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Abstract

Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a
heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2a) and the regulatory (CK2b). The CK2b
subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions
independently of the CK2 tetramer. CK2b regulatory subunits in plants differ from their animal or yeast counterparts, since
they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any
previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2b subunit
sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites.
By using maize CK2b1 and a deleted version (DNCK2b1) lacking the N-terminal domain, we have demonstrated that CK2b1
is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2a1/DNCK2b1 is able to
phosphorylate different substrates more efficiently than CK2a1/CK2b1 or CK2a alone. Transient overexpression of CK2b1
and DNCK2b1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation
in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence
complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to
the individual CK2a/b subunits mainly observed in the nucleus. All together, our results support the hypothesis that the
plant-specific N-terminal domain of CK2b subunits is involved in the down-regulation of the CK2 holoenzyme activity and in
the stabilization of CK2b1 protein. In summary, the whole amount of data shown in this work suggests that this domain was
acquired by plants for regulatory purposes.
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Introduction

Protein kinase CK2 is a constitutively active, highly conserved

serine/threonine protein kinase that is ubiquitously distributed in

eukaryotes. CK2 is one of the most pleiotropic kinases known, able

to phosphorylate and interact with multiple cellular proteins [1,2].

In mammals the typical CK2 holoenzyme is a heterotetrameric

complex composed of two catalytic (CK2a and CK2a9) and two

regulatory (CK2b) subunits. The CK2b regulatory subunits are

inactive and present no homology to regulatory subunits or

domains of other protein kinases. In the classical model of CK2

tetrameric holoenzyme, CK2b regulatory subunits are involved in

the assembly of CK2 tetrameric complexes, in enhancing catalytic

activity and stability of CK2a and in modulation of the substrate

specificity of CK2 [3]. However, CK2b subunits also have

additional functions in addition to regulation of the holoenzyme,

since they can interact with and regulate other proteins in the

absence of CK2a subunits [4,5]. Structural analysis by X-ray

crystallographic assays shows that CK2 tetramers are subject to

disassembly and re-assembly [6]. In addition, localization studies

of individual CK2 subunits indicate that both types of subunits

have been found in different compartments [7,8]. These findings

indicate that individual CK2 subunits may have an independent

role. All these evidences support the idea of the independent role

of the individual CK2 subunits versus the classical holoenzyme.

In plants CK2 is involved in relevant processes such as plant

growth and light-regulated gene expression [9], circadian rhythm

[10,11], cell-cycle regulation and development [12,13], salicylic

acid mediated defense [14] and abiotic stress responses [15].

CK2a/b subunits family is expanded in plant genomes relative to

animal genomes, since they belong to multigenic families

composed by up to 4 genes. As reported in animals, differential

subcellular localization of plant CK2 subunits suggests specific

functions for each CK2 subunit or CK2 isoform [15,16]. This

hypothesis is also supported by new findings showing that specific

CK2 holoenzyme isoforms can regulate the initiation of translation

in Arabidopsis [17]. In maize, three genes for each CK2a/b have

been described to date [18–20]. A fourth CK2b gene (CK2b4) has
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been found in the Maize Genomic Database (MaizeGD) and is

included in this paper. Since it was crystallized [21], maize CK2a1

subunit has been widely studied as a model of CK2 structure and it

has been used successfully to design inhibitors of the holoenzyme

[22]. This is due to the biochemical characteristics of maize

CK2a, which is highly stable and has more specific activity than

the human holoenzyme. Comparative studies demonstrate that the

maize holoenzyme is less stable than the human counterpart [23].

However, despite copious data on CK2a, little is known about

CK2b regulatory subunits and CK2 holoenzyme in maize. Plants

have a greater diversity of CK2b subunits than animals or yeasts

[24]. Although plant CK2bs preserve in their central core the

characteristic CK2b features, they lacked 20 aminoacids from the

C-terminal domain and contain a specific N-terminal extension of

about 90 aminoacids. This N-terminal region shares no homology

with any previously characterized functional domain. The absence

of functional data about this domain prompted us to investigate its

putative role in: (i) CK2b functions and (ii) CK2 holoenzyme

regulation. Using maize CK2b1 and a deleted version lacking N-

terminal domain (DNCK2b1) we demonstrate that this plant-

specific N-terminal extension affects both CK2b and CK2

holoenzyme properties. In addition, we postulate a new role for

CK2b subunits in plants, since CK2b1 releases CK2a1 subunits

from the nucleolus and the CK2 holoenzyme can be found all over

the cell. These findings show that in vivo localization of the plant

CK2 holoenzyme is different from that of the independent CK2a/

b subunits alone. Even though the N-terminal domain of CK2b is

not involved in this export mechanism, the data reported here

indicates a role of this domain in regulation of both CK2b subunits

and CK2 holoenzyme in plants.

Results

Sequence and evolutionary analysis of the N-terminal
domain of plant CK2b subunits

All plant CK2b subunits display an extra domain located N-

terminal to the highly conserved CK2b central region. These N-

terminal CK2b domains are poorly conserved both in length and

in primary sequence. At the amino acid composition level, they are

significantly enriched in phosphorylable residues such as Ser

(averaging ca. 10%), Thr and Tyr. Using the N-terminal domain

of maize CK2b1 as a query, BLAST searches were performed in

different protein databases, including the whole proteome of

selected plant species (Table S1). As a result, 34 sequences

corresponding to CK2b from 13 species representative of the main

land plant evolutionary lineages were identified (Table S2).

Additional searches of the protein databases were performed

through HMMer using as a query a hidden Markov models

(HMM) profile constructed on the basis of the alignment of 33 N-

terminal domains. Despite HMM profiles perform better in

detecting remote homologies [25], only land-plant species CK2b
sequences were detected. The architecture of conserved motifs

throughout the N-terminal domains was examined and represent-

ed over the corresponding alignment (Figure 1). Despite the high

degree of divergence within the N-terminal domain, 15 short

conserved motifs were found, some of them matching the

consensus phosphorylation sites for specific protein kinases (Table

S4), including putative CK2 autophosphorylation sites (motifs 1

and 5). Some motifs were highly conserved across almost every

sequence examined (e.g. motif 1, particularly rich in acidic amino

acids and including at least six Ser and/or Thr residues consensus

of CK2 phosphorylation) while many others were apparently

specific to certain evolutionary lineages (e.g. motif 5).

