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Abstract

The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell
activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and
oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential
candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms
(SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility,
we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes
were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233
controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing
uncorrected p values,0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.861024, OR = 1.34; rs4872077, in
TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/
A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.1261025, OR = 0.59). These results
suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
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Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory, demyelin-

ating and neurodegenerative disease of the Central Nervous

System (CNS). Although its aetiology still remains partially

unknown, MS is thought to arise from complex interactions of

both environmental and genetic factors.

Linkage and association studies demonstrate that MS follows a

polygenic trait, with susceptibility being determined by different

genes, each exerting a relatively moderate effect on overall disease

predisposition [1]. For decades, the only candidate genes

consistently corroborated as influencing MS susceptibility were

encoded within the Major Histocompatibility Complex region

(MHC, HLA) [2–4]. Nevertheless, although data from the latest

large-scale association studies strongly support the dominance of

the HLA locus in genetic susceptibility to MS, they have also led to

substantial progress in unravelling the involvement of other genes

outside the HLA region [5–10].

The tumour necrosis factor (TNF) family genes are strong

candidates for involvement in MS risk because they play

important roles in the interaction between the CNS and the

immune system in both defence and apoptosis of neurons and glial

cells in neuroinflammatory diseases. The TNF-related apoptosis-

inducing ligand (TNFSF10/TRAIL) [11] is a type II transmem-

brane protein belonging to the TNF/nerve growth factor

superfamily [12] capable of inducing apoptosis in susceptible

cells through interaction with its receptors TNFRSF10A/

TRAILR-1 and TNFRSF10B/TRAILR-2. Two other cell-

bound receptors - TNFRSF10C/TRAILR-3 and TNFRSF10D/

TRAILR-4 - and a soluble receptor – Osteoprotegerin - do not
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contain functional death domains and act as decoy receptors for

TRAIL.

The TRAIL/TRAIL receptor system might be playing an

important role in the pathogenesis of MS, because of the

expression of apoptosis-mediating and apoptosis-blocking TRAIL

receptors [13], but its exact function is just beginning to unfold.

On one hand, TRAIL might exert a neurotoxic role, as activated

brain macrophages and microglia both express TRAIL [14], and

might interact with TRAIL receptors expressed in neurons,

oligodendrocytes and astrocytes, causing inflammation [15], cell

injury or death [16]. In this sense, it has been reported that both

oligodendrocytes [17], and neurons [14] are susceptible to TRAIL

induced apoptosis.

On the other hand, TRAIL blockade with the administration

of soluble rTRAIL receptor, during the effector phase of MOG-

induced experimental autoimmune encephalomyelitis (EAE),

enhances the formation of inflammatory lesions and the extent

of demyelination in the CNS, and exacerbated EAE, suggesting

that TRAIL may be inhibiting autoimmune inflammation in the

CNS [18]. However, the precise mechanism whereby TRAIL

exerts this mechanism in vivo is not clear. It may inhibit

activation of autoreactive T cells that initiate autoimmune

responses in vitro and in vivo [19] or may induce apoptosis of

inflammatory cells. Recently, it has been reported that activation

of T cells with IL-2 resulted in TRAIL-mediated death of

antigen-specific memory CD8+ T cells and that human T helper

(Th) 1 cell clones are sensitive to TRAIL-induced apoptosis,

whereas Th2 cell lines are not. Whether this is also true in vivo

remains to be clarified [20].

In conclusion, some studies detected anti-inflammatory proper-

ties of TRAIL showing neuroprotective potential, while others

considered it as a mediator of cell damage and inflammatory

response. As TRAIL might be acting in both ways, as a ‘‘double-

edge sword’’ [21,22], TRAIL and TRAIL receptor genes are potential

candidates for involvement in the development of multiple

sclerosis.

The aim of the present study was to examine the potential

role of polymorphisms in the genes encoding TRAIL and its

four surface receptors on MS susceptibility, and to search for

disease-associated combinations of allelic variants in these

polymorphisms.

