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Abstract

Background: Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little
is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat
sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition
of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth
or cell survival. We used this culture system to examine differential gene expression patterns in naı̈ve vs. BMP-treated
sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis.

Methodology/Principal Findings: To determine the critical transcriptional window during BMP-induced dendritic growth,
morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic
growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7.
BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding
exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental
conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix
oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7
significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both
established and novel genes and signaling pathways in primary dendritogenesis.

Conclusions/Significance: This study provides a unique dataset that will be useful in generating testable hypotheses
regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth
in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types.
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Introduction

The shape of the dendritic arbor determines the total synaptic

input a neuron can receive [1,2,3], and influences the types and

distribution of these inputs [4,5,6]. Altered patterns of dendritic

growth and plasticity are associated with impaired neurobehav-

ioral function in experimental models [7], and are thought to

contribute to clinical symptoms observed in both neurodevelop-

mental disorders [8,9,10] and neurodegenerative diseases

[11,12,13]. Such observations underscore the functional impor-

tance of precisely regulating dendritic morphology and suggest

that identifying mechanisms that control dendritic growth will not

only advance understanding of how neuronal connectivity is

regulated during normal development, but may also provide

insight on novel therapeutic strategies for diverse neurological

diseases.

Dendritic development can be broadly separated into two

phases: primary dendrite formation, which includes initiation of

dendritic growth and extension of primary dendritic shafts; and

dendritic maturation, which encompasses dendrite branching and

elongation, spine formation and dendritic retraction [14,15].

While much research has focused on mechanisms that control

dendritic maturation [16,17,18,19], comparatively little is known

about mechanisms that regulate primary dendritogenesis [14,15].

It is generally thought that transcriptional mechanisms are

required for the formation of primary dendrites [15], and genetic
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studies in Drosophila [15,20,21] have identified a number of

transcription factors that are important in this initial phase of

dendritic development in this model organism. Less is known,

however, about gene expression patterns that control primary

dendritogenesis in mammalian neurons [15].

Primary culture of dissociated sympathetic neurons offers a

unique opportunity for addressing this gap in knowledge [22].

When cultured in the absence of serum and ganglionic glial cells,

sympathetic neurons extend a single functional axon, but fail to

form dendrites [23,24]. However, addition of recombinant bone

morphogenetic proteins (BMPs) triggers these neurons to extend

multiple dendrites without altering axonal growth or cell survival

[25,26]. The dendritic arbor induced by BMPs in cultured

sympathetic neurons is comparable to that of their in vivo

counterparts with respect to size, accumulation and post-

translational modification of dendrite-specific cytoskeletal and

membrane proteins, exclusion of axonal proteins, transport of

select mRNA, and formation of synaptic contacts of the

appropriate polarity [25,27,28]. These observations indicate that

BMPs selectively induce the execution of a developmental

program in sympathetic neurons that controls both the quantita-

tive and qualitative aspects of dendritic growth. Mechanistic

studies of BMP-induced dendritic growth in this model system are

consistent with the proposed role of transcriptional mechanisms in

initial dendrite formation: 1) the canonical BMP signaling pathway

involves activation of Smad transcription factors and Smad

activation is required for BMP-induced dendritic growth [29];

and 2) pharmacological inhibition of transcription blocks the

dendrite promoting activity of BMPs [28]. Therefore, to identify

candidate genes involved in regulating primary dendritogenesis,

we characterized global gene expression profiles in sympathetic

neurons undergoing BMP-induced primary dendritogenesis using

microarray analysis.

Results

BMP-7 triggers dendritogenesis in cultured sympathetic
neurons via transcriptional mechanisms

As previously reported [25], sympathetic neurons cultured in

the absence of serum and ganglionic glial cells failed to extend

dendrites; however, addition of BMP-7 to these cultures triggered

a robust dendritic response (Figure 1). The extension of dendrites

was not an immediate response to BMP-7, but rather became

apparent at the structural level approximately 24–48 hr after

BMP-7 was added to the culture medium (Figure 1A). The

observation that less than 5% of neurons extended dendrites in the

absence of exogenous BMP-7 while dendrites were elaborated by

more than 95% of neurons exposed to BMP-7 demonstrated the

high ‘‘signal-to-noise’’ ratio in this experimental model system.

To determine the critical period when transcriptional changes

required for the dendritic response to BMP-7 occurred, transcrip-

tion was inhibited by adding actinomycin-D to cultures at varying

times after BMP-7 addition. When added within the first 24 hr

after BMP-7 exposure, actinomycin-D effectively blocked BMP-

induced dendritic growth; however, when added at 48 or 72 hr

after BMP treatment, actinomycin-D had no significant effect on

the dendrite promoting activity of BMP-7 (Figure 1B). Consistent

with previous studies [27], the addition of BMP-7 in the absence or

presence of actinomycin-D did not influence axonal growth as

determined by western blotting of cell lysates from these cultures

using antibodies specific for phosphorylated M and H neurofila-

ment subunits, nor did these treatments influence cell survival as

determined by propidium iodide uptake (data not shown). Based

on these observations, total RNA for microarray analyses was

harvested from primary cultures of sympathetic neurons at 6 hr

and 24 hr after addition of BMP-7 to identify early and late

transcriptional responses to BMP-7.