Genomic structure provides an independent criterion to assess

the evolutionary relatedness among genes and functional domains.

Exon/intron organization of plant CK2b for which the genomic

sequences were available was determined. In all land-plant CK2b
genes, location of the first intron was conserved at the same

relative position of the N-terminal domain, just before motif 1.

The first intron always showed phase 0 at the junction with exon 1

and phase 1 at the junction with exon 2 (Figure 1), supporting the

acquisition of the N-terminal domain by land plants as encoded by

a single exon.

To gain further insights into the evolutionary history of the land

plant CK2b N-terminal domain, we performed a phylogenetic

analysis of CK2b proteins from different eukaryotic kingdoms. For

this purpose, we constructed a sequence dataset of 69 CK2b
protein sequences, including sequences from animals and from

several non-land plant species (algae, fungi, and protists) also

displaying N-terminal extensions (Tables S2 and S3). Phylogenetic

Figure 1. Multiple Sequence Alignment of N-terminal domains of land plant CK2b regulatory subunits. Conserved not-overlapping
motifs identified in the MEME analysis are background-coloured. Positions in bold correspond to Serine and Threonine (S, T) residues predicted as
CK2 phosphorylation sites. Location of the first intron is underlined.
doi:10.1371/journal.pone.0021909.g001
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analyses were conducted using two independent methods:

Neighbor Joining (NJ) and Maximum Likelihood (ML) [26–29].

A clade clustering all land-plant CK2b subunits could be

unambiguously retrieved in both NJ and ML trees (Figure S1

and S2) and is clearly separated from other clades grouping CK2b
from other organisms and also containing N-terminal extensions.

The N-terminal domain of maize CK2b1 affects the CK2
holoenzyme activity

To ascertain whether the plant specific N-terminal domain of

maize CK2b1 affects CK2 holoenzyme regulation, we first

analyzed if the domain is needed for CK2 holoenzyme assembly,

CK2b/CK2b dimerization or interaction with CK2 substrates.

We prepared constructs harbouring different deletions of the

CK2b1 protein (Figure 2A) to perform two-hybrid assays. No

significant interaction was detected between empty AD/BD-clone

combinations (data not shown). Deletion del1 DNCK2b1 (80–276)

strongly interacts with other CK2a catalytic subunits (CK2a2) as

well as with full-length CK2b1. However, deletions del2 (180–

276), corresponding to CK2b without N-terminal domain and

acidic region and del3 (1–80), which corresponds to the N-

terminal domain alone, do not interact neither with CK2a2 nor

with CK2b1 subunits (Figure 2A). Therefore, these results

demonstrate that CK2b N-terminal domain is not essential for

intra-holoenzyme interactions.

We have previously demonstrated that recombinant maize

CK2a and CK2b subunits can assemble in a functional tetrameric

complex, and autophosphorylation of CK2b subunits demon-

strates the functionality of the holoenzyme [20]. As previously

observed in animals, dimerization of CK2b subunits seems to be a

pre-requisite for holoenzyme formation [30]. Here we have

reconstituted the active holoenzyme using the CK2a1 catalytic

subunit and the deleted version of CK2b1 subunit (del1

DNCK2b1 (80–276)) and we found that in absence of the N-

terminal domain of CK2b1, the CK2a1/DNCK2b1 holoenzyme

is also functional and autophosphorylable (Figure 2B). Compar-

ative CK2 autophosphorylation assays using holoenzymes

CK2a1/CK2b1 and CK2a1/DNCK2b1 have been done and

quantification of the autophosphorylation of both holoenzymes

shows that CK2a1/CK2b1 was about 25% more phosphorylated

than CK2a1/DNCK2b1 (Figure 2B, right). It is noteworthy that

when GST-CK2b1 is overexpressed in E coli, a lower band (L) of

about 30 kDa appears in addition to a higher band (H)

corresponding to the fusion protein (56 kDa). Both bands are

highly phosphorylated by CK2a in vitro. Purification and

subsequent protein sequencing of this lower band demonstrate

that it corresponds to intermediate products containing the N-

terminal region of CK2b1. Moreover, the region corresponding to

the CK2b1 N-terminal alone (1–80) fused to GST (fusion protein

of 31 kDa) and overexpressed in E coli was also highly

phosphorylated by CK2a1 in vitro (Figure 2B). Taken together,

all these results suggest that autophosphorylation of CK2b1 occurs

in high proportion at the residues located in the N-terminal

domain.

To test whether CK2 activity was affected by the N-terminal

domain of CK2b subunits, we compared the ability of both CK2

holoenzymes (CK2a1/CK2b1 and CK2a1/DNCK2b1) to phos-

phorylate in vitro substrates as b-casein, in vivo substrates as Rab17

or interacting partners as maize transcription factor ZIM-like.

Interestingly, the holoenzyme composed by CK2a1/DNCK2b1 is

able to phosphorylate b-casein, Rab17 and ZIM-like in greater

amount than CK2a1 alone or CK2a1/CK2b1 (Figure 2C). These

results points towards a possible role of the N-terminal domain of

CK2b subunits as a negative regulator of CK2 activity. To

confirm this hypothesis, we added increasing amounts of CK2b1

N-terminal domain (1–80) to the in vitro phosphorylation assays

with the holoenzyme composed by CK2a1/DNCK2b1. The

addition of exogenous CK2b1 N-terminal domain to the CK2a1/

DNCK2b1 holoenzyme decreases its phosphorylation efficiency

towards the substrates tested, ZIM-like (Figure 2D), b-casein and

Rab17 (Figure S3). In conclusion, these results suggest that the N-

terminal domain of CK2b subunits competes with the substrate for

phosphorylation and down-regulate CK2a activity.

