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Abstract

Background: Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2
diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various
experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose
uptake, as well as its influence on type 2 diabetes development.

Methods and Findings: The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was
inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-
molecule Ras inhibitor. The involvement of IkB and NF-kB in Ras-inhibited glucose uptake was investigated by
immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on
induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-
resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IkB expression
accompanied by decreased expression of NF-kB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of
hyperglycemia and the levels of serum insulin were significantly decreased.

Conclusions: Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras
inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes.
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Introduction

Insulin resistance is defined as impaired sensitivity to insulin in

its main target organs (muscle, liver and adipose tissues), and is

considered a hallmark of type 2 diabetes [1]. Insulin levels regulate

glucose uptake by a variety of mechanisms, including induction of

glucose transporter 4 (Glut4) expression, enhancement of translo-

cation of the transporter to the muscle tissue membranes,

reduction of free fatty acid (FFA) secretion from adipocytes, and

inhibition of gluconeogenesis in the liver. Resistance to insulin

results in increased concentrations of circulating FFA, which

inhibits glucose uptake by muscle cells and increases glucose

production by the liver [2].

Recent findings point to interrelationships between inflamma-

tion, insulin resistance, and type 2 diabetes. Lipid accumulation in

the adipose tissue and expansion of the fat mass can initiate an

inflammatory process, accompanied by local production and

secretion of pro-inflammatory cytokines and chemokines [3,4].

Pro-inflammatory cytokines such as tumor necrosis factor-a (TNF-

a) reduce insulin sensitivity in muscle tissue and stimulate hepatic

lipogenesis and hyperlipidemia [5,6,7]. Hepatic steatosis promotes

low-grade inflammation via activation of nuclear factor-kB (NF-

kB) [8]. The affected adipose, muscle and liver tissues together

create an inflammatory milieu that promotes insulin resistance

locally [9].

In an insulin-resistant state, serine kinases phosphorylate insulin

receptor substrate (IRS), which results in inhibition of insulin

signaling. A prominent participant in this process is the inhibitor of

kB kinase (IKK), which phosphorylates, among other molecules,

the insulin receptor. It also phosphorylates IkB, inducing the

release of nuclear factor-kB (NF-kB) from IkB and allowing it to

enter the nucleus [10]. NF-kB promotes upregulation of mediators

that enhance inflammation and induce disease progression

[11,12,13].

A prominent protein family that participates in the regulation of

intracellular signal transduction and exerts a major impact on

inflammation is the family of Ras GTPases [14,15]. These small

(,21 kDa) proteins consist of molecular switches that regulate cell

growth, differentiation, survival, migration and death

[15,16,17,18,19,20,21,22]. Ras is crucially involved in the proper

activity of many cell types, including immune cells. Therefore, its

abnormal involvement in cancer and autoimmune diseases has

been the subject of intensive research [23,24,25,26], with many

studies aimed at understanding the possible involvement of Ras

signaling in the disease and at developing selective inhibition of the

active Ras protein. A well characterized protein activated by Ras is
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Figure 1. Inhibition of Ras in vitro by DN-Ras increases glucose uptake and alters IKB/ NF-kB expression. A. Insulin-resistant C2C12
myotubes were transfected with DN-Ras-GFP or GFP plasmid (pGFP) and fluorescent glucose uptake was measured by flow cytometry.
Representative histograms of glucose uptake are presented (n = 4) B. Statistical analysis of the results is presented as means 6 S.D. * P,0.05. C. IkB,
NF-kB and tubulin expression in the DN-Ras transfected or GFP-transfected myotubes were assayed by western blotting, as described in Material and
Methods. Representative blots are presented (n = 4). D. Densitometry of IkB and NF-kB expression. * P,0.05 compared to control.
doi:10.1371/journal.pone.0021712.g001
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the AKT protein. Through stimulation of PI3K, Akt/PKB kinase

is activated and phosphorylates the IKK, which in turn activates

NF-kB. Inhibition of Ras can therefore attenuate NF-kB

activation and reduce the inflammatory process [27].

