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Abstract

Background: Insect herbivory induces plant odors that attract herbivores’ natural enemies. Assuming this attraction
emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating
the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates
suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set
of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-
induced attractants in odor mixtures or to odor mixture as a whole.

Methodology/Principal Findings: We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae
and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in
pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the
full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect
this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-
induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive
mixture.

Conclusions/Significance: We conclude that the predatory mites perceive odors as a synthetic whole and that the
hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported.
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Introduction

Since the discovery that plants release herbivore-induced plant

volatiles (HIPV) and thereby recruit predatory arthropods,

researchers have sought ways to harness this chemical communi-

cation system. This led to a search for individual HIPV that act as

predator attractants [1]. If predatory arthropods perceive odor

mixtures as collections of classifiable chemical components that

function as ‘‘attractant’’ or ‘‘repellent’’ it should be possible to

manipulate the distribution of predatory arthropods in the

environment through manipulation of HIPV. This possibility

gained support from experiments wherein transgenic plants that

constitutively produced (3S)-(E)-nerolidol were preferred by

predators over non-transgenic control plants [2]. Because many

herbivore induced compounds have been found to be attractive to

predators the predominant line of thinking has become that only

the induced attractants are important in indirect defence. There

are currently many research programs that attempt to improve

biocontrol through either the addition of synthetic attractants

(HIPV) to crops or through the production of transgenic crops that

constitutively produce novel HIPV.

The notion that an odor mixture is perceived as a collection of

components that can be classified as ‘‘attractants’’ and ‘‘repellents’’

is however challenged by current ideas about the perception of

olfactory information. For both arthropods and vertebrates, it has

been suggested that odor mixtures are not perceived as a collection

of individual components but rather as a synthetic whole [3,4].

The black bean aphid Aphis fabae is repelled by nine host-plant

compounds while a mixture of these is an attractant [5]. The

parasitoid Cotesia vestalis is attracted to a mixture 4 HIPV presented

against a background of clean cabbage odors whereas none of the

components of this mixture acts as an attractant [6]. The hawk

moth Manduca sexta does not respond to the individual components

of an attractive floral odor while a blend of these components

elicits strong attraction [7]. There is, however, also evidence

supporting the elemental perception of food odors. Vinegar is a

component of rotting fruit and Drosophila melanogaster is innately

attracted to vinegar [8]. Thus, it appears that an element of food-

associated odors mediates innate attraction in fruit flies in much

the same way as HIPV are thought to mediate predator attraction.

The earlier examples, however, suggest that odor mixtures are

rather perceived as a synthetic whole and not as a collection of

functional components.

If odors are perceived as a synthetic whole, the components of

an odor mixture may no longer be recognizable. This difference in

the ability to perceive components in odor mixtures between

elemental- and synthetic perception of odors can be understood in

the following way. Consider how two odors that have many
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components in common such as the odors of an infested and a

non-infested plant can be discriminated. If odors are perceived as

elemental objects the neuronal representation of one odor will

largely overlap with the representation of the other. This has to be

so, because only then the same component elicits the same

neuronal activity in both odors thereby enabling recognition.

Because of this constraint the synaptic changes that result from

learning about one odor will also affect synapses activated by the

other. Also, the more complex the odor, the greater the ensemble

of neurons representing it. The representational constraint can be

avoided if odors are perceived as a perceptual whole. The

correlated olfactory input elicited by similar odors can be

decorrelated and depending on the degree of decorrelation, the

representations of each odor need not overlap. Components may

then however no longer be recognizable as parts of odor mixtures.

Here, we address the question whether herbivore-induced compo-

nents in the odor of herbivore-infested plants, or the odor mixture as a

whole, function as predator attractants. The study system consists of the

predatory mite Phytoseiulus persimilis Athias-Henriot which exclusively

relies on chemical signals emitted by plants to locate distant patches of

herbivorous mites, being their prey [9]. Under natural conditions P.

persimilis predominately feeds on herbivorous mites such as the two-

spotted spider mite Tetranychus urticae Koch. Plants emit HIPV upon

infestation by T. urticae [10,11], which makes the plant attractive to

predatory mites [9,12]. Spider mites are highly polyphagous [13] and

the quantitative and qualitative release of spider-mite-induced volatiles

varies with plant species [14]. Phytoseiulus persimilis copes with this

variability in spider-mite-induced plant odors by learning from

experience. Olfactory preference is acquired during development

and through associative learning in the adult phase [15,16,17,18,19].