The N-terminal domain of CK2b1 enhances stability of
CK2b1 against proteasome degradation

To determine whether the N-terminal domain of CK2b
subunits is involved in regulation of their subcellular localization,

the deleted version of CK2b1 (del1 DNCK2b1 (80–276)) was fused

to GFP and examined by confocal microscopy in different plant

systems: immature maize embryos (10 DAP) transformed by

particle bombardment, agroinfiltrated tobacco leaves and onion

epidermal cells (Figure 3 and Figure S4).

In all plant systems examined the results obtained show that

both CK2b1 and DNCK2b1 are mainly located in the nucleus,

but whereas in the transformation with CK2b1 most of cells

presented nuclear speckles, in cells transformed with DNCK2b1

we found two different patterns: cells presenting a diffuse nuclear

pattern as well as cells showing nuclear speckles. Any nuclear

speckle structures were observed in cells transformed with GFP

alone. Since the total number of transformed cells after maize

bombardment is much lower than in tobacco cells, we counted the

percentage of DNCK2b1 cells presenting speckles vs. a diffuse

pattern in agroinfiltrated tobacco leaves (Figure 3B). Only 29% of

cells transformed with DNCK2b1 presented speckles vs. 71% with

diffuse pattern, whereas for cells transformed with full-lenght

CK2b1 96% of the cells presented speckles. Therefore, the

absence of nuclear aggregates in the DNCK2b1 cells could be

linked to the deletion of the N-terminal domain.

To test if the better ability of CK2b1 vs. DNCK2b1 to form

nuclear aggregates affects the protein stability, we performed cell-

free degradation assays. Total protein extracts from tobacco leaves

transformed with CK2b1 and DNCK2b1 fused to GFP were

maintained for 10, 30, 60 min at 30uC without protein inhibitors,

and aliquots were analyzed by Western blot using anti-GFP

antibody (Figure 4A, left). Results obtained suggest that the

amount of both CK2b1 and DNCK2b1 decreased over time.

Subsequently, we added proteasome inhibitor MG132 to test

whether the degradation observed was due to the proteasome

pathway. In samples treated with MG132 the fusion protein

remained stable, indicating that MG132 protects CK2b1 and

DNCK2b1 against proteasome degradation. The relative amount

of remaining proteins was estimated from these data and plotted,

and the rates of protein degradation for DNCK2b1 was

considerably higher than the rates for CK2b1 (Figure 4A, right).

These results suggest that the protein lacking the N-terminal

domain is more susceptible to degradation by proteasome than the

full-length CK2b1. To examine the effect of the N-terminal

domain on CK2b1 degradation by the proteasome pathway, we

treated transformed tobacco leaves with cycloheximide (CHX) to

inhibit de novo protein synthesis and we observed samples by

confocal microscopy for up to 24 h (Figure 4B). After 4 h of

treatment with CHX, the immunofluorescent signal was visible in

both CK2b1 and DNCK2b1 samples. In parallel, we have taken

samples of treated cells at different times and analyzed them by

Western blot. In agreement with the results obtained by confocal

analysis, the in vivo stability at short times is similar for both

proteins (Figure S5). However, after 24 h, we detected the
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immunofluorescent signal only in cells transformed with CK2b1,

indicating the requirement of ongoing protein synthesis to

maintain steady-state levels of DNCK2b1 protein. When samples

were treated with MG132 and CHX+MG132, we are able to

detect cells transformed with DNCK2b1 after 24 h of treatment,

indicating that proteasome inhibition protects DNCK2b1 from

degradation.

Localization of CK2a1/CK2b1 holoenzyme is different
from its CK2 individual subunits

Different localization of plant CK2 subunits have been

previously demonstrated [16]. In maize all CK2a subunits

described to date (CK2a1 to CK2a3) present nuclear localization

with high accumulation in nucleolus; whereas CK2b1 and CK2b2

are mainly located in nuclear speckles and CK2b3 can be found in

both nucleus and cytoplasm [15]. However, nothing is known

about plant CK2 holoenzyme localization. To investigate that, we

conducted Bimolecular Fluorescence Complementation (BiFC)

assays in agroinfiltrated tobacco leaves [31,32]. In that system,

CK2a1 and CK2b1 split YFP tagged proteins must interact in vivo

to reconstitute YFP fluorescence. In CK2 heterotetramer the two

CK2b subunits associate as a stable dimer in the core of the

holoenzyme whereas the two CK2a are located in the external

part without interacting among themselves [29]. Using BiFC we

show that CK2b1 subunits dimerize and present the same nuclear

speckled localization described for CK2b1 fused to GFP

(Figure 5A). Interestingly, the CK2 holoenzyme CK2a1/CK2b1

is located not only in nucleus but also in cytoplasmic aggregates

(Figure 5B). Next, we performed BiFC reconstituting the

holoenzyme with CK2a1 and DNCK2b1. As expected,

DNCK2b1 interacted with split CK2a1, being also found in

nucleus and cytoplasm, as in the case of CK2a1/CK2b1

holoenzyme (Figure 5B). To confirm the presence of the CK2

holoenzyme in the cytoplasm, we perform an alternative approach

by co-transfecting tobacco leaves with CK2a1-GFP and CK2b1

fused to a non-fluorescence tag (Myc). This method allows to verify

that the fluorescence signal detected in the cytoplasm is due to the

presence of CK2a1-GFP in this compartment. Since CK2a1-

GFP/CK2b1-Myc holoenzyme is also located in nucleus and

cytoplasm, we confirmed that CK2b1-Myc is able to modify

CK2a1-GFP localization from nucleus/nucleolus to nucleus and

cytoplasm aggregates. In addition, we have used plants co-

transfected with CK2a1-GFP/CK2b1-Myc to perform subcellular

fractionation and Western blot analysis using anti-GFP antibody

(Figure 5C). In control plants overexpressing CK2a1-GFP alone,

CK2a1 subunit was mainly detected in nuclear soluble fraction (N)

whereas in plants co-transfected with CK2a1-GFP/CK2b1-Myc,

CK2a1 is increased in the insoluble fraction (I), which includes all

insoluble particles from nucleus and cytoplasm. These results

suggest that CK2b1-Myc is able to shift CK2a1-GFP from nuclear

fraction to insoluble aggregates in both nucleus and cytoplasm.

