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Abstract

Epothilones are a new class of microtubule stabilizing agents with promising preclinical and clinical activity. Their cellular
target is b-tubulin and factors influencing intrinsic sensitivity to epothilones are not well understood. In this study, the
functional significance of specific b-tubulin isotypes in intrinsic sensitivity to epothilone B was investigated using siRNA
gene knockdown against bII-, bIII- or bIVb-tubulins in two independent non-small cell lung cancer (NSCLC) cell lines, NCI-
H460 and Calu-6. Drug-treated clonogenic assays showed that sensitivity to epothilone B was not altered following
knockdown of bII-tubulin in both NSCLC cell lines. In contrast, knockdown of bIII-tubulin significantly increased sensitivity to
epothilone B. Interestingly, bIVb-tubulin knockdowns were significantly less sensitive to epothilone B, compared to mock-
and control siRNA cells. Cell cycle analysis of bIII-tubulin knockdown cells showed a higher percentage of cell death with
epothilone B concentrations as low as 0.5 nM. In contrast, bIVb-tubulin knockdown cells displayed a decrease in epothilone
B-induced G2-M cell cycle accumulation compared to control siRNA cells. Importantly, bIII-tubulin knockdowns displayed a
significant dose-dependent increase in the percentage of apoptotic cells upon treatment with epothilone B, as detected
using caspase 3/7 activity and Annexin-V staining. Higher concentrations of epothilone B were required to induce apoptosis
in the bIVb-tubulin knockdowns compared to control siRNA, highlighting a potential mechanism underlying decreased
sensitivity to this agent. This study demonstrates that specific b-tubulin isotypes can influence sensitivity to epothilone B
and may influence differential sensitivity to this promising new agent.
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Introduction

The taxanes (including paclitaxel and docetaxel) are established

drugs widely used in the treatment of several types of solid

tumours, including ovarian, breast, lung and head and neck

cancer, either singly or in combination with other chemothera-

peutic agents. The clinical success of taxanes has provided the

impetus to search for other new agents with similar properties but

with improved efficacy. Epothilones are a novel class of non-

taxane microtubule-stabilizing agents that have shown promising

anticancer activity. Among them, the epothilone B analogue,

Ixabepilone (BMS-247550, aza-EpoB) was approved in 2007 by

the Food and Drug Administration for the treatment of metastatic

or locally advanced breast cancer resistant to anthracyclines,

taxanes and capecitabine, either singly or in combination with

these agents [1]. The naturally occurring epothilone B (patupilone,

EPO906), has also shown promising activity in various preclinical

models that are resistant to taxane-based chemotherapy and is

currently under phase II/III clinical trials [2,3,4,5]. Despite little

structural similarity between the epothilones and the taxanes, both

agents share the same or an overlapping binding site on b-tubulin

[6,7]. Similar to taxanes, epothilones induce microtubule bundling

[6], suppress microtubule dynamics; leading to inhibition of cell

proliferation and mitotic block [8]. Although epothilones and

taxanes stabilize microtubules against depolymerization, they

exhibit distinct differences in activity and efficacy (reviewed in

[9,10]).

Both epothilones and taxanes can stabilize microtubules against

depolymerization, yet they exhibit distinct differences in activity

and efficacy (reviewed in [9,10]). The reasons for differences in

activity are poorly understood. To date, studies have focused on

acquired resistance to epothilones using drug selected populations

that exhibit multiple resistance mechanisms including changes in

tubulin isotype expression and mutations in b-tubulin

[11,12,13,14]. We have previously described epothilone B

analogue resistant leukemia cells that exhibit multiple microtubule

alterations including increased expression of bIII-tubulin, in-

creased expression of MAP4, and mutations in bI-tubulin [13].
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Whilst acquired resistance to epothilones has been described,

research into intrinsic factors that mediate sensitivity to epothi-

lones and related to the cellular target of the drug, tubulin, have

been scarce. As these agents progress to the clinic it is important to

understand how this class of compound interacts with different

tubulin isotypes and how intrinsic levels of these proteins influence

efficacy.