Results

Genotype frequencies and P values for the 59 polymorphisms

under the four different genetic models were calculated. Three

SNPs were discarded from the study because of technical

problems in the manufacturing process (rs3136597, rs13257094

and rs4242387). Genotype distribution of the remaining 56 SNPs

in controls and MS patients in the original and in the validation

cohorts is shown in Table S1. There were no statistically

significant differences in the genotyping success rate between

cases and controls for any of these markers. Overall, the results

were in Hardy- Weinberg equilibrium after adjustment by the

Benjamini and Hochberg method (Table S2), with the exceptions

of rs3181143 in the TRAIL gene and rs12545733 in the TRAILR-

3 gene, both in MS patients and in controls. Thus, these two

polymorphisms were also discarded from further analyses.

After applying the highly conservative Bonferroni correction for

multiple tests, none of the SNPs analyzed remained significantly

associated with MS risk in the original cohort. However, a total of

six SNPs (rs4894559, rs1001793, rs3924519, rs11779484,

rs4460370 and rs9314261) showed nominally significant associa-

tion in different genetics models, and rs4872077 showed a marked

trend under a recessive model (p = 0.052) as shown in Table 1,

hence, these seven SNPs could not be completely dismissed.

The validation with a second cohort of patients and healthy

controls ended with only four out of these seven SNPs showing p

values lower than 0.05. Furthermore, rs9314261 showed the

opposite allele associated in the replication cohort as compared to

the original study, therefore only three associations were

successfully replicated: rs4894559 in TRAIL, rs4872077 in

TRAILR-1 and rs1001793 in TRAILR-2.

When both cohorts were combined in order to increase the

sample size and so, gain statistical power, statistical significance

increased compared to that observed in each cohort separately,

being the lowest p values for each SNPs as follows: rs4894559, risk

allele = A, additive model, p = 9.861024, OR = 1.34; rs4872077,

risk allele = C, recessive model, p = 0.005, OR = 1.72; and

rs1001793, protective allele = A, additive model, p = 0.012,

OR = 0.84.

We examined the impact of allelic combinations of the three

previously described SNPs on susceptibility to MS. Analysis of all

possible combinations highlighted rs4894559G, rs4872077T and

rs1001793A as the most relevant combination which was

significantly underrepresented in MS patients and displayed

protective effects for MS. This association was present in the

original cohort (p = 2.261024, OR = 0.59) as well as in the

validation cohort (p = 0.0426, OR = 0.62). Both cohorts combined

yielded p = 2.1261025, OR = 0.59. Distribution of carriers of this

allelic combination in the original cohort, validation cohort and in

the joint analysis is shown in Table 2.

Discussion

This is to the best of our knowledge the first study assessing the

potential role of polymorphisms in the TRAIL receptor genes on MS

susceptibility and also the first one undertaking an in-depth

analysis of the SNPs in the TRAIL gene in this disease.

The TRAIL/TRAIL receptor system has been reported to

participate in crucial steps in immune cell activation, migration,

proliferation and differentiation and it seems to be implicated in a

variety of autoimmune diseases [18,19,23–25]. TRAIL usually

does not induce apoptosis in activated T cells, but it is capable of

directly inhibit proliferation, activation and IFN-c/IL-4 produc-

tion of human T cells via blockade of calcium influx [26] and

induce apoptosis of neurons and oligodendrocytes [16]. Thus,

TRAIL and TRAIL receptor genes are potential candidates for

involvement in the development of multiple sclerosis.