S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib) is a small

synthetic molecule that acts as a potent Ras inhibitor by competing

with the anchoring of active Ras to the plasma membrane. Our

group has described a number of FTS analogs that also act as Ras

inhibitors, the most potent being 5-fluoro-FTS (F-FTS) [28]. The

effect of FTS and its analogs was studied in various animal models of

immune-mediated experimental disorders and found to significantly

attenuate disease progression [29]. The attenuation was accompa-

nied by altered gene expression in Ras signaling pathways, including

the NF-kB signaling cascades [23,24,25,26,30,31,32].

In the present study we attempted to gain a better understanding

of the effects of Ras inhibition on insulin resistance and type 2

diabetes by treating differentiated myotubes in vitro and high-fat

(HF)-induced diabetic mice in vivo with DN-Ras or the synthetic Ras

inhibitor F-FTS. We examined the effects of such treatment on

glucose uptake and cellular signaling pathways, with particular focus

on NF-kB-dependent signaling cascades. We found that treatment

with the Ras inhibitor, F-FTS, reduced insulin-resistance in vitro and

attenuated type 2 diabetes in vivo. The effects of Ras inhibition were

mediated by the IKB/NF-kB cascade.

Materials and Methods

Induction of insulin resistance in cell culture
Mouse C2C12 myoblasts (generously provided by Prof. David

Yaffe) were maintained in DMEM supplemented with 10% fetal

bovine serum (FBS), 50 U/ml penicillin, and 50 mg/ml streptomy-

cin. When cells reached confluence, the medium was replaced by

differentiation medium containing DMEM and 2% horse serum,

which was changed every other day. After 4 more days the

differentiated C2C12 cells had fused into myotubes. To induce

insulin resistance in the differentiated skeletal muscle cells, the

medium was replaced by lipid-containing medium. The latter was

prepared by addition of FFA (palmitate dissolved in 0.1 M NaOH)

to DMEM containing 2% fatty acid-free BSA. Myotubes were

incubated for 16 h in the above medium in the presence or absence

of 0.75 mM palmitate. To exclude the possibility that any FFA can

induce insulin resistance, 0.75 mM oleic acid was also added to

myotubes and served as negative control (data not shown).

Determination of glucose uptake by differentiated C2C12
skeletal muscle cells

Following induction of insulin resistance, all culture medium

was removed from each well and replaced with 1 ml of fresh

culture medium in the absence or presence of 10 mM fluorescent

2-NBDG (Molecular Probes-Invitrogen, CA/Molecular Probes,

Eugene, OR), a new fluorescent derivative of glucose with a 2-[N-

(7-nitrobenz-2-oxa-1,3-diazol-4-yl)] amino group at the C-2

position [33]. For this purpose, the cells were incubated at 37uC
with 5% CO2 for 1 h. The cells were then washed twice with cold

phosphate-buffered saline (PBS) and collected for flow cytometric

measurement.

Transfection with dominant-negative Ras
To block Ras we transfected differentiated C2C12 cells with

2 7g of green fluorescent protein plasmid (pGFP) or dominant-

negative (DN) GFP-Ras (17N), using lipofectamine 2000 reagent

according to manufacture’s instructions (Invitrogen, Carlsbad, CA,

USA). At 48 h post-transfection the cells were subjected to

induction of insulin resistance, as described above. The cells were

then either harvested and analyzed by Western blotting or tested

for glucose uptake using the 2-NBDG method described above.

Western blotting
To examine the impact of Ras inhibition on IkB and NF-kB, we

performed Western immunoblotting with specific antibodies.

Muscle and fat lysates were obtained from HF-induced mice,

subjected to sodium dodecyl sulfate–polyacrylamide gel electro-

phoresis (SDS-PAGE), and Western blotted as previously

described [30] with one of the following antibodies: anti-IkB,

anti-p-IkB, anti-NF-kB (Santa Cruz Biotechnology, Santa Cruz,

CA) or anti-tubulin (eBioScience, San Diego, CA).