Using RNAi technology, we have previously shown that bIII-

tubulin mediates sensitivity to paclitaxel and Vinca alkaloids in

NSCLC cells [15]. Silencing the expression of bII- and bIVb-

tubulin isotypes, on the other hand, enhance the sensitivity of these

cells to Vinca alkaloids but not paclitaxel [16]. Correlative evidence

that upregulation of bIII-tubulin does not mediate resistance to

epothilone B has also been reported [12]. However, overexpres-

sion of bIII-tubulin in HeLa cells makes the cells less sensitive to

epothilone B [17]. It is not known whether differential expression

of b-tubulin isotypes influence response to epothilones. Under-

standing this interaction is highly desired for the development of

predictive markers to provide more tailored therapy for NSCLC

patients and other patients being treated with epothilones.

To investigate the functional significance of these b-tubulin

isotypes in response to epothilone B in NSCLC, we employed

RNAi technology to specifically knockdown the expression of these

isotypes in two independent NSCLC cell lines and characterize the

effects on cell morphology, sensitivity to epothilone B and drug-

induced apoptosis.

Materials and Methods

Cell culture, siRNA transfection and cytotoxic drug
H460 and Calu-6 cells were obtained from ATCC (Manasses,

VA, USA) and maintained as previously described [15]. Cell lines

are routinely screened and free of mycoplasma. All transfection

procedures were carried out as reported previously [15]. The

potency and specificity of the siRNAs targeting each b-tubulin

isotype have been validated previously [15,16]. Epothilone B

(Calbiochem, Merck biosciences) was prepared at a stock

concentration of 100 mM in DMSO.

Immunofluorescence staining
Briefly, siRNA-transfected Calu-6 cells growing in glass

chamber slides were treated with epothilone B at the indicated

concentrations for 1 h. Immunofluorescence staining of siRNA-

transfected cells was then performed as previously described

[15,16].

Drug-treated clonogenic assays
Drug-treated clonogenic assays were performed as previously

described [15,16]. The results were expressed as a surviving

fraction and inhibitory dose (ID50) was extrapolated from the dose-

response curve using GraphPad Prism program [15,16].

Cell cycle analysis
For analysis of DNA content by propidium iodide staining,

H460 and Calu-6 cells were seeded in 6-well plates containing

66104 cells per well and transfected with siRNA. After 72 h

transfection, cells were exposed to epothilone B at the indicated

concentrations for 24 h. On the day of analysis, both adherent and

floating cells were harvested, washed with PBS and fixed with 80%

ethanol for at least 24 h at 4uC. The fixed cells were then stained

with a solution containing 50 mg/ml propidium iodide, and 2 mg/

ml DNase-free RNase for 30 min at 37uC in the dark. DNA

content was measured by a FACSCalibur flow cytometer (BD).

The CellQuest program was used to quantitate the distribution of

cells in each cell cycle phase: sub-G1 (dead or fragmented), G1, S

and G2-M [15,16].

Apoptosis assays
Cellular apoptosis was determined by measurement of caspase

3/7 activity using the Caspase-Glo 3/7 assay as previously

described with slight modifications [18,19]. Briefly, cells were

transfected with siRNA for 24 h and replated in 96-well plates

(56103 cells/well) and allowed to adhere for an additional 24 h.

Cells were then treated with varying concentrations of epothilone

for 24 h. Following treatment, cells were incubated with Caspase-

Glo 3/7 reagent for 2 h at room temperature, and the

luminescence was measured with a luminometer (PerkinElmer

Victor 3). Additionally, apoptosis was also determined by Annexin

V-FITC staining kit (Becton Dickinson) as previously described

[15,19].

Statistical analysis
Data are expressed as the mean 6 SEM and analyzed using

ANOVA or student’s t test followed by the nonparametric

Dunnett or Mann-Whitney tests using the GraphPad Prism

program. A P value of less than 0.05 was considered statistically

significant.