A previous study found an association between rs1131579 in

the 39-untranslated region of exon 5 in TRAIL and MS in a

Japanese population [27]. However, we were unable to replicate

this association in the Spanish population, as it was not

polymorphic (frequency of the homozygous common genotype

was 99.9% in controls and 99.9% in MS patients in the joint

Spanish analysis). A previous study identified a highly polymor-

phic region in the TRAIL promoter but could not detect any

associations of the SNPs in this region with MS susceptibility

[28]. In our study, we found seven candidate SNPs associated

with MS risk in the original cohort and carried out a validation

study in a second cohort. This allowed us to confirm the

associations of three of them (rs4894559, risk allele = A;

rs4872077, risk allele = C; and rs1001793, protective allele = A),

and the joint analysis gave us a more reliable measure of the

magnitude of these associations. Furthermore, the study of allele

combinations within these three polymorphisms showed a

stronger association, being the combination of G, T and A

alleles for rs4894559, rs4872077 and rs1001793 respectively, a
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protective factor for MS. This suggests that these polymorphisms

may be acting together and may have a synergic effect on MS

susceptibility.

It is unclear whether the lack of validation for the remaining 4

SNPs was due to a lack of statistical power or else they were false

positives, although genotype frequencies seem to support that they

were definitively false positives, with the exception of rs11779484

in TRAILR-1 (Table S1).

The SNP rs4894559 is located in the TRAIL gene, 580

nucleotides upstream of exon 3, SNP rs4872077 is located in the

TRAILR-1 gene, 12 nucleotides downstream of exon 5 and

rs1001793 is located in the TRAILR-2 gene, 92 nucleotides

upstream of exon 2. This latter SNP is a proxy of rs1001792

(r2 = 0.91), located 345 nucleotides upstream of exon 2.

All TRAIL apoptotic and decoy receptors are expressed in the

human brain in microvascular endothelial cells [29], oligodendro-

Table 1. Genotype frequencies of the TRAIL and TRAILR significant polymorphisms.

SNP ID Model Original Cohort Validation Cohort Joint Analysis

p value OR (95% C.I.) p value OR (95% C.I.) p value OR (95% C.I.)

rs4894559 L-A [GG = 0, GA = 1, AA = 2] 0.015 1.29 (1.05–1.58) 0.030 1.44 (1.03–2.00) 9.861024 1.34 (1.12–1.59)

C [GA vs. GG] 0.014 1.15 (0.89–1.47) 0.022 1.70 (1.16–2.48) 0.004 1.31 (1.06–1.61)

C [AA vs. GG] 0.014 2.47 (1.29–4.72) 0.022 0.96 (0.33–2.79) 0.004 1.93 (1.12–3.34)

D [(GA+AA) vs. GG] 0.073 1.24 (0.98–1.58) 0.010 1.62 (1.12–2.35) 0.002 1.36 (1.11–1.66)

R [AA vs. (GG+GA)] 0.006 2.37 (1.25–4.52) p.0.1 0.034 1.78 (1.03–3.06)

rs4872077 L-A [TT = 0, TC = 1, CC = 2] p.0.1 0.047 1.32 (1.00–1.74) 0.097 1.14(0.98–1.32)

C [TC vs. TT] p.0.1 p.0.1 0.021 0.99 (0.81–1.20)

C [CC vs. TT] p.0.1 p.0.1 0.021 1.71 (1.15–2.55)

D [(TC+CC) vs. TT] p.0.1 p.0.1 p.0.1

R [CC vs. (TT+TC)] 0.052 1.60 (0.99–2.58) 0.060 1.88 (0.95–3.71) 0.005 1.72 (1.17–2.54)

rs11779484 L-A [TT = 0, TC = 1, CC = 2] 0.069 0.75 (0.54–1.02) p.0.1

C [TC vs. TT] 0.046 0.69 (0.49–0.96) p.0.1

C [CC vs. TT] 0.046 3.01 (0.31–29.03) p.0.1

D [(TC+CC) vs. TT] 0.039 0.71 (0.51–0.99) p.0.1

R [CC vs. (TT+TC)] p.0.1 p.0.1

rs1001793 L-A [GG = 0, GA = 1, AA = 2] 0.040 0.84 (0.71–0.99) p.0.1 0.012 0.84 (0.73–0.96)