The levels of Ras GTP were determined as described previously

[30]. Protein bands were visualized with an enhanced chemilumines-

cence kit (Amersham Pharmacia Biotech, Arlington Heights, IL) and

quantified by densitometry with Image EZQuant-Gel software�.

Glut4 expression determined by reverse transcription–
PCR

RNA was extracted from 106 C2C12 muscle cells using an

RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions. Reverse transcription (RT)–PCR was

performed according to the protocol of the Reverse-iTTM 1st

Strand Synthesis Kit (ABgene, Epsom, UK). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was analyzed using the

following primers: GAPDH forward 59-ACCACAGTCCATGC-

CATCAC-39 and GAPDH reverse 59-TCCACCACCCTGTTG-

CTGTA-39.

PCR was carried out with ReddyMixTM PCR Master Mix

(ABgene) on a Programmable Thermal Controller (MJ Research,

Waltham, MA) at gene-specific conditions. Primer sequences for

Glut4 were: Glut4 forward: 59-GATGCCGTCGGGTTTC-

CAGCA-39 and Glut4 reverse: 59-TGAGGGTGCCTTGTGG-

GATGG -39.

The PCR products were subjected to electrophoresis in 2%

agarose gel stained with ethidium bromide.

In vivo studies
The study was approved by the Institutional Ethics Committee

at the Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

(Approval ID is L-09-006).

Hydrodynamic delivery and determination of glucose
uptake in vivo

C57Bl/6 mice (n = 8) received hydrodynamic DNA injections,

in which 100 mg of pDN-Ras-GFP in 2 ml of PBS was injected

intravenously (i.v.) and rapidly (within 5–8 s) under high-pressure

into the tail vein. After 48 h the mice were injected i.v with 500 mg

Figure 2. F-FTS induces glucose uptake in vitro and influences expression of Glut4 mRNA and of IKB/NF-kB protein. A. Insulin-resistant
C2C12 myotubes were incubated with or without F-FTS (50 mM), and were then assayed for their ability to absorb fluorescent glucose. Representative
histograms of glucose uptake are presented (n = 4) B. Statistical analysis of the results is presented as means 6 S.D. * P,0.05. C. F-FTS-treated C2C12
cells were tested for Glut4 mRNA and GAPDH mRNA by RT2PCR. Representative gels are shown (n = 4). D. Densitometry of Glut4 is shown. * P,0.05
compared to control. E. IKB, NF-kB, p-IKB and tubulin were assayed by western blotting as described in Methods. Representative blots are presented
(n = 4) F. Densitometry of IkB, p-IKB and NF-kB expression. * P,0.05 compared to control.
doi:10.1371/journal.pone.0021712.g002
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of 2-NBDG. Two hours later, muscle, liver and fat tissues were

removed and single-cell suspensions from each of those tissues

were tested by fluorescence activated cell sorting (FACS) for the

presence of 2-NBDG. Mice in a control group (n = 8) were

similarly injected and treated, except that they were injected with

pGFP instead of pDN-Ras-GFP.

We produced a model for type 2 diabetes by feeding a high-fat

diet (TD.06415, Harlan Laboratories, Madison, WI, USA) to male

Figure 3. Ras inhibition in vivo increases muscle, fat and liver glucose uptake. A. HF-induced C57/Bl mice were hydrodynamically injected
(i.v.) with DN-GFP-Ras or with pGFP, as described in Methods. Mice were injected with the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-
diazol-4-yl)] (2-NBDG) and glucose uptake in muscle, fat and liver tissues was assayed (n = 8). Representative histograms of glucose uptake are
presented for each tissue. B. Statistical analysis of the results is presented as means 6 S.D. * P,0.05, **P,0.01. C. Representative gels and
densitometry of Ras-GTP are shown (n = 4). * P,0.05 compared to control.
doi:10.1371/journal.pone.0021712.g003
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C57Bl/6 mice, starting when they were 6 weeks old as detailed