Transcriptome analysis of dendritogenesis
Affymetrix Rat Genome U34A oligonucleotide microarrays

were used to interrogate transcripts differentially regulated by

Figure 1. BMP-7-induced dendritic growth in cultured sympa-
thetic neurons requires transcription. Sympathetic neurons
dissociated from embryonic rat superior cervical ganglia (SCG) and
cultured in defined medium in the absence of serum and non-neuronal
cells were treated with BMP-7 (50 ng/ml) added to the medium on day
5 in vitro. (A) Cultures were fixed at varying times after BMP-7 addition
and immunostained for MAP-2 to visualize dendritic processes.
Significant dendritogenesis was evident within 48 hr after BMP-7
addition, and by 96 hr, over 95% of the neurons had responded to
the dendrite-promoting activity of BMP-7. (B) Actinomycin-D (100 ng/
ml) was added to sympathetic cultures at varying times after addition of
BMP-7 (50 ng/ml). Following a 72 hr exposure to BMPs, dendritic
growth was quantified in MAP-2 immunoreactive cells. Actinomycin-D
inhibited dendritogenesis when added within 24 hr after BMP-7
treatment. BMP-7-induced dendritic growth was not blocked when
actinomycin-D was added at 48 or 72 hr after BMP-7 treatment. Data
presented as the mean 6 S.E. (n = 3). *Significantly different from
control (cultures grown in the absence of BMP-7) at p,0.001 (One-way
ANOVA with post-hoc Tukey’s analysis).
doi:10.1371/journal.pone.0021754.g001

Genes Regulated during Primary Dendritogenesis
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BMP-7 in sympathetic neurons. Total RNA was collected from

cultures derived from the same dissection and grown under

identical conditions up until day 5 in vitro. At that time, a subset of

cultures was exposed to BMP-7, which was added to the medium

for varying periods of time resulting in 3 experimental conditions:

(1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and

(3) treatment with BMP-7 for 24 hr. This experiment was

independently repeated 3 times using cultures derived from 3

independent dissections, resulting in a total of 9 arrays (3 arrays for

each of the 3 experimental conditions).

The data set was analyzed by two-way ANOVA to identify a

set of genes regulated by BMP-7 (the complete data set is

available from the GEO repository, accession number

GSE28150). Significant changes (p,0.005) across the BMP-7

treatment course were identified, and patterns of gene expression

changes over the sample set were visualized using hierarchical

clustering (Figure 2, Tables S1 and S2). The hierarchical

clustering revealed 4 basic gene expression changes: (1) genes

upregulated by BMP-7 at 6 hr that remained upregulated at

24 hr; (2) genes upregulated by BMP-7 only at 24 hr; (3) genes

downregulated by BMP-7 at 24 hr; and (4) genes downregulated

by BMP-7 at 6 hr that remained downregulated at 24 hr. The

name and p-value of each gene identified in this hierarchical

clustering are listed in Tables S1 and S2 for genes up- and down-

regulated by BMP-7, respectively.

An analysis of significant differences between treatment

conditions identified a total of 270 genes as significantly changed

by BMP-7 treatment (p,0.05; 1.2 fold change filter). As illustrated

in a Venn diagram (Figure 3), 56 annotated genes were

differentially regulated following 6 hr of BMP-7 treatment relative

to control; 185 annotated genes were differentially regulated

following 24 hr of BMP-7 treatment relative to control; and 156

annotated genes were differentially regulated following 24 hr

versus 6 hr of BMP-7 treatment (see Tables S3, S4, S5 for more

information on the genes included in these categories). More genes

are regulated at 24 hr than at 6 hr after BMP-7 addition, with

50% (28 genes) of the genes regulated at 6 hr also found in the

regulated gene set at 24 hr.

Pathway analysis of genes differentially regulated by BMP-7 at

6 hr identified several canonical signaling pathways that could be

activated by BMP-7 (Figure 4). This analysis demonstrated that

primary dendritogenesis in cultured sympathetic neurons is

accompanied by changes in gene expression that parallel the

regulatory pathways and signaling networks that guide general

development and branching morphogenesis. The signaling

pathway with the lowest p-value was a pathway important in

reproduction, the gonadotropin releasing hormone (GnRH)

signaling pathway (p value 2.589e-4). In addition, several signaling

pathways previously implicated in neuronal morphogenesis were

identified as showing significant relationships with genes differen-

tially regulated by BMP-7 in sympathetic neurons during primary

dendritogenesis. These included the myelin associated glycopro-

tein (MAG)-dependent inhibition of neurite outgrowth signaling

pathway (p value 5.427e-4), the NOTCH-1 mediated pathway for

NF-kB activity modulation (p value 9.599e-3) and the Smad-

dependent transforming growth factor (TGF)-b signaling pathway

(p value 1.015e-2). Of the GeneGo Process Networks, the top five

statistically significant results were (1) development, blood vessel

morphogenesis (p value 1.470e-07), (2) development, regulation of

angiogenesis (p value 1.020e-05), (3) cardiac development, Wnt,

beta-catenin, Notch, VEGF, IP3, and integrin signaling (p value

2.70e-3), (4) development, neurogenesis, axonal guidance (p value

3.441e-3), and (5) cardiac development, BMP, TGF beta signaling

(p value 6.727e-03).