C [GA vs. GG] p.0.1 p.0.1 0.035 0.80 (0.66–0.98)

C [AA vs. GG] p.0.1 p.0.1 0.035 0.73 (0.53–0.99)

D [(GA+AA) vs. GG] 0.074 0.82 (0.65–1.02) 0.064 0.72 (0.51–1.02) 0.012 0.79 (0.65–0.95)

R [AA vs. (GG+GA)] p.0.1 p.0.1 p.0.1

rs4460370 L-A [CC = 0, CT = 1, TT = 2] 0.026 1.21 (1.02–1.44) p.0.1

C [CT vs. CC] 0.048 1.11 (0.88–1.40) p.0.1

C [TT vs. CC] 0.048 1.64 (1.10–2.43) p.0.1

D [(CT+TT) vs. CC] p.0.1 p.0.1

R [TT vs. (CC+CT)] 0.021 1.56 (1.07–2.27) p.0.1

rs9314261 L-A [GG = 0, GA = 1, AA = 2] 0.026 0.78 (0.62–0.97) p.0.1

C [GA vs. GG] 0.067 0.74 (0.56–0.97) 0.047 1.30 (0.87–1.95)

C [AA vs. GG] 0.067 0.72 (0.37–1.40) 0.047 0.43 (0.18–1.04)

D [(GA+AA) vs. GG] 0.020 0.73 (0.57–0.95) p.0.1

R [AA vs. (GG+GA)] p.0.1 0.035 0.40 (0.17–0.96)

rs3924519 L-A [TT = 0, TC = 1, CC = 2] p.0.1 p.0.1

C [TC vs. TT] 0.021 1.06 (0.84–1.34) p.0.1

C [CC vs. TT] 0.021 0.61 (0.41–0.90) p.0.1

D [(TC+CC) vs. TT] p.0.1 p.0.1

R [CC vs. (TT+TC)] 0.006 0.59 (0.40–0.87) p.0.1

Abbreviations: L-A: Log-Additive model; C: Codominant model; D: Dominant model; R: Recessive model; SNP ID: SNP identification; OR (95% CI): odds ratio with
confidence interval at 95%.
The log-additive model is the equivalent to calculate the odds ratio for the minor allele. The codominant model compared the homozygous genotype for the most
frequent allele to the heterozygous and to the other homozygous genotype. The dominant model compared the homozygous genotype for the most frequent allele to
the combination of the heterozygous and the other homozygous genotype. The recessive model compared a combination of the homozygous for the most frequent
allele and the heterozygous genotypes to the homozygous for the minor allele.
Values in bold indicates p values lower than 0.05; Joint analysis data from non replicated associations are not shown.
doi:10.1371/journal.pone.0021766.t001
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cytes, neurons and astrocytes [30], while TRAIL is mainly

expressed in brain macrophages and infiltrating leukocytes. As

the TRAIL system is characterised by a complex panel of

receptors leading to highly variable effects of TRAIL signalling

dependent on microenvironment, cell type and timing [21], the

interaction of the genes included in this allele combination may

lead to a deregulation of inflammatory pathways. We hypothesize

that the susceptibility conferred by these SNPs could be due to a

change of a protein binding site in the DNA sequence, which may

alter mechanisms involved in alternative splicing, or a change in

the expression levels of TRAIL and its death receptors. These

alterations may affect the TRAIL system, resulting in a more

favourable anti-inflammatory microenvironment. In support of

these mechanisms, some authors have reported that balance

between death and decoy receptors may determine whether a cell

could or could not undergo TRAIL-mediated apoptosis [17,30].

Thus, this triallelic combination might result in target cells, such as

oligodendrocytes, remaining resistant to TRAIL-induced apopto-

sis, which might be one of the putative cytotoxic effector

mechanisms in MS pathogenesis.