Results

Differential sensitivity to epothilone B following bII-, bIII-
or bIVb-tubulin knockdown

The specificity of each of the b-tubulin siRNA was confirmed at

the protein level (Figure S1). Consistent with our previous studies,

bII-, bIII-, and bIVb-tubulin siRNA potently inhibited protein

expression of each of these targets respectively without affecting

the expression of other major b-tubulin isotypes in the NSCLC cell

lines (Figure S1) [15,16]. To investigate the effects of these b-

tubulin isotypes in response to epothilone B in NSCLC cells and to

quantitate any changes in drug sensitivity, drug-treated clonogenic

assays were performed. Knockdown of bII-tubulin expression in

both H460 and Calu-6 cells did not affect sensitivity to epothilone

B (Fig. 1A). In contrast, knockdown of bIII-tubulin significantly

sensitized both NSCLC cell lines to epothilone B (Fig. 1B).

Recently, we described the development and characterization of

H460 cells selected for stable expression of shRNA against bIII-

tubulin, and the increased sensitivity of these cells to paclitaxel,

cisplatin and its analogue carboplatin [19]. Importantly, the

increased sensitivity to epothilone B using transient knockdown of

bIII-tubulin was also confirmed using the stable H460 bIII-tubulin

shRNA knockdown cells (Figure S2), further strengthening our

findings with this isotype. Interestingly, knockdown of bIVb-

tubulin significantly reduced sensitivity to epothilone B in both cell

lines, compared to mock- and control siRNA-transfected cells

(Fig. 1C), suggesting that tumors expressing high levels of this

isotype may be more sensitive to epothilone B than tumors with

low levels of this isotype.

We also examined the differential effects of epothilone B on

microtubules and cell morphology in bII-, bIII- and bIVb-tubulin

knockdown cells. As shown in Figure S3, all untreated siRNA-

transfected cells showed no obvious changes to microtubule

structures, in concordance with our previous studies [15,16].

However, epothilone B (5 nM) had a marked effect on cells with

bIII-tubulin depleted microtubules. Microtubule bundles were

more prominent in the bIII-tubulin knockdown cells. In contrast,

microtubule networks remained largely organized and intact in

control siRNA, bII- and bIVb-tubulin knockdown cells treated at

the same concentration. At 20 nM epothilone B, both control and

Role of b-Tubulins in Epothilone B Sensitivity
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bII-tubulin knockdown cells start to exhibit microtubule bundles

compared with the bIVb-tubulin knockdowns. These findings

complement the clonogenic data and suggest that cells responded

differently to epothilone B after specific knockdown of each

individual b-tubulin isotype.

Knockdown of bIII-tubulin reduces epothilone B induced
cell cycle arrest and enhances cell death

Cell cycle analysis was performed next to determine whether

knockdown of each b-tubulin isotype influences cell cycle profiles

in the presence of epothilone B for 24 h. When treated with

concentrations as low as 0.5 nM epothilone B, the bIII-tubulin

knockdown cells showed a significant increase in sub-G1 content,

indicative of cell death (Fig. 2). A greater difference was observed

with 20 nM epothilone B, with the control siRNA- and bII-tubulin

siRNA-treated cells showing a marked G2-M block whereas the

bIII-tubulin knockdown cells displayed an increase in the sub-G1

population (Fig. 2). bIII-tubulin knockdown cells had less cells

accumulating at G2-M compared to controls, suggesting that cell

death may be occurring independent of mitotic arrest. It is evident

that knockdown of bIII-tubulin strongly increases sensitivity to

epothilone B via increased cell death because the sub-G1

population was increased at all concentrations tested. In bIVb-

tubulin knockdown cells on the other hand, a lower G2-M content

was observed when compared with the control siRNA-treated cells

at 20 nM epothilone B (Fig. 2). The sub-G1 content did not differ

between bIVb-tubulin knockdown and the control siRNA-treated

cells at 20 nM. In contrast, knockdown of bIVb-tubulin, showed a

lower number of cells blocked at G2-M, thereby confirming the

decrease in sensitivity of these cells to epothilone B.