To identify potential interactions between biological networks,

the profile of transcripts differentially regulated by BMP-7 at 6 hr

was analyzed using the GeneGO Analyze Networks algorithm.

Several gene interaction webs were identified, but the one that

included the most transcripts identified as regulated by BMP-7

included the inhibitor of DNA binding (Id) family of transcription

repressors (Figure 5). The Id genes were upregulated strongly at

both 6 and 24 hr (Figure 2). Interestingly, the Id genes identified in

these microarray analyses are closely linked to canonical signaling

pathways important in development, and many of them are

implicated in direct or indirect control of expression of other genes

identified as differentially regulated by BMP-7 in sympathetic

neurons, including Hand1 [30,31], Ebf [32,33,34], Ngfr (also known

as p75) [35] and Cxcr4 [36,37]. The acute upregulation of these Id

transcriptional regulators and their control of other genes in

different expression clusters suggest a role in immediate early

control of BMP-7 responses.

Experimental validation of BMP-induced gene expression
To validate microarray results, Northern blot analysis was used

to compare transcript levels of target genes in control cultures of

sympathetic neurons versus sister cultures derived from the same

dissection treated with BMP-7 for 24 hr. Target genes included a

subset of genes listed in Table S1: Id1, Id3, Ngfr (also known as

p75), Cxcr4 and Jag1. In addition, we assessed BMP-7 effects on

transcript levels of Delta 1 (Dll1), which was not identified as a

statistically significant BMP-7 regulated gene in the microarray

data set but demonstrated a trend to upregulation and was of

biological interest. Using independent probes, we confirmed that

BMP-7 upregulated each of these target genes (Figure 6A).

Transcript levels for two of the most robustly upregulated genes in

BMP-7 treated sympathetic neurons, Id1 and Id3, were signifi-

cantly decreased by actinomycin-D but not cyclohexamide

(Figure 6B), demonstrating that the BMP-7 upregulation of these

genes required active transcription and was not affected by

inhibition of protein translation.

Discussion

Dendritic morphogenesis is a critical determinant of neuronal

connectivity in the developing nervous system and an essential

component of functional plasticity of the nervous system

throughout life. A critical phase in dendritic morphogenesis is

the initial formation of primary dendrites, yet little is known about

the molecular changes that drive primary dendritogenesis. In this

study we demonstrate that transcription is required for primary

dendritogenesis in primary cultures of sympathetic neurons since

pharmacologic inhibition of transcription by actinomycin-D

inhibits BMP-7-induced dendritogenesis when administered dur-

ing the first 24 hr after BMP-7 exposure. Notably, the number of

genes differentially regulated by BMP-7 at 24 hr is significantly

increased compared to the number of genes regulated at 6 hr,

which is consistent with a defined genetic program that drives

primary dendritogenesis. Our findings also represent, to our

knowledge, the first unbiased transcriptome analysis of mamma-

lian neurons during primary dendritogenesis. Genes identified as

differentially regulated by BMP-7 in cultured sympathetic neurons

form a discreet dataset of candidate genes involved in primary

dendritogenesis that will be useful in directing novel hypothesis-

driven research into the molecular mechanisms that control the

initial stages of dendrite formation. Below, we discuss the internal

validity and relevance of this dataset, some of the unexpected

expression patterns observed in this study, and potential strategies

for using these data in mechanistic studies of dendritogenesis.

Genes Regulated during Primary Dendritogenesis
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Figure 2. Cluster diagram of transcripts differentially regulated by BMP-7 in cultured sympathetic neurons. The 60 most significantly
regulated transcripts (ANOVA, p,0.005) were analyzed by Partek Genomics Suite 6.5 to determine hierarchical clustering. Samples (columns) are
clustered based on treatment condition whereas transcripts (rows) are clustered based on expression pattern. Relative levels of gene expression are
depicted with a color scale in which red represents the highest level of up-regulated expression and blue represents the lowest level of down-
regulated expression. Unsupervised clustering identified 4 major groups of genes, identified by the solid lines and numbers on the far right. Group 1
represents genes that are upregulated by 6 hr after BMP-7 treatment and remain upregulated at 24 hr after BMP-7 treatment; Group 2, genes
upregulated only at 24 hr post-BMP-7 addition; Group 3, genes that are downregulated by BMP-7 at 24 hr; and Group 4, genes that are
downregulated by 6 hr after BMP-7 treatment and remain downregulated at 24 hr after BMP-7 treatment. Additional information for the genes
identified in Groups 1 and 2 is provided in Table S1; genes identified in Groups 3 and 4 are described in more detail in Table S2.
doi:10.1371/journal.pone.0021754.g002