In conclusion, the association of these genes with MS risk

supports a biological role for the TRAIL and TRAIL receptor gene

products in the pathogenesis of MS. Therefore, the functional

consequences of these SNPs need to be clarified, as separately they

might be playing only a minor effect on MS susceptibility but the

sum or interaction of multiple risk alleles may represent a key

contributor to the overall MS susceptibility.

Materials and Methods

Ethics Statement
Written informed consent was obtained from patients and

controls. The study was approved by the Institutional Research

Ethics Committees of the respective hospitals (Comisión de Ética y

de Investigación del Hospital Regional Universitario Carlos Haya,

Comité Ético del Hospital Universitario 12 de Octubre de

Madrid, Comité Ético de Investigación Clı́nica del Hospital

Clı́nico San Carlos and Comité Ético de Investigación Clı́nica del

Instituto de Investigación Sanitaria San Carlos).

Study subjects
A total of 628 patients were recruited for the original cohort

through the Multiple Sclerosis unit of Carlos Haya Regional

University Hospital in Malaga, Spain. As controls, 660 sex and

age-matched healthy unrelated subjects were obtained from the

Malaga Blood Bank. For the validation cohort, we selected a total

of 295 patients from the 12 de Octubre University Hospital

(n = 59) and San Carlos Clinic Hospital (n = 236), both in Madrid,

Spain, and 233 healthy subjects from San Carlos Clinic Hospital.

All patients in both cohorts were Spanish Caucasian individuals

and fulfilled the McDonald criteria [31] for MS diagnosis.

The following demographic and clinical characteristics of the

MS patients were assessed: sex, age, age at onset, clinical form at

onset and at present, disease duration, expanded disability status

scale (EDSS) score, and progression index (current EDSS score/

disease duration). These clinical characteristics of the MS patients

are summarised in Table 3.

SNP identification and selection
54 Tag-SNPs spanning the following genes: TRAIL (mapped at

chromosome 3q26) and its four receptors TRAILR-1, TRAILR-2,

TRAILR-3 and TRAILR-4 (mapped at chromosome 8p21-22),

were selected using the web tool ‘‘SYSNPs’’ (www.sysnps.org).

Flanking regions of 2000 nucleotides upstream and 500 nucleo-

tides downstream were included. A minor allele frequency of at

least 0.1 and a minimum r2 coefficient of 0.8 were used to select

Tag-SNPs. In addition, we also selected five exonic SNPs in the

TRAIL gene, corresponding to rs6763816 and rs11545817 in exon

1, rs16845759 in exon 2, rs4491934 in exon 3 and rs1131579 in

the 39 UTR of exon 5 (the latter has previously been reported to be

a high risk factor for MS in a Japanese population) [27].

Table 2. Distribution of the carriers of rs4894559G/rs4872077T/rs1001793A.

Original Cohort Validation Cohort Joint Analysis

MS patients Controls MS patients Controls MS patients Controls

GTA carriers 270 (44.3%) 349 (54.1%) 116 (41.7%) 121 (53.8%) 386 (43.5%) 470 (54.0)

Non GTA carriers 339 (55.7%) 296 (45.9%) 162 (58.3%) 104 (46.2%) 501 (56.5%) 400 (46.0)

GTA carriers are made up for subjects with genotypes GG or GA in rs4894559, TT or TC in rs4872077 and AA or AG in rs1001793. Non GTA carriers are made up for
subjects with genotypes AA in rs4894559, CC in rs4872077 and GG in rs1001793.
doi:10.1371/journal.pone.0021766.t002

Table 3. Demographic and clinical characteristics of the 923
MS patients.