earlier [34]. These high fat-induced diabetic mice were treated

orally either with 30 mg/kg of F-FTS (n = 5) or, as a control, with

carboxymethyl cellulose (CMC) vehicle (n = 5). Thirteen weeks

later, the mice were injected i.v. with 500 mg of 2-NBDG. Two

hours after injection, muscle and liver tissues were removed and

analyzed for glucose uptake as described above.

Ras inhibition and effect on an in-vivo model of type 2
diabetes

To study the effect of F-FTS on type 2 diabetes in high fat

diabetic mice, we started to treat them, at the same time as the high-

fat diet was initiated, with five different daily treatments, as follows:

F-FTS (20 mg/kg body weight), injected intraperitoneally (i.p.;

n = 30); F-FTS (30 mg/kg body weight), per os (p.o.; n = 10); FTS

(60 mg/kg body weight), p.o. (n = 10); CMC (control), p.o. (n = 10);

or PBS (control), i.p. (n = 30). Mice were considered diabetic when

two consecutive blood tests, collected from the mice’s orbital sinus,

yielded glucose concentrations greater than 200 mg/dl glucose.

This value was obtained by all mice after 13 weeks on the diet. Prior

to euthanasia of mice, fasting serum insulin levels were determined

by ELISA according to the manufacture’s instructions.

Results

Ras inhibition in vitro enhances glucose uptake via
IkB/NF-kB signaling pathway

To test the hypothesis that Ras inhibition results in increased

uptake of glucose in muscle cells, we induced C2C12 cell

differentiation into myotubes (see Methods) and transfected the

differentiated muscle cells with DN-GFP-labeled Ras or a GFP-

labeled control plasmid. We then induced insulin resistance in all

cells by addition of palmitate (see Methods) and assayed their

ability to absorb fluorescent glucose. In line with previous reports

[35], palmitate reduced glucose uptake compared to BSA-treated

control cells (not shown). The results clearly demonstrate a

significant increase of 160%610% in glucose uptake in DN-Ras

transfected cells treated with palmitate as compared to palmitate-

treated GFP-transfected cells (Fig. 1A and B). These results suggest

that active Ras inhibition may upregulate glucose absorption.

The nuclear transcription factor NF-kB and its inhibitor IkB

have been shown to participate in the induction of insulin resistance

by palmitate. To study the effect of Ras inhibition on NF-kB and

IkB in the insulin-resistant C2C12 cells, we assayed IkB and NF-kB

in these cells following DN-Ras transfection. Compared to the GFP-

transfected controls, the DN-Ras transfected cells exhibited a

significant increase in their IkB expression (186%614% increase) as

opposed to a decrease in NF-kB expression (45%610% decrease)

relative to GFP-transfected cells (Fig. 1C and D).

Inhibition of Ras by the small molecule F-FTS in vitro
promotes Glut4 expression and induces glucose uptake
in an IkB/NF-kB-dependent manner

To verify the effect of Ras inhibition on glucose uptake, we used

F-FTS, a small molecule that interferes with anchorage of Ras to

the membrane and hence inhibits Ras function [29,31].

First, we examined whether F-FTS mimics the observed effect

of DN-Ras on glucose uptake in C2C12 myotubes. Our results

showed that F-FTS, like DN-Ras, induced a significant increase in

glucose uptake compared to control (151%67%, Fig. 2A and B).

In line with this effect of F-FTS on glucose uptake was the finding

that expression of the mRNA glucose transporter 4 (glut-4) was

induced by F-FTS. Glut-4 expression in C2C12 myotubes that

were rendered insulin-resistant by palmitate and then treated with

F-FTS was significantly higher (146%68%) than in C2C12

myotubes treated with palmitate alone (Fig. 2C and D).