Genes Regulated during Primary Dendritogenesis
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Internal validation and relevance of these microarray
data

The validity of the microarray data generated in this study is

supported by two lines of evidence. First, Northern blot analysis

confirmed microarray data for a subset of genes identified as

upregulated by BMP-7. Second, multiple genes identified in this

study as differentially regulated by BMP-7 have been reported to

be similarly regulated by BMPs in other model systems. For

example, Adcyap (PACAP) has been shown to be negatively

regulated by BMPs [38] and was also suppressed in BMP-7-treated

sympathetic neurons. Conversely, Hand1 [39,40], the Id genes

[41], Noggin [42,43,44], Ngfr [45], Klf10 [46], and Vegf [47] are

upregulated by BMPs in other model systems and by BMP-7 in

cultured sympathetic neurons. Comparable patterns of gene

regulation across these studies not only validate our microarray

data but also suggest the existence of a subset of conserved, cell-

type independent BMP-responsive genes that constitute a

canonical BMP signaling pathway across multiple BMP family

members. However, other genes shown to be upregulated by

BMPs in other model systems, notably, Igfbp3 [48,49], Ccl2 [50]

and Cdh2 [51], were downregulated by BMP-7 in sympathetic

neurons. This suggests that our dataset also includes genes that are

uniquely regulated in our novel neuronal model system.

Although the identification of core BMP-regulated genes

provides validity to our findings, these data also point to a

potential limitation of our study, which is that at least a subset of

genes regulated in our model could be BMP-responsive but not

play a direct role in dendrite formation. However, several

characteristics of the model system strongly suggest that the

transcriptome described in this study is enriched for genes of

functional relevance to primary dendritogenesis. One important

characteristic is that our model is comprised of a homogenous

population of sympathetic neurons devoid of other cell types

[22,25]. In addition, we were able to experimentally isolate

synchronized neurons at two distinct stages of dendritic growth:

immediately preceding the formation of dendrites and during the

initial formation of primary dendrites. Third, neurons in these

cultures respond uniformly to the dendrite-promoting activity of

BMP-7 and other BMPs of the dpp and 60A subfamilies (Figure 1

and [25]), and BMP-induced dendrite formation occurs in the

absence of changes in cell survival or axonal growth (data not

shown and [25]). These characteristics significantly increased the

likelihood of capturing genes specifically involved in dendrite

formation rather than genes that regulate general neurite

formation, neuronal differentiation or neuronal cell survival. This

conclusion is corroborated by comparisons between the micro-

array dataset generated in this study and transcriptomes reported

from differentiating PC12 cells, which do not elaborate dendrites.

Genes identified in this study are likely specific for dendrite (and

not neurite) outgrowth since the set of genes differentially

regulated by BMP-7 in cultured sympathetic neurons included

only a few genes previously associated with NGF-induced neurite

outgrowth in PC12 cells (Calb1 [52], Cited2 [53], Egr1 [54], Hspb1

[55], Ptprr [56] and Tyro3 [57]) or identified as differentially

regulated by a close family member of BMP-7, BMP-4, in PC12

cells (Mapt and Egr1 [58]).

Unexpected findings
Surprisingly, few genes that encode the major cytoskeletal

proteins found in dendrites [59] were identified as transcriptionally

regulated by BMP-7 during primary dendritogenesis in sympa-

thetic neurons. One possibility is that since cytoskeletal proteins

are downstream effectors, they are upregulated between the 24

and 48 hours-post-BMP treatment, which are the time points

between which we observed a substantial difference in actinomy-

cin treatment on BMP-7-induced dendritic growth. An alternative

possibility is that in addition to transcriptional regulation, post-

transcriptional mechanisms that regulate cytoskeleton proteins are

critically important in dendrite formation. For example, tubulin

production has been shown to involve translational feedback

regulation that results in tight regulation of protein based on

intracellular concentrations of unpolymerized subunits [60]).

Additional transcriptome analyses at time points between 24 and

48 hours post-BMP treatment integrated with proteomic analysis

may offer unique insights into additional effector genes and the

role of non-transcriptional regulatory mechanisms that contribute

to primary dendritogenesis.

Another unexpected finding was that multiple genes previously

reported to activate growth of new neurites in primary neuronal

cell cultures or neuronal cell lines were repressed by BMP-7 in

sympathetic neurons, including: Alcam [61], Areg [62], Atf3 [63],

Calb1 [64,65], Ccl2 [66], Cd47 [67,68,69], Cdh2 [69] and Dclk1

[68]. Although the reasons for this discrepancy are unclear, there

are several possible explanations. One technical consideration is

that some of the initial experiments defining these genes as

activators of neurite extension used overexpression paradigms,

which may not reflect physiological function. Another possibility is

that stimulation of the genetic program for primary dendritogen-

esis activates a negative feedback loop that functions to limit

dendritic growth. Indeed the BMP-7 transcriptome in sympathetic

neurons suggests a role for both positive and negative feedback

regulation. One of the few genes downregulated by BMP-7 in

sympathetic neurons was Mgp, which has been shown to inhibit the

effects of BMPs in muscle [70]. The attenuation of Mgp would be

predicted to accentuate BMP signaling and feed forward to

Figure 3. Overview of gene expression changes after addition
of BMP-7 to sympathetic neurons. Venn diagram showing
concordance of significant changes in transcript levels between
treatment comparisons. The numbers in each section refer to the
number of annotated genes that were found to be significantly
different between treatment groups (p,0.05, 1.2 fold change up or
down). Specific genes corresponding to groups identified by the letters
A through G are identified in Tables S3, S4, S5 available in on-line
supporting information.
doi:10.1371/journal.pone.0021754.g003