To determine whether epothilone B-induced G2-M cell cycle

delay was occurring at earlier time points, cell cycle analysis using

Figure 1. Drug-treated clonogenic assay. Clonogenic assays were performed on mock (closed squares, solid line), control siRNA (open squares,
solid line) and specific b-tubulin isotype siRNA-transfected cells (closed diamonds, broken line) in two NSCLC cell lines, H460 (left panel) and Calu-6
(right panel). The graphs show the clonogenic survival of (A) bII-tubulin; (B) bIII-tubulin and (C) bIVb-tubulin knockdown cells exposed to epothilone
expressed as surviving fraction. Bars, mean 6 SEM of at least four individual assays. Statistics were calculated by comparing the surviving fraction of
the knockdown cells with the mock-transfected cells at each drug concentration. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0021717.g001

Role of b-Tubulins in Epothilone B Sensitivity
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H460 and Calu-6 cells was performed at 4, 8 and 12 h in the

presence or absence of epothilone B (20 nM). In the presence of

the drug, G2-M cell cycle arrest was observed as early as 4 h for

H460 cells (Table S1) and 8 h for Calu-6 cells (Table S2) in both

bIII-tubulin knockdown and control-siRNA transfected cells. At 8

and 12 h the percentage of H460 cells blocked at G2-M was lower

than control (Table S1), although a similar trend was not observed

in the Calu-6 cells (Table S2).

Sensitivity to epothilone B correlates with the level of
apoptosis induction

To address whether the increased or decreased sensitivity to

epothilone B specific to each b-tubulin isotype was related to

apoptosis induction, we measured caspase 3/7 activity in these

cells after 24 h drug treatment. Caspase 3/7 activity in the bIII-

tubulin knockdown cells was increased at least 2-fold over that in

the control siRNA-transfected cells at all concentrations tested

(Fig. 3). The increased caspase activity in the bIII-tubulin

knockdown cells correlated with the increased cell death observed

in these cells upon drug treatment. In contrast, caspase 3/7

activity remained at background levels in bII- and bIVb-tubulin

knockdown cells, similar to the control siRNA cells at #1 nM

epothilone B. Importantly, there was a significant decrease in

caspase activity in the bIVb knockdown cells at $2 nM,

suggesting the bIVb-tubulin knockdowns were less sensitive to

epothilone-induced apoptosis.

To further define the role of b-tubulin isotypes in epothilone B-

induced apoptosis, Annexin V-FITC staining was also performed

following 48 h treatment with epothilone B. As shown in Fig. 4A,

treatment of bIII-tubulin knockdown H460 cells induced apoptosis

from a concentration as low as 320 pM of epothilone B. The

percentage of apoptotic cells was significantly higher in the bIII-

tubulin siRNA-treated cells than in control, bII- or bIVb-tubulin

siRNA-treated cells at all concentrations tested (Fig. 4A). In

contrast, a higher concentration of epothilone B was needed to

induce apoptosis in bIVb-tubulin knockdown cells compared to

either control or bII-tubulin siRNA-transfected cells (Fig. 4B).

Taken together, this data shows that increased apoptosis induction

might be one of the mechanisms underlying the hypersensitivity to

epothilone B following bIII-tubulin knockdown. Knockdown of

bIVb-tubulin, on the other hand, decreased sensitivity to

epothilone B-induced apoptosis induction in NSCLC.

Discussion

The epothilones represent a novel class of microtubule

stabilizing agents that could potentially provide another approach

to overcome paclitaxel resistance. Epothilones have shown

promising clinical activity in a phase II trial in NSCLC patients

Figure 2. Cell cycle analysis of H460 knockdown cells treated with epothilone B. Drug concentrations were indicated on top of the figure.
Cells were harvested after 24 h drug treatment and subsequently assayed for their DNA content by flow cytometry as described in Materials and
Methods. Representative figures of four independent experiments are shown. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0021717.g002
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Figure 3. Caspase activity 3/7 assay. siRNA-transfected H460 cells were harvested after 24 h incubation in the presence or absence of epothilone
B and subsequently assayed for apoptosis induction by caspase activity assay. Open bars: control siRNA-transfected cells; light grey solid bars: bII-
tubulin knockdown cells; solid black bars: bIII-tubulin knockdown cells; dark grey solid bars: bIVb-tubulin knockdown cells. Data represent means 6
SEM of at least three independent experiments. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0021717.g003