In addition, the level of the proinflammatory transcription

factor NF-kB in the insulin-resistant C2C12 cells was significantly

lower (by 56%610%) in the presence of F-FTS than in its absence

(Fig. 2E and F). On the other hand, the expression of its inhibitor,

IkB, was significantly higher both in its total level and in its

phosphorylated form (p- IkB) by 160%614% and 369%635%,

respectively in the presence of F-FTS compared to control (Fig. 2E

and F). These findings are consistent with the results obtained by

treatment with DN-Ras.

Ras inhibition by hydrodynamic injection of DN-Ras
induces glucose uptake in vivo

To determine whether the enhanced glucose uptake resulting

from treatment with DN-Ras in vitro (Figs. 1 and 2) is also observed

in a short-term in vivo model, we examined the effects of Ras

inhibition on the uptake of fluorescent glucose by muscle, fat and

liver tissues in mice. Hydrodynamic injection of DN-Ras into the

tail veins of wild-type C57Bl/6 mice resulted in a significant

increase in fluorescent glucose uptake in these tissues (an increase

of 214%610%, 150%68%, and 157%616% relative to the GFP-

treated controls, respectively) (Fig. 3A, B).

Testing of the above tissues for Ras-GTP expression revealed a

significant decrease, concomitantly with the effects on glucose

uptake (Fig.3C).

F-FTS treated mice exhibit increased glucose uptake
accompanied by altered IkB/NF-kB expression

To verify the above in vivo findings in a relevant type 2 diabetes

model, we treated 6-week-old C57Bl/6 mice fed on a high fat diet

with F-FTS or, as a control, with PBS for 13 weeks, as described

above, and then examined the ability of their muscle, fat and liver

tissues to absorb intravenously injected fluorescent glucose. Cells

obtained from the muscle and liver tissues of F-FTS-treated mice

exhibited a significant increase in fluorescent glucose uptake

compared to control (178618% and 15367%, respectively;

Fig. 4A, B). No significant differences in glucose uptake were

observed in the fat tissues (data not shown).

Immunoblot assays for IkB and NF-kB expression showed

increased IkB expression compared to controls in muscle (by

158610%) and fat (by 181613%) tissues obtained from F-FTS

treated mice, as opposed to a significant decrease compared to

controls in NF-kB expression by 30610% and by 3868%,

respectively (Figure 4C, D). No differences were found in the liver

tissue (data not shown). Taken together, these results showed that

Ras inhibition caused an increase in IkB/NF-kB-dependent

glucose uptake in vivo.

Figure 4. F-FTS treatment in vivo upregulates glucose uptake by muscle and liver tissues, accompanied by altered IkB/NF-kB
expression. A. HF-induced C57/Bl mice treated orally with F-FTS (n = 5) or PBS (control) (n = 5) were injected i.v with 2-NBDG, and glucose uptake in
their muscle and liver tissues was tested (n = 5). Representative histograms of glucose uptake are presented for each tissue. B. Statistical analysis of
the results is presented as means 6 S.D. * P,0.05. C. IkB, NF-kB and tubulin in the tissues were assayed by western blotting, as described in Methods.
Representative blots are presented (n = 5). D. Densitometry of IkB and NF-kB expression. * P,0.05, **P,0.01, ***P,0.005 compared to control.
doi:10.1371/journal.pone.0021712.g004

Ras Inhibition Induces Glucose Uptake

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21712



Ras Inhibition Induces Glucose Uptake

PLoS ONE | www.plosone.org 8 June 2011 | Volume 6 | Issue 6 | e21712



Ras inhibition by F-FTS attenuates type 2 diabetes in vivo
and reduces circulating insulin levels

Having shown that Ras inhibition by F-FTS mimics the effect of

DN-Ras on glucose uptake both in vitro and in vivo, we next

examined the effect of long-term treatment with F-FTS or FTS on

the development of hyperglycemia in an experimental model of

type 2 diabetes.

