mover.

Using the PDB file test_in.pdb (provided in File S1) with these

Figure 1. Rosetta-PyMOL network communication. Rosetta
transmits data through the PyMOL_Mover’s UDP/IP socket client to
an IP address. Dotted arrows represent network communication and
diamonds represent composition (e.g. the PyMOL Observer contains a
PyMOL Mover and an [owning pointer to a] Pose). The PyMOL Observer
monitors changes in a Pose and uses the PyMOL Mover to transmit this
information to PyMOL. The UDP/IP socket server running in PyMOL
listens for network traffic and translates appropriate packets. Once the
data is translated, PyMOL displays biomolecular structures.
doi:10.1371/journal.pone.0021931.g001

Real-Time PyMOL Visualization for Rosetta

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e21931

commands demonstrates Rosetta’s ability to recognize high-energy

protein regions (Figure 2).

scorefxn = create_score_function(‘‘standard’’)

scorefxn(pose)

pymover.apply(pose)

pymover.send_energy(pose)

The default color spectrum spans from blue (low score/

favorable energy) to red (high score/unfavorable energy). Rosetta

scores are determined using a weighted sum of various score terms.

The send_energy method can accept the name of any score term

and color residues based on this term as long as it is used in the

current score function (i.e. a non-zero weight). This example colors

the residues based on the value of their (all-atom) Van der Waals

attractive energy:

pymover.send_energy(pose,‘‘fa_atr’’)

The PyMOL_Mover can also automatically color residues by

energy every time the coordinates are transmitted by setting the

update_energy option to true.

pymover.update_energy = True

pymover.apply(pose)

The PyMOL_Mover can transmit a specific score term with the

coordinates during an apply() command if the energy_type option

is set and update_energy is true. This example colors the residues

based on the value of their (all-atom) solvation energy every time

the PyMOL_Mover is applied:

pymover.update_energy = True

pymover.energy_type = ‘‘fa_sol’’

pymover.apply(pose)

To send PyMOL_Mover output to a PyMOL instance on a

different computer, the PyMOL_Mover.link options can be

modified:

pymover.link.udp_ip = ‘‘125.1.3.37’’

pymover.link.udp_port = 9001

If the PyMOL_Mover’s keep_history option is set true, PyMOL

will load structures with the same name (pose.pdb_info().name())

into successive states.

pymover.keep_history = True

pymover.apply(pose)

other_mover.apply(pose)

pymover.apply(pose)

In PyMOL, the object states can be viewed as a movie which

reveals the Rosetta protocol actions. The output can easily be

converted into a movie using PyMOL’s frame and movie building

features.

In the previous examples, PyMOL updates have been manually

transmitted using PyMOL_Mover.apply(). The PyMOL_Observer

object automatically monitors a pose conformation and applies its

own PyMOL_Mover every time the pose coordinates are changed.

Table 1. Packet structure.

Size Description

(bytes)

16 UUID of the sender

4 Unique packet id for this sender/packet

4 Sub-packet id

4 Total number of sub-packets

8 Type of packet (8 byte string) e.g.: ‘‘PDB.bz2’’, ‘‘Ener.bz2’’, ‘‘PDB.gzip’’, or ‘‘Ene.gzip’’

1 Flag indicating whether PyMOL should load the PDB into the current state or the next state

1+N Length of model name in bytes + name (N)

1+N Length of energy name in bytes + name (N)

X Compressed packet data, a PDB file string or energy float array compressed with bz2 or gzip

doi:10.1371/journal.pone.0021931.t001

Figure 2. Example PyMOL structure. An example of the crystal
structure in decoy test_in.pdb, available with Rosetta, as output by the
PyMOL_Mover. The residues are colored based on their energy
evaluation with the standard Rosetta score function ranging from red
(high energy) to blue (low energy). One loop region scores noticeably
higher than other residues in the protein.
doi:10.1371/journal.pone.0021931.g002

Real-Time PyMOL Visualization for Rosetta

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e21931

Since a PyMOL_Observer has a PyMOL_Mover, all of the

PyMOL_Mover options are available.

pyobs = PyMOL_Observer()

pyobs.add_observer(pose)

pyobs.pymol.update_energy = True

A sample Python script demonstrating how to use the

PyMOL_Mover for making movies is PyRosettaDock_Movie.py

in File S1. File S1 also includes a more in-depth tutorial script,

PyMOL_demo.py, and a copy of the listener, PyMOLPyRosetta-

Server.py.
Rosetta Protocols. All PyRosetta features can also be

accessed in the Rosetta C++ code by using appropriate C++
syntax and changes including the namespace.

#include ,protocols/moves/PyMOL_Mover.hh.

core::protocols::moves::AddPyMOLObserver(pose)

Results and Discussion

Rosetta output to PyMOL is now available on-demand and

continuously. Two separate objects have been implemented with

Rosetta’s object-oriented framework. The PyMOL_Mover object

sends data to PyMOL and allows the user to observe visual output

on-demand. This implementation is ideal for interactive environ-

ments and allows instant feedback from custom processes. New

users can now experiment with Rosetta structures and protocols

while immediately viewing their changes.

A second object, the PyMOL_Observer, can be attached to a

Rosetta biomolecule (pose) to monitor all structural changes.

When a coordinate is updated, the observer uses an embedded

PyMOL_Mover to transmit the new structure to PyMOL. This

implementation is ideal for elaborate scripts where manual

management of output is prohibitive. Furthermore, the observer

can be added to previously developed protocols, providing visual

output with minimal modification. One limitation is that

continuous PyMOL packet construction can slow Rosetta

calculations. To mitigate this delay, a user can optionally output

coordinates at particular time or coordinate-update intervals (see

documentation).