Figure 4. Annexin V staining of siRNA-transfected H460 cells following 48 h incubation with epothilone B. Open bars: control siRNA-
transfected cells; light grey solid bars: bII-tubulin knockdown cells; solid black bars: bIII-tubulin knockdown cells; dark grey solid bars: bIVb-tubulin
knockdown cells. Note epothilone B was able to induce apoptosis in the bIII-tubulin knockodown cells at concentrations as low as 0.32 pM (A),
whereas higher concentrations of epothilone B induce significantly lower apoptosis in the bIVb-tubulin knockdown cells (B). Data represent means 6
SEM of at least three independent experiments. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0021717.g004

Role of b-Tubulins in Epothilone B Sensitivity
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[20] and have been recently approved for use in metastatic breast

cancer. It is not known how this class of compound interacts with

different tubulin isotypes and how these influence epothilone B

sensitivity. Here in, we show that specific b-tubulin isotypes

differentially affect NSCLC cell sensitivity to epothilones (Table 1).

Although altered expression of b-tubulin isotypes has been

associated extensively with taxane resistance, limited information

is available on the role of b-tubulin isotypes in sensitivity to

epothilones. In this study, bII-tubulin did not affect sensitivity to

epothilone B in either of the two independent NSCLC cell lines

examined, H460 and Calu-6 cells. Interestingly, sensitivity to the

microtubule stabilizing agent paclitaxel does not appear to be

influenced by overexpression or suppression of bII-tubulin

expression [16,21]. This result contrasts with our previous study

examining vinca alkaloids, where suppression of bII-tubulin

enhances sensitivity to these agents [16].

Preclinical and clinical studies have previously shown that drug

resistance to TBAs is often associated with bIII-tubulin upregulation

(Reviewed in [10,22]). There has been speculation and correlative

evidence that the cytotoxic effects of epothilones are independent of

bIII-tubulin expression because of their activity in bIII-tubulin

overexpressing cells in vitro and in human xenograft models [9,12].

However, definitive evidence has not been shown that epothilone

activity is truly independent of bIII-tubulin expression. Using RNAi

technology, we show that knockdown of bIII-tubulin leads to a

significant increase in sensitivity to epothilone B. In agreement,

stable overexpression of bIII-tubulin in HeLa cells was found to

confer resistance to a range of TBAs including epothilone B [17].

One report described epothilone-resistant ovarian cancer cell lines

with decreased bIII-tubulin expression [12]. Drug resistance is

multifactorial and different cell line models could account for

differences. Importantly, other changes in b-tubulin isotypes and bI-

tubulin point mutations were also observed in the epothilone B-

resistant cell lines [12], suggesting that these factors might have also

contributed to the resistant phenotype. We have previously

described epothilone B analog resistant leukaemia cells that

displayed multiple microtubule alterations including increased

expression of bIII-tubulin expression and bI-tubulin mutations

[13]. To date, the contributions of acquired epothilone B resistance

mechanisms have not been well correlated with intrinsic sensitivity

to epothilones. It should be stressed that the two independent

NSCLC cells used in the current study have neither been subjected

to prior drug selection nor express P-glycoprotein (data not shown)

and therefore provide an opportunity for assessing sensitivity to

epothilone B conferred by each of the b-tubulin isotypes examined.

Interestingly, while knocking down bIII-tubulin hypersensitizes

the cells to epothilone B, knockdown of bIVb-tubulin decreased

the sensitivity of the NSCLC cells to epothilone B. Recently,

Cabral and co-workers have reported that cells overexpressing

bIVb-tubulin exhibited a small but significant increase in

sensitivity to epothilone A [23]. Taken together with our study,

bIVb-tubulin expression may be a favourable therapeutic

indicator for epothilone B therapy. We have previously shown

that knockdown of bII- and bIVb-tubulins in the NSCLC cells

used in this study did not significantly affect paclitaxel sensitivity,

but did significantly increase sensitivity to vinca alkaloids [16].