Whereas experience modulates olfactory preference in P.

persimilis, several lines of evidence suggest that the HIPV part of

odor mixtures functions as an attractant to this predator. First, P.

persimilis often prefers the odor of spider-mite infested plants over

conspecific control plants even though it lacks experience with the

specific odor mixtures [20]. Second, typical spider-mite induced

plant volatiles can be attractants [2,11,19,20]. Third, transgenic

expression of HIPV in strawberry made these plants more

attractive to P. persimilis than control plants [2]. On the other

hand several lines of evidence contradict a special status of HIPV.

Attraction to HIPV in their pure form is weak compared to

attraction to the full blend of spider-mite induced plants [19]. The

chance of finding predatory mite attractants among typical spider-

mite-induced plant volatiles is not greater than finding them

among compounds not associated with spider mite herbivory [19].

In odor mixtures the response to the whole appears to be more

than the sum of its parts. For example, two components that elicit

no response in their pure form may, as a binary odor mixture elicit

a strong response [21]. Finally, HIPV does not appear to have a

specific role in predator attraction since P. persimilis acquires a

preference for control plants over HIPV producing plants just as

readily as the reverse [17,19].

To experimentally address the question whether predatory mite

attraction to odors from herbivore-infested plants results from

attraction to HIPV or from attraction to the mixture as a whole,

we created an artificial odor mixture that mimicked the odor of

spider-mite-infested Lima bean so well that the mites did not

discriminate between the two. Upon spider mite infestation, Lima

bean predominately produces the following five HIPV that were

all part of the artificial mixture: methyl salicylate (MeSA), b-

ocimene, cis-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene

(DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene,

(TMTT) [22,23]. Phytoseiulus persimilis was cultured on spider-

mite-infested Lima bean, thereby ensuring that the mites acquired

a preference for this odor. For each of the HIPV we asked the

following two questions: (1) What is the attraction of P. persimilis to

the individual component, (2) What is the attraction of P. persimilis

to the full mixture compared to a mixture lacking a particular

component. To assess whether the non-induced part of the odor of

herbivore infested plants contributes to the attraction of predatory

mites, these experiments were performed both in the absence -,

and in the presence of the odor of non-infested Lima bean.

Results

Response to the artificial mixture
A simple mixture consisting of equal quantities of the five HIPV

(MeSA, b-ocimene, cis-3-hexenyl acetate, TMTT and DMNT) in

addition to the odor of a Lima bean leaf disc was attractive to P.

persimilis (Gt df = 6 = 21.70 P = 0.001, Gp df = 1 = 18.34 P = 0.000,

Gh df = 5 = 3.35 P = 0.645, Figure 1). Although this mixture was an

attractant to the mites, attraction to the natural odor produced by a

spider-mite-infested Lima bean leaf-disc was significantly stronger

(X2
df = 1 = 14.00, P = 1024) if clean air was offered as the alternative

(Figure 1). Under natural conditions clean air is not a realistic

alternative, however: the predatory mites are much more likely to

face a choice between the odor of a spider-mite infested plant and

non-infested conspecific plants. Facing this more realistic choice, the

predatory mites preferred the artificial mixture over the odor of

non-infested Lima bean to an extent similar as they prefer the

natural odor of spider-mite-infested Lima bean over the odor of

non-infested Lima bean (Figure 1). Moreover, offering the artificial

mixture against the natural odor of spider-mite-infested Lima bean

revealed that predatory mites did not discriminate between these

odors (Gt df = 6 = 7.91 P = 0.244, Gp df = 1 = 1.29 P = 0.255,

Gh df = 5 = 6.62 P = 0.250 Figure 1).