Discussion

Land plant CK2b subunits show distinctive features from their

eukaryotic counterparts, including the formation of expanded

families, shorter C-terminal domains and longer N-terminal

domains. Preliminary in-silico analysis of the plant specific N-

terminal domain indicates that it presents no homology with other

protein or domains either in sequence or in structure. In addition,

prediction programs were unable to determine a secondary

structure for this domain. In an attempt to understand the role

and functionality of this domain in plants, we performed a

complete sequence analysis. The domain is arranged through

short, conserved motifs, many of them putatively corresponding to

specific kinase phosphorylation sites, including CK2 autophos-

phorylation sites. The domain may have evolved through the gain

and loss of short conserved motifs, resulting in a mosaic pattern.

The occurrence of N-terminal extensions is not exclusive of land

plants, having been also found in fungi, intracellular protozoan

parasites and algae. However, we did not found any protein or

domain outside land plant CK2bs showing significant identity at

the sequence level with the N-terminal domain. Moreover,

phylogenetic analysis shows a separated clade clustering all land

plant CK2b subunits. As expected, green and red algae CK2b
sequences clustered at the base of the land plant clade. However,

branching of the single representative from the red algae

Cyanidioschyzon merolae, which diverged from other photosynthetic

eukaryotes 1.5 billion years ago, was less bootstrap supported [33].

Also protists and fungi are separated from land plants in both

phylogenetic trees, in accordance to previously reported data that

demonstrate the early diverging evolution of CK2b from plants

[34]. Furthermore, the exon/intron structure of genomic sequenc-

es encoding for the CK2b N-terminal domain was absolutely

conserved in all land plant CK2b genes analyzed. All together,

these results support the independent acquisition of the N-terminal

domain by land plants as a single exon. Further evolutionary

diversification of land plant CK2b would have involved differen-

tial gene family expansion, which may have promoted the

acquisition of additional functional specificities by multiplying

Figure 2. Intra-holoenzyme interactions using yeast two-hybrid system and in vitro CK2 phosphorylation assays using CK2
holoenzymes reconstituted with CK2a1 and regulatory subunits CK2b1 and DNCK2b1. (A) Left, Schematic representation of truncated
versions of maize CK2b1 regulatory subunit used in the assay. Deletion 1, del1 DNCK2b1 (80–276): CK2b1 without N-terminal region, deletion 2 (del2)
(180–276): CK2b1 without N-terminal region and acidic region and deletion 3 (del3) (1–80): N-terminal region alone. Right, Interactions between
truncated versions of CK2b1 subunit and CK2a2/CK2b1 subunits with the two-hybrid system. The indicated transformants were selected in Leu-Trp
plates and replated in selective plates lacking Leu-Trp-His-Ade. (B) Left panel, Gel stained with Coomassie Brillant Blue (CBB) containing the fusion
proteins GST-CK2b1, GST-DNCK2b1 and GST-N-terminal domain (1–80) used in the autophosphorylation and CK2 phosphorylation assays. Middle
panel, Autophosphorylation of reconstituted holoenzymes CK2a1/CK2b1, CK2a1/DNCK2b1 and in vitro phosphorylation of N-terminal domain (1–80)
protein by CK2a1. In the first lane H, high molecular weight protein corresponding to fusion protein GST-CK2b1 (56 kDa) and L, low molecular weight
protein, corresponding to intermediate products of about 30 kDa from fusion protein GST-CK2b1. Right panel, Coomassie Brillant Blue (CBB) and CK2
phosphorylation of GST protein alone (control). Right, Quantification of phosphorylated bands corresponding to CK2a1/CK2b1 and CK2a1/DNCK2b1
holoenzymes. 100% intensity corresponds to autophosphorylation of CK2b1. The data shown are calculated average values 6 SD of three
independent experiments. (C) Quantification of in vitro phosphorylation of b-casein, Rab17 protein and ZIM-like transcription factor by CK2a1/CK2b1
and CK2a1/DNCK2b1 reconstituted holoenzymes. 100% intensity corresponds to the phosphorylation of each protein by CK2a1 alone. The data
shown are calculated average values 6 SD of three independent experiments. (D), Left, In vitro phosphorylation of ZIM-like protein with CK2a1/
DNCK2b1 (lane 1). In lanes 2 to 4 increasing amounts of CK2b1 N-terminal domain (1–80) has been added: 0.2 mg (lane 2), 0.4 mg (lane 3) and 0.8 mg
(lane 4). Right, Relative phosphorylation of ZIM-like with the holoenzyme composed by CK2a1/DNCK2b1 with increasing amounts of CK2a1
N-terminal domain (1–80) (lanes 2–4) compared to phosphorylation of ZIM-like with CK2a1/DNCK2b1 holoenzyme (lane 1, assigned a value of 1). The
data plotted (mean 6SD) represent three independent experiments.
doi:10.1371/journal.pone.0021909.g002
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Figure 3. Subcellular localization of CK2b1-GFP and DNCK2b1-GFP in maize immature embryos (10 DAP) and Agrobacterium-
infiltrated tobacco leaves. (A) Epifluorescence and bright-field images (merged with epiflourescence) (606) of 10 DAP embryos cells transformed
by particle bombardment with the indicated constructs (CK2b1–GFP, DNCK2b1-GFP and GFP alone). (B) Upper, General views (406) of Nicotiana
benthamiana leaves infiltrated with a mixture of Agrobacterium suspensions harbouring the indicated constructs (CK2b1–GFP, DNCK2b1-GFP and
GFP alone) and the gene silencing suppressor HcPro. Bottom, Quantification of cells presenting speckled pattern in cells transformed with CK2b1 and
DNCK2b1. The graphic representation correspond to average for data corresponding to 3 independent experiments 6SD (n = 100).
doi:10.1371/journal.pone.0021909.g003
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Figure 4. Protein degradation of CK2b1 and DNCK2b1. (A) Immunodetection of CK2b1-GFP protein and DNCK2b1-GFP protein in transformed
N. benthamiana leaves using anti-GFP antibody. Protein extracts were incubated at 30uC in an in vitro degradation buffer (see Experimental
procedures) with or without proteasome inhibitor (MG132) for the indicated time (min). 30 mg of total protein was loaded onto gels. 60+I indicates
extracts treated with 100 mM MG132. Each signal strength was measured by Quantity One and plotted in the right panel as the relative amount of
remaining protein. Quantitative data (mean 6SD) represent three independent experiments. (B) General views (406) of Nicotiana benthamiana
leaves infiltrated with CK2b1-GFP and DNCK2b1-GFP with different treatments: control, cycloheximide treatment (CHX, 50 mM), and CHX (50 mM)+
proteasome inhibitor MG132 (100 mM) combination treatment after 4 and 24 hours. The images shown are representative of more than 5
independent experiments.
doi:10.1371/journal.pone.0021909.g004