Genes Regulated during Primary Dendritogenesis
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Figure 4. Functional analysis of genes differentially regulated during dendritogenesis in cultured sympathetic neurons. Probe sets
that were determined to be significantly regulated in sympathetic neurons exposed to BMP-7 for 6 hr (compared to controls) were analyzed using
MetaCore software (GeneGo). The most significant Gene Ontology signaling and metabolic (top panel) and cellular and molecular (bottom panel)
pathways are shown.
doi:10.1371/journal.pone.0021754.g004

Genes Regulated during Primary Dendritogenesis
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sensitize cells to BMP-7. On the other hand, several genes

activated by BMP-7 in cultured sympathetic neurons have

previously been shown to antagonize BMP-mediated signals,

including Noggin, and Tmeff1 [71]. The transcription factor Atf3,

which is a permissive protein that facilitates the activation of Id by

BMPs [72], is downregulated by BMP-7 treatment of SCG

neurons. The regulation of multiple genes that inhibit effects of

BMP suggests the existence of negative feedback systems that are

activated within 24 hr of BMP-7 exposure. Presumably, these

negative feedback pathways are activated to prevent interminable

signaling and thus prevent overgrowth of dendrites.

Other possible explanations for why genes shown to activate

neurite outgrowth in other systems were downregulated by BMP-7

in sympathetic neurons include: 1) these genes have opposite

effects on dendrites versus axons; and 2) the genetic program that

drives BMP-7-induced dendritic growth in sympathetic neurons

differs from genetic control of dendritic growth triggered by other

stimuli in other neuronal cell types. With respect to the former,

only a minority of previously published studies of neurite

outgrowth identified the affected neurites as dendrites, so it is

likely that the neurites stimulated by upregulation of these genes

were axonal in nature. There is significant experimental evidence

that axons and dendrites are differentially regulated [22], even by

the same signaling molecule [73]. Regarding the latter, it is

possible that these gene products have different roles in the context

of BMP-induced dendritic growth in sympathetic neurons relative

to their roles in other model systems of dendritic growth. There is

precedence for this possibility: activation of the GTPase RhoA is

required for BMP-7-induced dendritic growth in sympathetic

neurons [74], but inhibits activity-dependent dendritic growth in

cultured neurons of central origin [75,76]. It is not clear whether

this reflects a difference between peripheral or central neurons or

between BMP-induced versus activity-dependent dendritic

growth. It should be possible to distinguish between these

possibilities experimentally since BMPs have been shown to

robustly enhance dendritic growth in central neurons in culture

[77,78,79,80].

Potential strategies for using these data in mechanistic
studies of dendritogenesis

Gene transfection, pharmacological modulation, and siRNA

can be used in cultured sympathetic neurons to directly assess the

functional role of BMP-regulated genes in primary dendritogenesis

and several studies are underway in our lab to investigate

individual genes using these approaches. However, given the

large number of BMP-regulated genes discovered in our analysis,

gene-by-gene functional evaluation of physiological regulators of

dendritogenesis is challenging. One approach that might be useful

in prioritizing genes for mechanistic studies is to focus on

transcripts whose gene products are localized to dendrites, which

implies a direct role in dendritogenesis, rather than upregulation

as an epiphenomenon. Such genes include Cxcr4 [81,82], Hpcal1

[83,84], Gfra2 [85], Ina [86], Pka [87,88], Syt4 [89,90], and Tyro3

[91].

Another approach for prioritizing genes for gene-by-gene

analysis is to identify genes that have already been shown to

participate in dendrite or, less stringently, neurite outgrowth.

Indeed, several of the BMP-7-responsive genes activated in

sympathetic neurons during dendritogenesis have been previously

shown to modulate dendritic growth in other model systems.

Examples include Jagged1, a ligand for the Notch system that has

been implicated in controlling multiple aspects of dendritic growth

[75,92,93]; Mark1, a gene whose optimal levels of expression is

required for proper dendrite length [94]; Ngfr (p75), which has

complex roles in dendrite stabilization and likely modulates

increased sensitivity to dendrite regulating ligands [95,96,97];

Pka, which responds to increased cAMP levels that play a major

role in dendrite formation and stability [88,98,99,100] and Vegfa,

which plays a role in dendrite formation during development

[101,102] and numerous pathophysiological states [103]. Con-

versely, we found downregulation of several genes that have been

demonstrated to inhibit dendrite or neurite formation, including

Adcyap1 (PACAP) [104], Maoa and Maob [105,106,107,108] and

Pdlim1 whose expression in sensory neurons downregulates neurite

number [109]. The combined upregulation of a set of pro-

dendritic genes and downregulation of anti-dendritic genes may

underlie the robust response of sympathetic neurons to BMP-7. It

remains to be determined whether these genes play a role in

primary dendritogenesis versus dendrite modulation, but these

genes are certainly potentially important based on functions

established in independent studies and seem likely to be

functionally relevant in primary dendritogenesis in sympathetic

neurons.