Background odor has an opposite effect on predator
attraction to individual HIPV and their mixture

When offered in their pure form the five HIPV used to create the

attractive artificial mixture elicited responses that ranged from

attraction to repellence. MeSA was significantly attractive

(Gt df = 6 = 27.34 P = 0.000, Gp df = 1 = 21.52 P = 0.000, Gh df = 5

= 5.81 P = 0.324), whereas attraction to b-ocimene bordered

significance Gt df = 6 = 5.82 P = 0.44, Gp df = 1 = 3.30 P = 0.070,

Gh df = 5 = 2.605 P = 0.77), TMTT (Gt df = 6 = 7.182 P = 0.304,

Gp df = 1 = 0.087 P 0.7680, Gh df = 5 = 7.09 P = 0.214), and DMNT

(Gt df = 6 = 5.40 P = 0.493, Gp df = 1 = 1.35 P = 0.245, Gh df = 5 = 0.54

P = 0.542) did not elicit a significant response whereas cis-3-hexenyl

acetate was significantly repellent (Gt df = 6 = 18.25, P = 0.006,Gp

df = 1 = 6.19 P = 0.013, Gh df = 5 = 12.07 P = 0.034) (Figure 2 A–E).

When these odors were tested in the presence of Lima bean

background odor the overall effect was that the strength of the

response significantly attenuated (F(1,50) = 4.92, P = 0.031) while b-

ocimene was the only compound for which attraction significantly

decreased (X2
df = 1 = 4.40 P = 0.0360). The reverse was true for the

blend of these five HIPV. This mixture, presented in background of

Lima bean odor elicited a significantly stronger response than in its

absence (X2
df = 1 = 3.85 P = 0.049). In absence of background odor

the mixture of five HIPV was at best a weak attractant (Gt df = 6

= 10.78 P = 0.090, Gp df = 1 = 3.57 P = 0.059, Gh df = 5 = 7.21

P = 0.205). The addition of Lima bean background odor to the

HIPV mixture resulted in a more than threefold increase of the

preference index and made the mixture a significant attractant

(Gt df = 6 = 21.71 P = 0.001, Gp df = 1 = 18.34 P = 0.000, Gh df = 5

= 3.35 P = 0.645). Thus, while the background odor significantly

attenuated the response to the components of the artificial mixture, it

greatly facilitated attraction to their mixture.

Predators React to Full Plant Odor Not Its Parts
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The relation between the response to HIPV in their pure
form and their role in the mixture

MeSA was the only attractive HIPV out of the five that are part

of the artificial mixture and mixtures without MeSA were not

attractive. There was however no significant difference between

attraction to the full mixture of five HIPV and the mixture

reduced by eliminating MeSA. However, in the presence of

background odor of Lima bean a significant difference between

the attraction to the mixture without MeSA and the full mixture

was observed (X2
df = 1 = 10.99, P = 0.001 Figure 2A).

Removing the most repellent HIPV, cis-3-hexenyl acetate,

resulted in increased attraction to the mixture in absence of

background odor (Figure 2C). The response to this reduced

mixture was significantly heterogeneous, however (Gh df = 5 = 20.54

P = 0.001). The difference between this reduced mixture and the

full mixture bordered significance (Dunnett’s post hoc test

P = 0.08). In the presence of the background odor, cis-3-hexenyl

acetate did not significantly repel the predatory mites and

removing it from the mixture had no significant effect either.

TMTT and DMNT elicited no response in the presence, and in

the absence of the background odor (Figure 2D,E). The mixture

lost its attractiveness, however, when DMNT was eliminated from

it, whereas eliminating TMTT from the mixture had no effect.

Attraction to pure b-ocimene was significantly lower in presence,

than in absence of background odor (X2
df = 1 = 4.49, P = 0.036

Figure 2B). Attraction to mixtures without b-ocimene were not

significantly different from attraction to the full mixture. In absence

of background odor the reduced mixture was however significantly

attractive to the mites, in contrast to the full mixture (Gt

df = 6 = 14.32 P = 0.026, Gp df = 1 = 7.97 P = 0.004, Gh df = 5 = 6.35

P = 0.273).