Role of N-terminal of CK2b1 in CK2 Regulation

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21909



Figure 5. Subcellular localization of CK2 individual subunits and CK2 holoenzyme in leaf epidemis of N. benthamiana plants.
(A) General views (406) of Nicotiana benthamiana leaves co-infiltrated with a mixture of Agrobacterium suspensions harbouring the indicated
constructs: CK2a1-GFP (left), YFPN-CK2b1/YFPC-CK2b1 (right) together with gene silencing suppressor HcPro. (B) General views (406) of Nicotiana
benthamiana leaves co-infiltrated with Agrobacterium containing the gene silencing suppressor HcPro and the following pair constructs: YFPN-
CK2a1/YFPC-CK2b1 (left), YFPN-CK2a1/YFPC-DNCK2b1 (middle), and CK2a1-GFP/CK2b1-Myc (right). In panel A and B upper correspond to
epifluorescence images and bottom to bright-field images (merged with epiflourescence). (C) Immunodetection of CK2a1-GFP and CK2b1-GFP
proteins using anti-GFP antibody in N. benthamiana leaves transformed with CK2a1-GFP, CK2a1-GFP/CK2b1-Myc and CK2b1-GFP. C corresponds to
cytosolic fraction, N to nuclear fraction and I to insoluble fraction (including nuclear and cytosolic aggregates).
doi:10.1371/journal.pone.0021909.g005
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the number of putative regulatory networks in which they could be

involved.

Despite of the elucidation of maize CK2a catalytic structure, no

structure for the plant CK2b regulatory subunit has been reported

to date. Here, by using a two-hybrid approach we show that the

CK2b N-terminal domain did not affect intra-molecular (CK2a/b
or CK2b/b) holoenzyme interactions. These results indicate that

the N-terminal domain is located in the external part of the

holoenzyme, although structural studies such as the crystallization

of the CK2b regulatory subunit would be needed to localize it with

greater precision.

Most animal CK2b subunits are autophosphorylated only at

two highly conserved residues, Ser2 and Ser3 [35]. This consensus

is only partially conserved in plants: in all plant species Ser2 is

conserved as Ser residue (Ser83 in maize CK2b1), but Ser3 is

replaced in all plant sequences analyzed by acidic residues (Asp or

Glu). In contrast to animals, land plant CK2b subunits present

additional putative autophosphorylation sites (motifs 1 and 5). For

instance, maize CK2b1 has five additional Ser residues at the

motif 1 of the N-terminal domain that might be targets for CK2

autophosphorylation. Motif 1 is rich in Asp and Glu residues and

is one of the most conserved in all plant N-terminal sequences

(Figure 1). In addition, CK2b1 subunits present additional Ser

residues located in the central core of the protein not present in

animal CK2b proteins. Our in vitro phosphorylation assays show

that the holoenzyme reconstituted with CK2a1 and CK2b1 is

higher autophosphorylated than the holoenzyme with CK2a1 and

DNCK2b1 (Figure 2B). Moreover, the N-terminal domain alone is

highly phosphorylated by CK2a1 in vitro. Taken together, these

results suggests that the putative CK2 consensus sites located in the

N-terminal domain are functional and might be involved in

regulating CK2 activity. In vitro phosphorylation assays showed

that when the holoenzyme is reconstituted with CK2a1 and

DNCK2b1 the phosphorylation of several substrates is enhanced.

These results point towards a possible role of the N-terminal

domain of CK2b down-regulating CK2a subunit activity. The

competition assays using the N-terminal fragment support this

hypothesis. The N-terminal extension of the protist Plasmodium

falciparum has also been postulated to act as a down-regulator of

CK2a subunits [36], even though our analysis supports the

independent origin of the N-terminal domain of land plant CK2b.

The greater efficiency of the maize holoenzyme without the N-

terminal domain is also consistent with the results of our previous

studies comparing human vs. maize holoenzyme, which demon-

strated a high stability and high specific activity of human CK2

holoenzyme (without N-terminal domain) compared to its maize

counterpart [23]. It has been recently reported that a splicing

variant of maize CK2a1 (named CK2a-4) could act as a specific

negative regulator of CK2 activity [37]. Taken together, all these

results suggest that maize CK2 activity could be regulated by

different mechanisms involving both CK2a/b subunits.