To examine how the effectiveness of the drugs was influenced

by the route of administration, we treated the mice either

intraperitoneally (i.p.) or per os (p.o.). While being fed from the

age of 6 weeks with a high-fat diet to induce diabetes, C57Bl/6

mice were also treated i.p., daily for 13 weeks, with either 20 mg/

kg of F-FTS (n = 30) or with PBS (n = 30). F-FTS treatment

resulted in a significant decrease in the incidence of diabetes, with

20% of the F-FTS treated mice developing diabetes as compared

to 60% in the PBS-treated group (Fig. 5A). Similar results were

observed when mice were treated p.o with either 30 mg/kg F-FTS

or 60 mg/kg FTS compared to CMC treatment: diabetes

developed in 18% of the F-FTS-treated and in 30% of the FTS-

treated mice, whereas in the CMC-treated mice 72% developed

diabetes (Fig. 5C). Animals were considered diabetic when blood

glucose levels exceeded 200 mg/dl (Fig 5B, D).

As expected, the high-fat diet caused a significant increase in

body weight in all treated groups [36]. No significant differences in

weight gain were observed between the i.p. F-FTS-treated and

PBS-treated groups or between the p.o FTS-treated, F-FTS-

treated and CMC-treated groups (Fig. 5E).

We also assayed circulating insulin in the different groups of

mice. After i.p. treatment, the levels of circulating insulin were

significantly decreased in the F-FTS-treated group (4.2761.4 ng/

ml relative to 1464.9 ng/ml in the PBS-treated group). In the

orally treated mice, insulin concentrations in the F-FTS-treated

and the FTS-treated groups were also significantly reduced

(7.961.3 ng/ml and 6.861.1 ng/ml, respectively, relative to

14.662 ng/ml in the CMC-treated group; Fig. F,G).

Discussion

Activated Ras plays an important role in modulating a number

of signaling molecules that trigger cell proliferation, differentiation,

and survival [37,38]. These observations are in line with several

studies showing that Ras inhibition attenuates inflammatory

responses in experimental models [25,31,39,40].

Resistance to insulin, resulting in decreased glucose uptake, is a

major factor contributing to the development of type 2 diabetes

[41]. The mechanisms responsible for inducing resistance to

insulin are not completely understood, but accumulating data

point to a robust association between insulin resistance and

inflammation. Obesity promotes insulin resistance by resulting in a

state of chronic inflammation that involves production of

proinflammatory cytokines (TNF-a, IL-6), an increase in the

number of macrophages, and activation of a complex cascade of

signaling events in muscle, fat and liver tissues [6,35,42].

Consistent with these findings, we showed here for the first time

that inhibition of Ras by DN-Ras or F-FTS, promoted anti-

inflammatory response in a muscle cell line and in mouse tissues.

This study is the first to show a clear association between Ras

signaling and insulin resistance in muscle, fat and liver. We found

that inhibition of Ras activation by transfection with DN-Ras or

by treatment with the small-molecule Ras inhibitor F-FTS induced

glucose uptake in vitro, indicating higher insulin sensitivity.

In addition, we demonstrated that inhibition of Ras in vivo by

hydrodynamic injection of DN-Ras or by daily treatment with F-

FTS in an experimental murine model of HF-induced diabetes

resulted in similar findings of increased uptake of fluorescently

labeled glucose by muscle, fat and liver tissues.