Background odor facilitates discrimination between
MeSA and the HIPV mixture

Starved females of P. persimilis cultured on spider-mite-infested

Lima bean were attracted to pure MeSA. MeSA was an ingredient

of all odor mixtures that significantly attracted P. persimilis. In the

presence of the background odor of Lima bean there was no

difference between the attraction to MeSA and the mixture of all

five HIPV. To test if the mites discriminate between MeSA and

this mixture these odors were offered as alternatives. Whereas pure

MeSA offered against clean air was significantly more attractive

than the mixture of all five HIPV offered against clean air

(X2
df = 1 = 3.5, P = 0.049 Figure 2A) the mites did not prefer MeSA

over the mixture when offered as alternatives (Gt df = 6 = 13.32

P = 0.038, Gp df = 1 = 0.73 P = 0. 394, Gh df = 5 = 12.59 P = 0.027

Figure 2F). When the odor of Lima bean was added to both sides

of the test arena, the predatory mites preferred the odor of the full

mixture over MeSA (Gt df = 6 = 12.65 P = 0.048, Gp df = 1 = 3.73

P = 0.053, Gh df = 5 = 8.92 P = 0.112).

Discussion

To elucidate if predators respond to the odor of herbivore-

infested plants as a whole, we will first assess how important the

relative abundance of herbivore-induced plant volatiles is to

predator attraction. Then, we will consider to what extent

attractive components affect the response to odor mixtures and

finally to what extent non-induced plant odors affect predator

attraction.

The predatory mites in our experiments preferred the odor of a

freshly excised spider-mite-infested leaf disc over the odor of a

control leaf disc. The presence of volatiles emanating from the

Figure 1. Response to a mixture of all five spider mite induced volatiles of Lima bean. The odor of spider-mite-infested Lima bean (IB) was
more attractive than the artificial mixture, plus a Lima bean leaf disc (B+M5) if no odor (NO) was the alternative. The artificial mixture plus the odor of
non-infested Lima bean (B+M5) was preferred over a Lima bean leaf disc (B) to a similar extent as a spider-mite infested leaf disc (IB) was preferred to
B. In a direct test the mites did not differentiate between the artificial odor (M5+B) and the odor of spider-mite-infested Lima bean (IB). The Y-axis
represents the preference index (2100 total repellence, +100 total attraction). A star above the bar indicates a choice based on significance of
Gp,0.05. Horizontal bracket bars with stars below the bars represent significant differences betwwen the pooled experimental results based on a
Chi-square test (P,0.05).
doi:10.1371/journal.pone.0021742.g001

Predators React to Full Plant Odor Not Its Parts
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Figure 2. Attraction to individual HIPV, a mixture of all HIPV and mixtures reduced by one component. The left half of each panel
depicts results of choice experiments in absence of Lima bean odor while the right half depicts the same experiments in presence of Lima bean
background odor (indicated by a leaf disc). The first red bar represents attraction to the pure compound, whereas the second bar represents
attraction to the mixture of all five HIPV (for comparison present in all Figures) and the third red bar attraction to a mixture reduced by one HIPV. The
Y-axis gives the preference index (2100 total repellence, +100 total attraction). The abbreviation M5 refers to the mixture of all 5 HIPV, and M4 to a
mixture reduced by one component. The letter h in a bar indicates significant heterogeneity (Gh,0.05) among replicates. A star above the bar
indicates a choice based on significance of Gp,0.05. Capital letters (A,B) above the bars indicate differences with the mixture (M5) based on ANOVA
followed by Dunnett’s post-hoc test (P,0.05). Horizontal bracket bars with stars underneath represent significant differences between pooled
experimental results, as inferred from Chi-square tests.
doi:10.1371/journal.pone.0021742.g002

Predators React to Full Plant Odor Not Its Parts
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wounded plant tissue did not hamper the predator’s ability to

recognize the HIPV producing spider-mite-infested odor source.

Although there exists a clear difference in the relative abundance

of HIPV in the artificial mixture (i.e. equal quantities of each

volatile) and the odor of spider-mite-infested Lima bean [22,23],

the mites were not able to discriminate between the two. These

results indicate that HIPV are crucial for attraction while their

relative abundance appears to play a minor role.