Functional studies were performed in order to assess whether the

presence of the N-terminal domain has a role in regulation of CK2b
subcellular localization. Our results show that maize CK2b1 is

highly prone to aggregation in nuclear speckles and the deletion of

N-terminal domain decreases this accumulation of CK2b1 in stable

nuclear aggregates. It has been reported for other proteins such as

mammalian PGC-1a and transcription factor ATF4 that aggrega-

tion in nuclear bodies protects against proteasome degradation

[38,39]. Here we show that maize CK2b1 is also degraded by the

ubiquitin-dependent proteasome pathway as described for Arabi-

dopsis CK2b4 [40]. Interestingly, cell-free degradation assays show

that deletion of the N-terminal domain increases the rate of CK2b1

protein degradation. Our findings indicate a role for the N-terminal

domain in enhancing CK2b1 aggregation in nuclear speckles,

where the protein is assumed to be tightly complexed and less

accessible to degradation machinery. Nevertheless, although the N-

terminal domain can be considered as an ‘‘enhancer’’ of CK2b1

protein aggregation, it is not essential since DNCK2b1 can also

aggregate. Thus, we can consider that aggregation in nuclear

speckles protects CK2b1 against fast degradation by proteasome

even though the protein is eventually degraded.

In human cells, CK2b is normally expressed at a higher level

than CK2a catalytic subunits, allowing part of CK2b to be

incorporated and stabilized into CK2 tetramers, whereas the

excess CK2b is rapidly degraded with a half-life of less than 1 h

[41]. Our results indicate that maize CK2b1 regulatory subunits

are more stable than their animal counterparts probably due to

their aggregation in nuclear speckles. Since the nature of these

aggregates remains unclear, further experiments should be done to

elucidate their composition and functional role.

We have previously demonstrated that different localization of

the individual maize CK2a and CK2b isoforms [15] but nothing

was known about holoenzyme localization in plants. Here by using

BiFC we show the in vivo localization of CK2 holoenzyme in plant

cells. Whereas individual subunits CK2a1 and CK2b1 present a

nuclear localization, the holoenzyme CK2a1/CK2b1 is assembled

in nucleus and is exported to the cytoplasm, where is complexed in

aggregates. After analyzing the localization of the holoenzyme

reconstituted with DNCK2b1, we conclude that the N-terminal

domain is not involved in this export to the cytoplasm. In

mammals it has recently been reported that CK2b regulatory

subunits are required for the export of the holoenzyme as an

ectokinase bound to the external surface of the cell membrane

[42]. The same authors postulate a role of CK2b exporting not

only CK2a but other CK2 interacting proteins. Our results

implicate CK2b in the shift from nucleus/nucleolus to cytoplasm

of CK2a subunits in plants. Further experiments may elucidate

whether this export mechanism also involves other proteins.

In conclusion, our research shed new light on the regulation of

protein kinase CK2 in plants. The whole amount of data shown in

this work suggests that the plant-specific N-terminal domain of

CK2b subunits was acquired in plants, as a single exon, for

regulatory purposes, particularly in terms of regulation of

holoenzyme activity and stabilization.

Materials and Methods

Plant CK2b regulatory subunits sequence analysis
Search for CK2b protein sequences was performed through

BLAST and HMMER [43,44]. Protein sequences were aligned

using CLUSTALW and MUSCLE and the resulting alignments

further edited through the MEGA 4.0 Alignment Explorer tool

[45–47]. The MEME v. 3.5.7 tool was used to search for repeated

sequence patterns (motifs) conserved across proteins [48]. Settings

were changed to search for short motifs (3–20 aminoacids)

showing any number of repetitions per sequence and position

(p-values,1e-4). Search for functional domain and motifs was

performed through the PROSITE and INTERPRO databases

[49]. NetPhosK v1.0 server was used to predict kinase specific

phosphorylation sites [50]. The location, distribution and phases of

introns at the genomic sequences encoding for the N-terminal

CK2b domain were determined using GENEWISE [50,51].

Phylogenetic analyses performed are detailed in Text S1.

Yeast two-hybrid assays
The Matchmaker two-hybrid system (Clontech) was used to

perform yeast two-hybrid assays. For the two-hybrid assays,
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truncated versions of CK2b1 (del1 DNCK2b1 (80–276) del2 (180–

276), and del3 N-terminal domain (1–80)) were generated by PCR

and cloned into pGBT9 or pGBTK7 vectors into EcoRI/SalI

sites. The specific primers used were detailed in Table S5. The

other two-hybrid constructs used in the assays (pGBT9-CK2b1,

pGAD424-CK2b1 and pGAD424-CK2a2) were previously de-

scribed in [20]. Yeast (AH109 strain) transformation was

performed according to the manufacturer’s instructions. Yeast

cells were cotransformed with the different pairs of BD-AD

constructs and transformants were selected on minimal synthetic

dropout medium (SD) -Leu-Trp (SD-LT). To test for protein-

protein positive interaction, independent colonies were transferred

to SD- -Leu-Trp-His-Ade (SD-LTHA).

Recombinant protein expression and purification and in
vitro autophosphorylation and CK2 activity assays

For expression and purification of recombinant CK2b proteins,

the cDNAs of full-length CK2b1, del1 DNCK2b1 (80–276) and

del3 N-terminal domain (1–80) were digested from pGBT9/

pGBTK7 vectors using EcoRI/SalI sites and cloned in expression

vector pGEX-4T-1 in frame to GST protein. The constructs were

transformed into E.coli BL21(DE), and the proteins were expressed

and purified as GST (Glutathione-S-Transferase) fusions as

previously described [20] and according manufacturer’s manual.

Protein concentration of purified proteins (GST-CK2b1, GST-

DNCK2b1 and GST-N-terminal domain) was determined by

Bioanalyzer methods (Agilent technology) according to the

manufacturer’s instructions.