In addition to being a useful tool to display protein structures,

PyMOL is well suited for the production of informative movies.

Rosetta simulations are often presented visually to demonstrate or

explain the principles underlying Rosetta algorithms. Previously,

making movies of Rosetta protocols required significant work.

When sending data to PyMOL, the user may simply retain output

history to produce PyMOL movies. The history feature also allows

the user to inspect protocols that are otherwise inaccessible.

The PyMOL_Mover can also color residues allowing easy

recognition of energetic features and design anomalies. Although

only Rosetta score values are currently supported, any relevant

data calculated in Rosetta may be sent to PyMOL using this

interface. Additional features can be added easily for the

visualization of other Rosetta data as long as these data packets

carry specific tags for PyMOL to translate.

The UDP/IP client utilization has several advantages. PyMOL

can be customized to receive information from multiple instances

of Rosetta. Communication is not limited by the operating

environments of either the sender or the receiver. Data can be

successfully interpreted between different operating systems (e.g.

Linux to Windows), Python versions, and even buildings. A single

Rosetta process can transmit data to multiple IP addresses or ports

using multiple PyMOL_Movers, allowing visualization on multiple

computers. This versatility reduces communication errors and

allows users to share information easily. Running each program

separately prevents either from losing focus; Rosetta performs

simulations and calculations while PyMOL performs visualization.

The ability to view processes in real-time can easily produce

relevant examples for presentations and demonstrations. The

UDP solution is inherently unrestricted and is potentially

applicable to numerous other applications. Additional protein

modeling software such as the SWISS-MODEL server [10],

CHARMM [11], and NAMD [12] could also output to PyMOL

with socket export. Similarly, other graphical software such VMD

[13], RasMol [14], Deep View [15], Kinemage [16] could

interpret and display data packets sent from Rosetta by listening

to output from a socket. If such practices become widespread,

communication using program independent packet structures

could lead to a standardized macromolecular visualization markup

language.

Supporting Information

File S1 A summary of the supplemental files contained
in the compressed directory File S1, including the
PyMOL listener, sample scripts with their data files,
and a representative movie of the script output. READ-

ME: a brief tutorial to the PyMOL_Mover and these scripts.

PyRosettaDock.mp4: a PyMOL movie of Rosetta’s Docking

Protocol. input_files/: PDB files used in the demo script-

s. test_dock.pdb a modified 1ACB [17] PDB file used in

PyRosettaDock_Movie.py. test_in.pdb the decoy file PDB

used in PyMOL_demo.py. scripts/: sample PyRosetta syntax

for using the PyMOL_Mover. PyMOLPyRosettaServer.py lis-

tener script for PyMOL. PyRosettaDock_Movie.py sample

protocol to create a docking movie. PyMOL_demo.py numer-

ous PyRosetta sample commands with the PyMOL_Mover.

(TAR.BZ2)

Acknowledgments

We acknowledge the enabling efforts of the developers within Rosetta-

Commons who have contributed the scientific research and software

development to Rosetta and PyRosetta.

Author Contributions

Wrote the paper: EHB SL BW JJG.

References

1. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. (2011)

ROSETTA3: An objectoriented software suite for the simulation and design of
macromolecules. Methods in Enzymology 487: 548–574.

2. Das R, Baker D (2008) Macromolecular modeling with Rosetta. Biochemistry
77: 363–382.

3. Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J (2010)

Practically useful: What the Rosetta protein modeling suite can do for you.

Biochemistry 49: 2987–2998.

4. O’Donoghue SI, Goodsell DS, Frangakis AS, Jossinet F, Laskowski RA, et al.

(2010) Visualization of macromolecular structures. Nature Methods 7: S42–S55.

5. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:
689–691.

6. Fleishman SJ, Leaver-Fay A, Corn JE, Khare SD, Koga N, et al. (2011)

RosettaScripts: an XMLlike interface to the Rosetta macromolecular modeling

suite. Plos ONE.

Real-Time PyMOL Visualization for Rosetta

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e21931

7. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, et al. (2010) Predicting protein

structures with a multiplayer online game. Nature 466: 756–760.

8. DeLano WL (2002) PyMOL molecular graphics system. Available at: http://

www.pymol.org.

9. Johnson GT, Autin L, Goodsell DS, Sanner MF, Olson AJ (2011) ePMV

Embeds Molecular Modeling into Professional Animation Software Environ-

ments. Structure 19.

10. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: An

automated protein homologymodeling server. Nucleic Acids Research 31:

3381–3385.

11. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, et al. (1983)

CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations. Computational Chemistry 4: 187–217.

12. Wang Y, Harrison CB, Schulten K, McCammon JA (2011) Implementation of

accelerated molecular dynamics in NAMD. Computational Science and
Discovery 4: 1–10.

13. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics.

Molecular Graphics 14: 33–38.
14. Sayle RA, Milner-White EJ (1995) RasMol: Biomolecular graphics for all.

Trends in Biochemical Sciences 20: 374–376.
15. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PDB Viewer: An

environment for comparative protein modeling. Electrophoresis 18: 2714–2723.

16. Richardson DC, Richardson JS (1992) The Kinemage: A tool for scientific
communication. Protein Science 1: 3–9.

17. Frigerioa F, Codab A, Puglieseb L, Lionettib C, Menegattic E, et al. (1992)
Crystal and molecular structure of the bovine a-chymotrypsin-eglin c complex at

2.0 Å resolution. Journal of Molecular Biology 255: 107–123.

Real-Time PyMOL Visualization for Rosetta

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e21931