Hence, despite paclitaxel and epothilone B sharing overlapping

binding sites on b-tubulin, bIVb-tubulin expression levels elicit

distinct effects on sensitivity to paclitaxel and epothilone B. There

is growing evidence showing that the binding of epothilones and

paclitaxel to tubulin may not be identical [13,24]. Evidently, some

point mutations in the b-tubulin subunit confer paclitaxel but not

epothilone resistance in cell culture models [7,25], suggesting that

epothilones and taxanes may have distinct interactions with b-

tubulin isotypes. A rationalisation for the differences in sensitivity

induced by b-tubulin isotype expression may be related to amino

acid differences between the isotypes. Beta-tubulin isotypes bI, bII,

bIVa and bIVb, share at least 95% identity and have a limited

number of non-conservative amino acid substitutions (Figure S4)

[26]. In contrast, bIII-tubulin differs as it shares only 92% identity

to the above b-tubulin isotypes. Within the paclitaxel/epothilone

binding pocket, in bII and bIVb isotypes, Ser275 has been

implicated as a mediator of paclitaxel diffusion through nanopores

[27] and can hydrogen bond with Gln279 and Lys216, stabilising

the M-loop (Fig. 5). In turn, this may enhance the hydrogen bonds

that are observed between Arg276 to the lactone carbonyl and

Thr274 to the ketone oxygen on C5 of epothilone A (and

presumably epothilone B). In bIII-tubulin, there is a Ser275Ala

mutation that could destabilise the M-loop and thereby weaken

the Arg226 and Thr274 hydrogen bonds with the ligand,

contributing to its reduced sensitivity. However, this does not

explain the differential sensitivity observed between bIII-tubulin

and bIVb, as the amino acid sequences identified as being

important within the paclitaxel/epothilone binding pocket, or the

GDP binding site do not differ between these two isotypes [24].

The current study cannot exclude the possibility that the

differential expression of specific b-tubulin isotypes affects the

binding of epothilones to the microtubule wall, or through

stabilisation of contacts between dimers in forming protofilaments.

However, a recent study with epothilone A showed it binds equally

well to both bI- and bIII-tubulin [28]. A similar study examining

the binding of epothilone B and specific b-tubulin isotypes would

be important to determine how these isotypes affect the interaction

of this drug with tubulin.

Antitumour activity of epothilones is mediated by suppression of

microtubule dynamics, mitotic arrest at the G2-M cell cycle phase

followed by apoptosis. To address the potential mechanisms

underlying the differential response to epothilone B following

Table 1. Summary of the differential response of b-tubulin isotypes to epothilone B.

b-tubulin isotype Epothilone B sensitivity G2/M cell cycle arrest Apoptosis induction*

bII-tubulin siRNA No change Yes Same as control siRNA cells at all
concentrations tested

bIII-tubulin siRNA Increased Decreased Increased with epothilone B treatment at all
concentrations tested

bIVb-tubulin siRNA Decreased Yes Same as control siRNA at low concentrations
then decreased at higher concentrations
($2 nM)

*Apoptosis induction was measured by caspase activity assay and Annexin V staining.
doi:10.1371/journal.pone.0021717.t001

Role of b-Tubulins in Epothilone B Sensitivity
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knockdown of a specific b-tubulin isotype, we examined the

propensity of the cells to undergo drug-induced cell cycle arrest

and apoptosis. Following incubation with epothilone B, bIII-

tubulin knockdown showed an increase in the sub-G1 populations

(cell death) whilst a decrease in G2-M block when compared to the

control siRNA-transfected cells. Knockdown of bIII-tubulin can

significantly reduce the extent of mitotic block induced by

incubation with either paclitaxel or vincristine [15], whilst

increasing the level of cell death. The effect on epothilone B

sensitivity cannot be simply explained by a change in microtubule

dynamics, as we recently demonstrated that microtubule dynamics

do not change in H460 cells following bIII-tubulin knockdown

[29]. Collectively, these studies demonstrate that knockdown of

bIII-tubulin may enhance TBA-induced apoptotic cell death via a

separate pathway that is independent of mitotic arrest. Another

study has shown that the anti-tumour effects of paclitaxel,

correlated with paclitaxel-induced apoptosis but not with mitotic

arrest [30]. Epothilones might have a similar mechanism of action.