Methyl salicylate was the only HIPV attractive in its pure form

and was present in all attractive mixtures. Methyl salicylate is

induced by T. urticae in a wide variety of plants [24]. It is however

by no means a spider-mite specific signal, it is for example also

induced by mechanical damage similar to that caused by chewing

of a caterpillar [25]. Females of P. persimilis cultured on MeSA

emitting plants are attracted to pure MeSA [11,15,19,20,26]

whereas without prior experience with MeSA-containing odors in

association with prey they are not [15]. Predators easily acquire a

preference for odors without MeSA over MeSA containing odors

[17,19]. As far as the population mean response is concerned

attraction to MeSA is thus acquired and not innate.

Acquired attraction to pure MeSA either results from the mite’s

ability to detect and associate the component MeSA in prey-

associated odors or from a perceptual similarity between MeSA

and these MeSA containing odors. Detection of MeSA in complex

mixtures requires that odors are perceived as elemental objects. If

attraction to pure MeSA results from the mite’s ability to detect

this attractant in complex mixtures, all MeSA containing odors

assessed in our experiments should be attractive. There were

however several mixtures that contained MeSA while they were

not attractive: (1) in absence of the background odor the mixture

of all five HIPV and (2) the reduced mixture without TMTT, (3) in

the presence of the background odor the reduced mixture without

DMNT. Since pure MeSA is attractive to P. persimilis, this suggests

that the mites are not able to detect MeSA in these odor mixtures.

Moreover, none of the other HIPV are attractive in their pure

form indicating that these components are also not associated with

the presence of prey.

It thus appears that predatory mites do not rely on the detection

of a single attractant in odor mixtures. Results also indicate that

there is no special combination of HIPV that acts as an attractant

because the combination of all HIPV is not an attractant while

MeSA alone is. This suggests that the MeSA containing odors that

were not attractive are to the predators perceptionally dissimilar

from MeSA and all attractive MeSA containing odors. To further

investigate this question one could perform a cross-generalization

experiment to assess if predatory mites cultured in the presence of

one of the MeSA containing odors that was not attractive in our

experiments acquire a preference for this odor and subsequently

ask if the mites are no longer attracted to pure MeSA or any of the

attractive MeSA containing odors. Results of such experiments are

however difficult to interpret since cross-generalization is often

asymmetrical, i.e. if there is generalization from odor a to b there

might not be (equal) generalization from odor b to a [27].

Attraction to the following HIPV (mixtures) was significantly

affected by the presence of odors not induced by herbivory: (1) the

blend of all five HIPV, (2) b-ocimene, (3) the artificial mixture

reduced by cis-3-hexenyl acetate and (4) the artificial mixture

reduced by DMNT. If the mites perceived these HIPV (mixtures)

as components, regardless of the presence of odor not induced by

herbivory, experiments with or without it should yield the same

result because constitutive plant odor was offered at both sides of

the choice arena. Therefore, this is to our knowledge the first

unambiguously result showing that constitutive plant odor affects

the response to HIPV. This is consistent with the hypothesis that

odors are perceived as a whole but not with the hypothesis that

predators are attracted to (components of) HIPV.

The idea that the predators perceive odor mixtures as a

synthetic whole is further corroborated by the fact that

components which in their pure form elicit no response contribute

to the response elicited by mixtures they are part of. This

phenomenon was also observed in experiments where the response

of P. persimilis to binary odor mixtures was assessed [21]. In the

present study this is best exemplified by the observation that there

is no attraction to the reduced mixture without DMNT in

presence of background odor (Figure 2E). This suggests that this

reduced mixture is perceptually so different from the odor of

spider-mite-infested Lima bean that the mites fail to recognize the

reduced mixture as a similar odor.

We observed two seemingly opposite phenomena. The

predatory mites robustly generalized their response to several

odors that are similar to the odor of spider-mite-infested Lima

bean. The mites did not differentiate between our artificial

mixture and the odor of spider-mite-infested Lima bean even

though both odors have very different HIPV ratios, the mites were

not troubled by volatiles emanating from leaf disc edges, several

HIPV could be removed from the mixture without an apparent

effect the mixture’s attractiveness and reducing the odor mixture

to MeSA resulted in attraction. At the same time the mites did not

generalize their response to several odors that were chemically not

very different from the full blend such as the mixture without

DMNT or the mixture without MeSA in presence of the

background odor. How can the lack of response to this chemical

variation be reconciled with the responsiveness to other variation?