For the in vitro autophosphorylation assay, the holoenzymes

CK2a1/CK2b1 and CK2a1/DNCK2b1 were reconstituted using

100 ng CK2a1 (Kinase Detect, Denmark) and 400 ng of GST-

CK2b1 or GST-DNCK2b1 in a total volume of 30 ml CK2 buffer

(8.9 mM MgCl2, 0.5 mM EGTA, 27 mM b-glycerol phosphate,

0.5 mM EDTA, 1 mM DTT, 0.08 mM ATP, 3 mCi of

[c-33P]ATP (3000 Ci/mmol). In the case of the CK2 activity

assays, the holoenzymes CK2a1/CK2b1 and CK2a1/DNCK2b1

were reconstituted as described for the autophosphorylation assays

and 0.6 mg of the different substrates tested (b-casein, GST-N-

terminal domain, Rab17 or ZIM-like)were added to the reaction.

In the competition assays, increasing amounts of N-terminal

domain (1–80) (from 0.2 to 0.8 mg) were added to the reaction

containing CK2a1/DNCK2b1 holoenzyme and 0.6 mg of b-

casein, Rab17 or ZIM-like as substrates. In all cases, the samples

were incubated for 30 min at 30uC. Reactions were stopped by

addition of electrophoresis sample buffer, and the phosphorylated

proteins were separated by 12% SDS–PAGE, visualized by

PhosphoImager analysis and the intensity of the phosphorylated

bands obtained was quantified by Quantity One (Bio-Rad)

software according the manufacturer’s suggestions.

Cell-free degradation assays, western blot analysis and
subcellular fractionation

The in vitro cell-free degradation assays was modified from [40].

0.2 g transformed N. benthamiana leaves with CK2b1-GFP and

DNCK2b1-GFP were ground in liquid nitrogen and resuspended

in buffer A (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM

MgCl2, 5 mM DTT and 5 mM ATP). Equal amounts of extracts

were transferred to individual tubes and incubated at 30uC and

aliquots were taken at 20, 40 and 60 min. One aliquot was

incubated with 100 mM of protein inhibitor MG132 (Enzo, Life

Sciences, Inc.) for 1 h at 30uC. Reactions were stopped by adding

protein gel-loading buffer. For Western blot analysis, proteins were

electrophoresed on 12% SDS-PAGE gels, transferred to immobi-

lon-P membranes (Millipore) and incubated with purchased

antibodies against GFP (Invitrogen). The immunocomplexes were

revealed using the ECL detection kit system (Super Signal West

Femto, Pierce). Subcellular fractionation was done according to

[38]. Briefly, transformed tobacco leaves were excised, ground in

liquid nitrogen and resuspended in hypotonic buffer (10 mM

HEPES, pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA,

1 mM dithiothreitol, and a protease inhibitor cocktail (1.6 mM

aprotinin, 50 mM leupeptin, 1 mM pepstatin, 10 mM E-64 and

1 mM PMSF)). The extracts were homogenized and centrifuged at

10,000 rpm for 1 min. The supernatant was collected as the

cytosolic fraction (C). The pellet was extracted in a high salt buffer

(20 mM HEPES, pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 1 mM dithiothreitol, and a protease inhibitor cocktail), and

the soluble fraction was collected as nuclear extracts following

another centrifugation (N). The remaining insoluble pellet was

resuspended in SDS lysis buffer (I).

Transient expression of GFP fusions in maize, Nicotiana
benthamiana leaves and onion cells

For transient expression of GFP fusions in maize, tobacco and

onion cells CK2b1 and del1 DNCK2b1 cDNAs were amplified by

PCR using specific primers (Table S5) and cloned into binary vector

pCAMBIA1302 under the control of a CamV 35S promoter and

fused in the 39 region with the GFP using BglII-SpeI sites for CK2b1

and BglII site for DNCK2b1. Additionally, the cDNA CK2b1 was

amplified by PCR using specific primers (Table S5) and cloned in

pLOLA vector [52] into BglII site in frame with Myc tag. The

fusion CK2b1-Myc was transferred to pCAMBIA2300 using KpnI

restriction site. For maize transformation immature maize embryos

about 1 mm long were aseptically dissected from ears of field-grown

maize plants (AxBxB73) after 10 days of pollination (10 DAP).

Isolated embryos were placed o/n at 24uC in plates containing MS

medium supplemented with 2.2 mg/L of 2,4D. 4 h before

transformation embryos were moved to MS plates with 16 g/L of

mannitol and were transiently transfected with GFP constructs by

particle bombardment using the Biolistic PDS-1000/He Particle

Delivery System (Bio-Rad). Plasmid DNA containing the different

constructs was precipitated onto gold particles using CaCl2 and

spermidine, and 1.5 mg DNA was delivered into intact maize tissue.

After 24 h, the fluorescence of the bombarded cells were viewed

using a FV 1000 confocal microscope (Olympus, http://www.

olympus.com/).The same methodology was used to visualize the

GFP fusion protein in epidermal onion cells. Young, fully expanded

leaves from 5 week old tobacco plants were transiently transfected

with Agrobacterium tumefaciens GV3101/pMP90 transformed with the

GFP construct together with the silencing suppressor HcPro as has

been described in [30,31]. After 3–4 days, infiltrated areas from

leaves were excised and examined by FV 1000 confocal microscopy

(Olympus). For treatment with cycloheximide (CHX) and protease

inhibitor MG132 leaves were excised and placed in sealed Petri

dishes submerged into the solutions containing CHX 50 mM and

MG132 100 mM in 2 ml of phosphate buffer. Treated and control

samples were ground in liquid nitrogen and resuspended in buffer A

(50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM MgCl2, 5 mM

DTT, 5 mM ATP, and protease inhibitor cocktail) and analyzed by

Western blot analysis as described above.

Bimolecular fluorescence complementation (BiFC) assays
For BiFC assays, the cDNAs corresponding to the CK2a1, CK2b1

and DNCK2b1 were cloned in the GATEWAY-compatible vector

pENTRY3C (Invitrogen). The cDNA CK21 was amplified by PCR

using the specific primers detailed in Table S5 and the PCR fragment

was cloned into BamHI-XhoI sites The cDNAs of full-length CK2b1,
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and del1 DNCK2b1 (80–276) were digested from pGBT9 vector

using EcoRI/SalI sites and transferred to pENTRY3C. The three

pENTRY3C plasmids were recombined by Gateway reaction into

pYFPN43 and pYFPC43 vectors (kindly provided by A. Ferrando,

University of Valencia, Spain, http://www.ibmcp.upv.es/Ferrando

LabVectors.php.) to produce YFPN-CK2b1, YFPC-CK2b1, YFPN-

CK2a1 and YFPC-DNCK2b1. Transformation of N.benthamiana

leaves and visualization was performed as described above for

transient expression of GFP fusions.