Interestingly, bIVb-tubulin knockdown cells had a decrease in the

number of cells blocked at G2-M (epothilone B 20 nM) as

compared to control and bII-tubulin knockdown cells, albeit at a

level higher than the bIII-tubulin knockdown cells. However,

unlike bIII-tubulin knockdown cells, bIVb-tubulin knockdown

cells undergo drug-induced cell death at a similar level as the

control and bII-tubulin knockdown cells. Further, both the caspase

3/7 activity and Annexin V staining showed that bIII-tubulin

knockdown cells had a significant increase in epothilone B-induced

apoptosis induction at all concentrations tested. In contrast,

knockdown of bIVb-tubulin protected cells against epothilone B as

reflected in decreased induction of apoptosis. Hence, apoptosis

induction might serve as one of the mechanisms underlying the

increased or decreased sensitivity observed with these specific b-

tubulin isotypes in response to epothilone B.

The molecular link between b-tubulin and epothilone B-

induced apoptosis remains to be established. It has been shown

recently that epothilone B induced apoptosis in human neuro-

blastoma cells by increasing the generation of reactive oxygen

species from mitochondria and subsequently relocalization of the

proapoptotic protein Bim in the mitochondria compartment [31].

Future investigations will determine whether ROS generation and

mitochondria or expression of different pro- and antiapoptotic

proteins are responsible for the ability of bIII-tubulin or bIVb-

tubulin to differentially affect epothilone B-induced apoptotic

signals, and whether these signals occur independent of mitotic

arrest.

The significance of differential b-tubulin isotypes in sensitivity to

epothilone B requires further validation in the clinical setting to

assess its applicability in predicting the efficacy of epothilone B. It

will also be of great interest to determine whether expression of

bIVb-tubulin will correlate with clinical response in cancers

treated with epothilone, as based on the results in this study,

tumours with high bIVb-tubulin levels would be expected to be

more sensitive to this agent.

Taken together, these results show that b-tubulin isotype

composition of a cell affects sensitivity to epothilone B. Clinical

studies are warranted to assess the therapeutic value of differential

expression of b-tubulin isotypes in NSCLC and their role in

clinical response to epothilones.

Supporting Information

Figure S1 siRNA targeting bII, bIII or bIVb-tubulin
specifically silences their expression in H460 and Calu-
6 NSCLC cells. Representative western blots showing siRNA

targeting bII (A), bIII (B), or bIVb-tubulin (C) inhibits its protein

expression in H460 and Calu-6 NSCLC cells when compared to

Figure 5. The putative binding pocket (all residues within 6 Å of the ligand) of tubulin (1TVK), with epothilone B (modified from
epothilone A in 1TVK). Epothilone B is shown as sticks (light grey carbons). The binding pocket residues of 1TVK are shown as sticks (dark grey
carbons). Non-polar hydrogens are omitted for clarity. Hydrogen bonds are shown as dashed green lines. Ser275 can form 3 hydrogen bonds with
Gln292 and Lys216. Images generated in DS Modelling 3.0 (AccelrysH).
doi:10.1371/journal.pone.0021717.g005
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cells treated with control siRNA or Mock (lipofectamine 2000

only). No significant changes in the expression of other b-tubulin

isotypes were observed. Glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH) expression was used as a loading control.

Representative gels. n = 3 separate experiments.

(TIFF)

Figure S2 Stable and potent inhibition of bIII-tubuin
increases sensitivity to epothilone B in H460 NSCLC
cells. Clonogenic assay showing the effect of stable knockdown of

bIII-tubulin on sensitivity to epthoilone B in H460 cells expressing

shRNA targeting bIII-tubulin (pRS/bIIISH4) (dashed line) or

control (pRS/CtrlSH2) (solid line). Points, means; bars SE (n = 6

individual experiments,*p,0.01).

(TIFF)

Figure S3 Effect of bII-, bIII- and bIVb-tubulin knock-
down on the microtubule network. Calu-6 transfected cells

were fixed and stained with an antibody to a-tubulin after 72 h

transfection. Arrows represent dying cells. Scale bar-20 mm.

(TIFF)

Figure S4 Sequence alignment of the b-subunit of 1TVK with

the sequences of bIIb, bIII and bIVb tubulin. Identical sequences

are shaded grey, strong matching (dark blue), weak matching (light

blue) and non matching residues are unshaded. The residues of the

epothilone binding pocket (within 6 Å of the ligand) are

highlighted in black.

(TIFF)
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