Characteristics Original cohort Validation cohort

Gender (%):

Female 431 (68.6%) 192 (65.1%)

Male 197 (31.4%) 103 (34.9%)

Age (years) 43.50611.35 (15–77) 40.6469.00 (19–72)

Mean age at onset (years) 29.5969.73 (4–68) 28.9067.76 (8–53)

Clinical form at onset:

Relapsing 535 (99.4%) 259 (99.6%)

Progressive 3 (0.6%) 1 (0.4%)

Clinical form at present

RR 422 (78.4%) 244 (93.8%)

SP 113 (21.0%) 15 (5.8%)

PP 3 (0.6%) 1 (0.4%)

Mean disease duration (years) 14.568.1 (1–41) 12.1867.28 (0–49)

Current EDSS score 2.8462.26 (0–9) 2.4361.68 (0–7)

Progression index (current
EDSS score/disease duration)

0.2360.24 0.1860.12

Quantitative data are presented as mean 6 standard deviation (minimum–
maximum).
EDSS Expanded disability status scale, PP primary progressive, PR progressive
relapsing, RR relapsing–remitting, SP secondary progressive.
doi:10.1371/journal.pone.0021766.t003
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Genotyping
Genomic DNA was extracted from peripheral blood nucleated

cells using the Genomic DNA Purification KitH (Gentra Systems

Inc, Minneapolis, MN, USA).

All polymorphisms were genotyped using TaqMan assays

(AppliedBiosystems, Inc., Foster City, CA, USA) and the Open-

Array Platform (BioTrove, Woburn, MA, USA) following the

protocols recommended by manufacturers. In short, reactions

were performed in 3072 through-hole arrays under the following

conditions: 93uC for 10 minutes, followed by 50 cycles of 95uC for

45 seconds, 94uC for 13 seconds and 53uC for 134 seconds. The

median DNA concentration used was 50 ng/mL.

Statistical analysis
Statistical analysis was performed using the SPSS software

(version 11.5.1) and the SNPassoc R package (R software version

2.10.0) [32].

Deviations from Hardy-Weinberg Equilibrium were tested

using an exact test as Wigginton et al. [33]. Multiple testing

corrections were carried out using the Benjamini and Hochberg

False Discovery Rate [34].

To test if any individual SNP was associated with MS

susceptibility, genotype frequencies were compared using a

likelihood ratio test under four different genetic models (Codom-

inant, Dominant, Recessive and Additive). P values lower than

0.05 were considered to be statistically significant. Logistic

regression models were used to estimate crude odds ratios (ORs)

and 95% confidence intervals (95% CI). To avoid false-positive

results due to multiple testing we applied the Bonferroni correction

that is robust against positive dependence.

The statistical power was calculated with QUANTO 1.2.4

(http://hydra.usc.edu/gxe). With the original cohort, we had a

91.52% power to detect, at a significance level of 0.05, an OR

effect size of 1.5 when the minor allele frequency was 0.1 under a

log-additive model, decreasing to 50.41% to detect the same effect

at a Bonferroni level (p = 0.00089). Power in the validation cohort,

taking into account the results from the original cohort ranged

from 26 to 60% (Table S3).

To study allelic combinations and test their effects on MS

susceptibility we chose those SNPs with a replicated significantly

different distribution between MS patients and controls. Allelic

combinations frequencies were estimated using the Expectation-

Maximization algorithm, and P values and ORs with 95% CI

were calculated with a General Linear Model regression.

Supporting Information

Table S1 Abbreviations: SNP ID, SNP identification; Chr,

chromosome; 1.2, major.minor allele; NSC: Non Synonymous

Coding.

(DOC)

Table S2 Abbreviations: SNP ID, SNP identification; PBH, P

values correct with Benjamini and Hochberg. Departures from

Hardy-Weinberg Equilibrium were tested using an exact test as

Wigginton et al. P values were corrected for multiple testing using

the Benjamini and Hochberg method. Values in bold indicates a

deviation from the Hardy-Weinberg equilibrium. A hyphen

indicates that the Hardy-Weinberg Equilibrium could not be

calculated due to the lack of one or two genotypes.

(DOC)

Table S3 Abbreviations: SNP ID, SNP identification; OR =

odds ratio to be replicated.

(DOC)
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