Supporting Information

Text S1 Phylogenetic analysis of CK2b regulatory
subunits. Phylogenetic analyses were performed on the basis of

amino acid sequence alignments using two independent methods:

Neighbor Joining (NJ) and Maximum Likelihood (ML). NJ

analyses were implemented in MEGA 4.0 using the default

settings [47] Prior to ML analysis; the best-fitting amino acid

substitution model was selected using the Akaike information

criterion as implemented in ProtTest v1.4 [26]. The resulting

model: JTT with (i) an estimated proportion of invariable sites and

(ii) a heterogeneous distribution of substitution rates across

proteins with eight categories and an estimated shape parameter,

was implemented in PHYML v3.0 to infer ML trees, using the

subtree pruning and regrafting option to optimize tree topology

searching [27–29]. To provide confidence on the resulting tree

topology, a bootstrap analysis with 1,000 and 100 replicates in NJ

and ML analyses, respectively, was performed.

(DOC)

Table S1 Summary of genome databases searched for
CK2b protein kinases.
(DOC)

Table S2 Summary of 34 land plant CK2b sequences.
Sequence identifier refers to the UNIPROT database, excepting

for species examined independently, in which case the accession

from the corresponding database was indicated (Table S1). The *

designs sequence incomplete at its N-terminal end. Some genes

have been identified to encode for alternatively spliced variants. In

such cases, only a single representative protein sequence is shown.

(DOC)

Table S3 Summary of 7 algae, 14 animal, 12 fungal and
2 protists CK2b sequences from representative species.
Sequence identifier refers to the UNIPROT database, excepting

for species examined independently, in which case the accession

from the corresponding database was used (Table S1). The *

indicates sequences incomplete at its N-terminal end.

(DOC)

Table S4 Summary of conserved motifs identified by
MEME in plant CK2b subunits. Matches of motifs with

specific kinase phosphorylation sites, predicted by NetPhos K v1.0

and PROSITE searches are shown. DNAPK: DNA activated

protein kinase, CDC2: Cell division cycle 2, RSK: 90 kDa

ribosomal S6 kinase, TK: Tyrosine kinase, ATM: Ataxia

Telangiectasia-Mutated.

(DOC)

Table S5 List of primers used in this study.
(PDF)

Figure S1 Unrooted Maximum Likelihood phylogenetic
tree of CK2b regulatory subunits. The tree is based on the

CLUSTAL alignment of 69 CK2b protein sequences. The clade

clustering land plant CK2b is indicated. Non-land plant CK2b
showing N-terminal extensions are in bold. Bootstrap values are

displayed next to the corresponding nodes. The tree is drawn to

scale, with branch lengths proportional to evolutionary distances.

The scale bar indicates the estimated number of amino acid

substitutions per site.

(PDF)

Figure S2 Unrooted Neighbor Joining phylogenetic tree of
CK2b regulatory subunits. The tree is based on the CLUSTAL

alignment of 69 CK2b protein sequences. The clade clustering land

plant CK2b is indicated. Non-land plant CK2b showing N-terminal

extensions are in bold. Bootstrap values are displayed next to the

corresponding nodes. The tree is drawn to scale, with branch lengths

proportional to evolutionary distances. The scale bar indicates the

estimated number of amino acid substitutions per site.

(PDF)

Figure S3 Quantification of Rab17 and b-casein phos-
phorylation with CK2a1/DNCK2b1 holoenzyme and in-
creasing amounts of CK2b1 N-terminal domain (1–80).
Relative phosphorylation of Rab17 and b-casein with the

holoenzyme composed by CK2a1/DNCK2b1 with increasing

amounts of CK2b1 N-terminal domain (1–80) compared to

phosphorylation of both substrates with CK2a1/DNCK2b1

holoenzyme alone (assigned a value of 1). The data plotted (mean

6SD) represent three independent experiments.

(PDF)

Figure S4 Subcellular localization of CK2b1-GFP and
DNCK2b1-GFP in Agrobacterium-infiltrated tobacco
leaves and onion cells. (A) Upper and middle panels show

detail of fluorescent nucleus (606) of cells from tobacco leaves

infiltrated with a mixture of Agrobacterium suspensions harbouring

the indicated constructs (CK2b1–GFP, DNCK2b1-GFP) and the

gene silencing suppressor HcPro. In upper panel right, a confocal

image of nuclear DAPI staining of cells transformed with CK2b1–

GFP is shown (606). General views (406) of control cells

infiltrated with GFP alone and HcPro are shown in the bottom

of the panels. (B) Detail of fluorescent nucleus (606) of onion cells

transformed with CK2b1–GFP and DNCK2b1-GFP by particle

bombardment. General views of onion cells (406) transformed

with GFP alone are shown on the right. In all cases epifluorescence

and bright-field images (merged with epiflourescence) are shown.

(TIF)

Figure S5 Immunodetection of CK2b1-GFP protein and
DNCK2b1-GFP protein in transformed N. benthamiana
leaves using anti-GFP antibody. (A) Control and Cyclohex-

imide treatment (CHX, 50 mM). Aliquots have taken at different

times (309, 1 h, 2 h and 4 h) (B) Control, Cycloheximide treatment

(CHX, 50 mM) and proteasome inhibitor MG132 (100 mM).

Aliquots have taken at different times (4 h and 8 h). In all analysis,

30 mg of total extracts has been loaded. The hybridation against

Rubisco protein is shown as loading control.

(TIF)
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