It has been suggested that the glomerular olfactory bulb of

vertebrates - a similar system is present in predatory mites [28,29]

- functions as a classification system [30]. If one slowly modifies a

binary mixture of two components from a ratio where the first is

abundant to a ratio where the later is abundant, the activity of the

output neurons of this system remains in one correlated state up to

a point, where the output activity suddenly changes and assumes a

different state [30]. Each state of the olfactory bulb output neurons

is thought to represent class of odors that are perceived as similar

[30]. Hence, a range of changes to in the relative abundance of

components in odor mixtures may have little or no perceived effect

while a small change, even one in the same direction, may

suddenly induce a state shift in the bulbar output resulting in a

large effect on perception. If we assume that the glomerular

olfactory bulb of mites performs the same classification task as its

vertebrate analogue and we consider that the resolving power of

such a system in mites is constrained by the small number of

glomeruli and neurons in mites [28] compared to vertebrates we

have a plausible mechanism that can explain our results without

invoking a role of components as attractants. A coarse classifica-

tion system with sudden transitions between odor classes is

consistent with low sensitivity to the relative abundance of HIPV

and the similarity of a mixture to one component (MeSA) but not

to other components. It may explain the observed ability to

generalize from a familiar, spider-mite-infested-plant odor to a

variety of spider-mite infested plants from different species [24] or

to plants infested with prey and non-prey herbivores [31]. This

mechanism is also consistent with the observation that not all

mixtures that contain an attractive dose of MeSA are attractive to

P. persimilis and that components that elicit no behavioural

response or components that are not induced by the prey

contribute to the attractiveness of mixtures they are part of.

Our results suggest that it may be wrong to think of herbivore-

infested plant odors as a collection of attractive and repellent

components. It appears that the mites like so many other animals

Predators React to Full Plant Odor Not Its Parts
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[3,4,5,6,7] experience an odor mixture as a distinct odor, different

from its components. Attraction to components of a mixture may

arise from perceptual similarity to the mixture but this does not

necessarily imply that the presence of such components in other

mixtures makes these (more) attractive.

Materials and Methods

Plants and Mites
Lima bean plants (Phaseolus lunatus) were grown in a climate

room (22uC, 60% RH, 16:8 LD) until they were two weeks old.

Subsequently, the plants were infested with two-spotted spider

mites Tetranychus urticae (Koch). Predatory mites (Phytoseiulus

persimilis Athias-Henriot) were reared in a climate room (25uC,

80% RH, 16:8 LD) on detached spider-mite-infested Lima bean

leaves. Every day predatory mites received fresh spider-mite-

infested Lima bean leaves and the culture was subject to harvesting

virtually every working day. The frequent harvesting of mites

ensured that most mites used in the experiments were one to a few

days old since their last moult in the adult phase. Predatory mites

were originally obtained in 2001 from field samples at various sites,

where they naturally occur near the coast of Sicily, Italy. Before

choice tests female predatory mites were taken from the culture

and kept in Eppendorf tubes, deprived of water and food for a

period of 16–22 hours.

Odors
Methyl salicylate (MeSA) was obtained from Sigma-Aldrich, b-

ocimene (70% E- and 30% Z- isomers) from R. C. Treatt & co,

cis-3-hexenyl acetate was obtained from Aldrich, (E)-4,8-dimethyl-

1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-

tridecatetraene, (TMTT) were generously provided by Dr. W.