Figure 6. Validation of BMP-7 induction of expression for
genes identified as up-regulated in microarray analysis. To
validate results of microarray analysis of gene expression, we analyzed
gene expression in primary cultures of sympathetic neurons treated
with or without BMP-7 for 24 hr. Total RNA collected from these
cultures was submitted to Northern blot analysis using six independent
probes corresponding to genes identified as upregulated by microarray
analysis. (A) Representative Northern blots probed for Id1, Id3, Delta1,
Ngfr (p75), Jagged1 and CXCR4. In all cases, a single band was detected
at the expected size, and equal loading of mRNA was verified by
probing with actin, which was considered a housekeeping gene. (B)
Effect of transcriptional and translational inhibitors on BMP-7-stimulat-
ed gene expression in sympathetic neurons. Cultures treated with or
without BMP-7 in the absence or presence of actinomycin-D or
cycloheximide to inhibit mRNA or protein synthesis, respectively. Total
RNA from these cultures was analyzed by Northern blotting for
expression of Id1 and Id3. BMP-7 induced expression of both Id1 and
Id3 was blocked by actinomycin-D, while cycloheximide enhanced the
expression of both genes in response to BMP-7.
doi:10.1371/journal.pone.0021754.g006

Figure 5. Informatic analysis of interactions between BMP-7-regulated genes identifies potential roles of Id transcriptional
repressors. Transcripts differentially regulated by BMP-7 at 6 hr (p,0.05, 1.2 fold change up or down; listed in Tables S3, S4, S5) were entered into
the GenGO Analyze Networks (AN) algorithm with default settings. Shown is one of the top scored networks as identified by an enrichment z-score.
Thick cyan lines indicate the fragments of canonical pathways. Up-regulated genes from the gene input list are marked with red circles. A significant
network of pathways linked by annotated functional data included three of the Id genes, which are among the most robust transcriptional regulators
identified in our analysis and which are found in the same cluster of genes activated at both 6 and 24 hr after BMP-7 treatment.
doi:10.1371/journal.pone.0021754.g005
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A final strategy is to investigate functional relationships using

pathway analyses. Figure 5 highlights an example of a complex

network of known interactions inferred using the set of genes

differentially regulated by BMP-7 at 6 hr. The analysis suggests that

Id genes play an important role in the regulation of a number of genes

that are differentially regulated by BMP-7 in sympathetic neurons,

which in turn suggests that Id genes play a central and important early

role in regulating primary dendritogenesis. Ids are known transcrip-

tional regulators that control expression of downstream genes, and

our experimental data (Figure 6) confirm that Id genes are strongly

upregulated by BMP-7 and meet the criteria for immediate early

genes in that they respond rapidly to exogenous factors but do not

require new protein translation. As has been observed with other

immediate early gene responses, cycloheximide enhanced the relative

abundance of Id1 and Id3 mRNAs in the absence of BMP treatment.

This phenomenon may be due to impairment of inhibitory factors

that require protein synthesis (e.g., basal transcription of Id1 could be

inhibited by a transcription factor that is rapidly turning over and

protein synthesis inhibitors therefore deplete this transcription factor

resulting in lower Id1 levels).

Conclusion
In conclusion, we present the first comprehensive gene profiling

analysis of a model system for primary dendritogenesis in a

mammalian neuron. Our findings identify a set of genes

differentially regulated by BMP-7 in sympathetic neurons during

primary dendritogenesis. Bioinformatic analyses implicate a

number of well-established and novel genes and signaling

pathways, which will inform testable hypotheses regarding

transcriptional control of the initial stages of dendritic growth.

That these findings may be generally applicable to dendritic

growth in other neuronal cell types is suggested by evidence that

BMPs also selectively promote dendritic growth in central neurons

[77,78,79,80,110].

Materials and Methods

Ethics Statement
All procedures involving animals were performed according to

protocol number RA02H321 approved by the Institutional

Animal Care and Use Committee at Johns Hopkins University.

Timed-pregnant Holtzman rats were purchased from Harlan

(Indianapolis, IN) and housed individually in standard plastic

cages with Alpha-Dri bedding (Shepherd Specialty Papers,

Watertown, TN) in a temperature (2262uC) controlled room on

a 12 h reverse light-dark cycle. Food and water were provided ad

libitum. Dams and pups were humanely euthanized prior to

harvesting of tissues for culture; no experimental manipulations

were performed prior to euthanasia.