Boland of the Max Planck Institute for Chemical Ecology, Jena,

Germany. The concentration of each individual compound and

each compound in a mixture consisted of a 1:10,000 dilution of the

odor in hexane. Small pieces of filter paper (Ø 0.5 cm divided in

two pieces) were provided with 0.5 ml of the odor solutions and

served as the odor sources in the choice experiment. Freshly

excised leaf discs (Ø 1 cm) of non-infested Lima bean served as the

background odor and could easily be provided with pieces of filter

paper containing different combinations of HIPV. Freshly excised

leaf discs and freshly made odor sources were used in each

replicate experiment. In a series of choice experiments the

preference for: (1) each of the five HIPV (MeSA, b-ocimene, cis-

3-hexenyl acetate, DMNT and TMTT) was tested against clean

air, (2) each of these five HIPV added to odor from a leaf disc was

tested against odor from a leaf disc, (3) a mixture of four out of the

five HIPV was tested against clean air, (4) a mixture of four of the

five HIPV added to odor from a leaf disc was tested against odor

from a leaf disc, (5) the full mixture of all five HIPV was tested

against clean air, (6) the full mixture of all five HIPV added to a

leaf disc was tested against odor from a leaf disc. Finally, the

preference for the full mixture of these five HIPV was tested

against MeSA, either with or without a background odor from a

herbivore-free leaf disc at either of the two alternative odor

sources.

Olfactory response tests
The choice tests were conducted as described in [19,21]. In

short, the response to the odors was assessed using an experimental

arena, constructed from a Petri dish (Ø 9 cm) put upside-down

(Figure 3). A radial airflow was established by the connection of a

vacuum pump (flow 0.42 l/min) to an opening at the centre of the

bottom of the arena. Prior to the experiment, groups of about 35

mites were placed in cartridges that could be fitted between the

vacuum pump and the centre of the arena. For each replicate

experiment the setup was provided with freshly prepared odor

sources and a new cartridge with a new group of predatory mites.

To avoid contamination, different odors were tested in a different

arena. To confine the mites in the segment containing the odor of

their choice, insect glue barriers divided the arena in two while

leaving a 3 cm glue-free space in the middle on the arena bottom.

In this way, the mites were allowed to move only from the

cartridge to either segment, or back and forth between both

segments via the 3 cm wide opening in the insect glue barrier. One

side contained the synthetic odors and the other contained a

control filter paper impregnated with the solvent only. If Lima

bean background odor was provided, both sides contained a

Figure 3. The experimental setup. The choice arena was
constructed from a Petri dish (Ø 9 cm) positioned up side down. An
insect glue barrier (ig) divided the dish in two compartments that each
contained an odor source (o) An opening at the bottom allowed for the
connection of a cartridge containing the mites. The cartridge (c) was
fitted to a vacuum pump. The vacuum gives rise to a radial airflow over
the bottom of the choice arena, thus establishing two odor fields that
extended from the odor sources to the cartridge. Arrows indicate air
flow direction in the system.
doi:10.1371/journal.pone.0021742.g003
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herbivore-free Lima bean leaf disc and one side additionally

contained a filter paper with the synthetic odor while the other side

contained the control filter paper with solvent. The odor sources

were prepared in a fume hut and the solvent was allowed to

evaporate for exactly one minute before the odor source was

placed in the arena. The mites were released from the cartridge

and after three minutes the mites at each side of the choice dish

were counted.

For graphical display of the results, the preference for odors over

the control is expressed as a preference index: ((mites at odor side –

mites at control side)/total amount of mites) * 100. In this way

aversive odors were assigned a negative preference index (2100 to

0) and attractive odors a positive preference index (0 to 100).

Statistics
Because there is no difference between the results obtained from

mites tested individually and mites tested in groups in the two-

choice test employed [21], we can assume that individual mites

make individual choices. A replicated G-test for goodness of fit

[32] was used to assess if compounds elicited a response; significant

values of the total G-statistic (Gt) indicate a deviation from the

expected binomial distribution around a 50% response. This

statistic can be broken down into two statistics that each indicate

different aspects of the deviation. The overall pooled deviation

from an even distribution of all 6 replicate experiments is indicated

by significant values of the pooled G statistic (Gp) while the second

statistic, Gh, indicates the degree of heterogeneity among the 6

replicate experiments.

Individual synthetic compounds and their mixtures were

compared to the full mixture of five compounds using ANOVA

followed by Dunnet’s post hoc test [33]. This analysis was

performed on the (arcsine square root) transformed, relative

frequencies of replicate experiments [32]. If replicate experiments

were not heterogeneous, (indicated with an h in the bars of the

Figures), replicate experiments were pooled and the grand totals of

mite choices can be used to compare treatments in 262 frequency

tables using a Chi square test.
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