Primary Culture of Sympathetic Neurons
Sympathetic neurons were dissociated from the superior

cervical ganglia (SCG) of embryonic day 21 (E21) rat pups and

maintained in the absence of glial cells in serum-free medium

supplemented with nerve growth factor (b-NGF, 100 ng/ml,

Harlan Bioproducts, Indianapolis, IN) as previously described

[111]. Recombinant human BMP-7 (50 ng/ml), which was a

generous gift of Creative Biomolecules (now known as Curis,

Cambridge, MA) was added to the medium on day 5 in vitro to

trigger dendritic growth [25].

Morphological analyses
To visualize dendrites, cultures were immunostained with a mono-

clonal antibody to MAP-2 (Sternberger-Meyer Immunochemicals,

Jarrettsville, MD) and antigen:antibody complexes were detected by

indirect immunofluorescence as previously described (Lein et al.,

1995). In all morphometric analyses, only isolated neurons, i.e.,

neurons whose cell were bodies were at least 100 mm from the soma

of the nearest neighboring cell were analyzed, since a previous study

[23] demonstrated that density-dependent changes in cellular

morphology occur when cell bodies are separated by lesser distances.

Processes were scored as dendrites if they were MAP-2-immunore-

active, tapered over their length and at least equal in length to the

diameter of the cell body. The percentage of neurons with dendrites

was determined from 5 independent fields (at 2006magnification)

per culture in 3 cultures per condition. These values were averaged

within treatment groups to obtain the percentage of neurons with

dendrites per treatment for that experiment. The experiment was

repeated 3 times using cultures derived from 3 independent

dissections, resulting in an n = 3 for statistical analysis of treatment-

related effects using a one-way ANOVA with p,0.05 considered

significant, followed by post hoc comparison of means using Student

Newman-Keuls analysis.

Western blot analysis of cytoskeletal proteins
To assess the effects of BMP treatment on axonal growth,

cultured sympathetic neurons were plated onto poly-d-lysine

coated 35 mm dishes and a subset of these cultures were treated

with 50 ng/ml of BMP-7 in the presence or absence of

actinomycin D for 24 hr beginning on day 5 in vitro. Cell lysates

were collected from both control and BMP-7-treated cultures on

day 6 in vitro by scraping cells off dishes in 50 mM Tris buffer

(pH 7.4) containing 0.1% sodium dodecyl sulfate, 2% 2-mecap-

toethanol and 1 mM EDTA and homogenized by passaging

through a 23 gauge needle at 4uC. Cell lysates were centrifuged at

12,0006 g for 15 min and the protein concentrations of the

supernatants were determined using the Bradford dye reagent

(Bio-Rad). Equal amounts of proteins were resolved by SDS-

PAGE, electrophoretically transferred onto a nitrocellulose

membrane, and probed with antibodies to MAP2 or an antibody

to the phosphorylated forms of the H and M neurofilament

subunits (SMI31; Sternberger Monoclonals), which are primarily

found in axons. Immunoreactive bands were detected using

Chemiluminescent Substrate (Pierce Chemical) after sequential

treatment with biotinylated goat anti-mouse IgG (HyClone) and

with horseradish peroxidase-conjugated streptavidin (Amersham).

RNA Isolation and Microarray Processing
Total RNA was isolated from cultures grown under 3 different

experimental conditions: 1) cultures not treated with BMP-7,

referred to as control; 2) cultures exposed to BMP-7 for 6 hr,

referred to as BMP6h; and 3) cultures exposed to BMP-7 for

24 hr, referred to as BMP24h. Total RNA was isolated from each

pooled sample using the Qiagen RNeasy kit (Qiagen, Valencia,

CA) per the manufacturer’s protocol. In our experience, 5 mg total

RNA is typically purified from one million neurons. The quality

and concentration of the isolated RNA was assessed by

spectrophotometry (2100 Bioanalyzer, Agilent Technologies,

Santa Clara, CA) and gel electrophoresis. One RNA sample

(pooled from multiple cultures set up at the same cell densities used

for morphological analyses) of each experimental condition was

collected per experiment from cultures derived from the same

dissection and experiments were repeated 3 times using cultures

derived from 3 independent samples resulting in nine total samples

(363 study design). Total RNA was isolated from all experimental

conditions at the same time (day 6 in vitro).

Gene expression microarray assays were performed in the

Affymetrix Microarray Core of Johns Hopkins University Bloomberg
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School of Public Health (Baltimore, MD) following the 39IVT one-

cycle labeling and amplification protocol described in the Affymetrix

GeneChip Expression Analysis Technical Manual (http://www.

affymetrix.com/support/technical/manual/expression_manual_affx).

Samples were processed in two batches: the first batch included 3

samples (with one biological replicate sample of 10 mg cRNA per each

of the three experimental conditions) whereas the second batch

included 6 samples (with two biological replicate samples of 5 mg

cRNA per each of the three experimental conditions). Experimental

conditions were balanced across the two batches in order to prevent a

technical processing bias.

Samples were randomized prior to processing. Target material

(cRNA) resulting from the labeling and amplification reactions

was hybridized to Affymetrix GeneChipH Rat Genome U34A

arrays, which contain oligonucleotide probe sets for 8,799 rat

genes from full length mRNA transcripts and EST clusters.

Target cRNA was hybridized over two hyb/scan processing

batches; the quantity of cRNA hybridized varied by batch (10 mg

cRNA hybridized for Batch1 and 5 mg cRNA hybridized for

Batch2). Arrays were scanned using MAS5 software (Affymetrix,

Santa Clara, CA) to produce raw image data (DAT files) and raw

probe cell level signal intensity values (CEL files). Analysis of

array performance quality metrics was completed by the Gene

Microarray Shared Resource of Oregon Health & Science

University (Portland, OR) using Affymetrix GeneChip Command

Console software (Affymetrix, Santa Clara, CA) and custom

scripts for data visualization.

Microarray data analysis
Affymetrix CEL files were imported to Partek Genomics Suite

v. 6.5 (Partek, St. Louis, MO) for data visualization and statistical

testing. Upon data upload, pre-processing of CEL data for the

complete data set (total of nine samples; three biological replicate

samples each for Control, BMP6h, and BMP24h conditions) was

performed using the Robust MultiChip Average (RMA) algo-

rithm [112,113]. A two-way ANOVA statistical test was

performed, including factors for treatment (control, BMP6h,

BMP24h) and processing batch (Batch1: control, BMP6h,

BMP24h; Batch 2: two samples each of control, BMP6h,

BMP24h); the Partek software ‘‘batch removal’’ function was

evoked for the latter factor, which performs a signal value

adjustment aimed to minimize batch-specific technical variation.

The Partek batch removal function is designed for cases when

batching is balanced across the sample conditions (User’s Guide,

Partek Genomics Suite). Differential gene expression across the

treatment course was assessed by applying a filter on p-value

(Treatment),0.005 to the ANOVA results (note that all reported

p-values are unadjusted and therefore not corrected for multiple

testing). Patterns of gene expression from this analysis output

were visualized using hierarchical clustering. For a more in depth

analysis of the between treatment differences, three linear

contrasts were performed: BMP6h versus control, BMP24h

versus control, and BMP24h versus BMP6h. Lists of significant

genes were generated for each comparison. Gene list criteria

included passing a maximum 0.05 raw p-value cutoff and a

minimum fold-change (FC) cut-off of 1.2 for both up- and down-

regulated genes in response to BMP treatment. Concordance of

the gene lists was visualized by Venn diagram (http://bioinfogp.

cnb.csic.es/tools/venny/index.html). Gene function and pathway

annotation were associated with the data set using MetaCore

software (GeneGo, St. Joseph, MI).

All microarray data is MIAME compliant and the raw data has

been deposited in the MIAME compliant GEO database

(accession number GSE28150).

Northern blot analysis
Sympathetic neuronal cell cultures were rinsed with phosphate

buffered saline immediately prior to RNA purification, and then

treated with Trizol (Invitrogen, Carlsbad, CA) to solubilize nucleic

acids. The Trizol suspension was extracted as recommended by

the manufacturer and RNA was precipitated with isopropanol and

rinsed with 70% ethanol prior to resuspension in water. RNA (5–

10 mg) was treated with formamide (Sigma, St. Louis, MO) and

heated to 65uC prior to electrophoresis on formaldehyde agarose

gels. RNA gels were blotted using conventional capillary transfer

onto Whatman NytranTM membranes (GE Healthcare, Piscat-

away, NJ). Membranes were pre-blocked in hybridization buffer

(Stratagene QuickHyb, Agilent Technologies, La Jolla, CA) prior

to exposure to denatured, random-primed 32P-labeled probes.

After overnight exposure, the filters were washed at high

stringency in 0.1% SDS and 0.16 SSC (saline-sodium citrate;

diluted from 206 SSC containing 3 M sodium chloride and

300 mM sodium citrate, pH 7.0) at 65uC, followed by autoradi-

ography for 2 hr to 2 wk.

Probes used for hybridization experiments were derived by

excising mouse clones from plasmid vectors. After restriction

digestion of plasmids, fragments were gel purified and then

random prime labeled using the Stratagene Prime-IT kit, Agilent

Technologies) as previously described [114]. Unless specified, the

probes included the complete open reading frame and variable

portions of untranslated sequences. Id probes were fully sequenced

cDNA clones generated by Dr. Greg Kato (National Institutes of

Health, Bethesda, MD). Under hybridization and washing

conditions used in these experiments, there was no cross reaction

between the Id isoforms on Northern blotting. The Ngfr (p75)

probe was a 1.0 kb XbaI/BamHI fragment released from p288, a

clone encoding the complete open reading frame of Ngfr (a

generous gift from Phillip Barker, Montreal Neurological Institute,

McGill University, Montreal Canada), which represents the 39 half

of the coding sequence plus part of the 39 non-coding region.

Macaque CXCR4 was isolated from the plasmid pCR-Rh-

CSCR4.2, which was obtained from the NIH AIDS Research &

Reference Reagent Program (Rockville, MD). Probes for human

Jagged1 and Delta1 were excised from full-length clones (gifts from

Nicholas Gaiano, Johns Hopkins University School of Medicine,

Baltimore, MD).
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