To characterize the signaling pathway by which Ras inhibition

promotes insulin sensitivity, we studied the expression of key

regulators known to participate in insulin-signaling pathways. For

example, activation of the IkB/NF-kB cascade activates a

widespread proinflammatory program. IkB kinase (IKK) phos-

phorylates certain serine residues on insulin receptor kinase 1

Figure 5. Ras inhibition in HF-induced diabetic mice reduces diabetes incidence and increases the concentration of circulating
insulin. A. C57/Bl mice fed on a high-fat diet were treated daily with F-FTS (20 mg/kg body weight; i.p.; n = 30 mice per group) or PBS (n = 30) for 13
weeks. Kaplan-Meier plots of mean incidence of diabetes in each group. B. Blood glucose levels were measured as described in Methods (n = 10 in
each group). *** P,0.005 compared to control. C. C57Bl/6 mice on a high -fat diet were treated daily with F-FTS (30 mg/kg; n = 10), FTS (60 mg/kg;
n = 10) or CMC (n = 10) for 13 weeks. Kaplan-Meier curves record the mean incidence of diabetes in each group. D. Blood glucose levels were
measured as described in Methods (n = 10 in each group). *** P,0.005 compared to control. E. All treated animals were monitored for weight gain
while being fed a high-fat diet. Kaplan-Meier curves record the mean percentage of weight gain in each group. F, G. Serum insulin concentrations
were measured by ELISA as described in Methods (n = 10 in each group). ** P,0.01 compared to control.
doi:10.1371/journal.pone.0021712.g005

Figure 6. Proposed mechanism explaining the effect of Ras on
insulin sensitivity. Free fatty acids (FFAs) lead to activation of IKK,
the inhibitor of IkB kinase. IKK affects insulin sensitivity and glucose
uptake via two distinct pathways. First, IKK phosphorylates insulin
receptor substrate 1 (IRS-1), resulting in inactivation of insulin signaling
through attenuated transcription of glucose transporter 4 (Glut4). Ras
inhibition by F-FTS demonstrates enhanced Glut4 transcription, hence
also heightened glucose uptake. Second, IKK phosphorylates the
inhibitor of kB (IkB), causing it to become detached from nuclear
factor kB (NF-kB). NF-kB enters the nucleus and induces transcription of
proinflammatory cytokines such as IL-6 and TNF-a. These cytokines
leads to deterioration of insulin resistance. Ras inhibition by DN-Ras or
by F-FTS augments IkB expression, thereby attenuating the proin-
flammatory response and enhancing insulin sensitivity and glucose
uptake.
doi:10.1371/journal.pone.0021712.g006
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(IRS-1), leading to impairment of insulin signal transduction. In

addition, the IKK signaling pathway is upregulated and activated,

both in insulin-resistant humans and in rodent skeletal muscles

[43]. Increased expression of IKK results in inhibition of IkB and

activation of NF-kB ; the latter subsequently transcriptionally

activates a set of inflammatory pathway genes that induce

resistance to insulin (see scheme, Fig. 6)[44].

Based on the above knowledge, we sought to explore the

influence of Ras inhibition on the IkB/NF-kB cascade in a

conventional model of insulin resistance. We found that Ras

inhibition led to an increase in IkB, which inhibited the expression

of NF-kB both in vitro and in vivo (Figs. 1–4). The improvement in

glucose uptake in liver tissue of the F-FTS treated animals was not

correlated with increased expression of IkB (Fig 4). This finding

could result from the long period (13 weeks) of treatment that may

influence the duration of the increased IkB expression. Overall,

the observation that insulin resistance was attenuated by Ras

inhibition in association with regulation of IkB and NF-kB

provides a possible link between Ras, inflammation, and negative

regulation of insulin signaling.

The most downstream factor in the insulin cascade is Glut4, an

essential transporter responsible for translocation of insulin-

regulated glucose into the cell [45]. We therefore examined the

effect of Ras inhibition on Glut4 mRNA levels in insulin-resistant

C2C12 myotubes treated with F-FTS. We found an increase in

Glut4 mRNA levels after F-FTS treatment. These results

suggested that the higher sensitivity to insulin was attributable to

Ras inhibition, which may be related to the increase in expression

of Glut4 transporter in the plasma membrane and the subsequent

potentiated influx of glucose into the cell (see scheme, Figure 6).

Taken together, our results suggest dual affects of Ras on insulin

sensitivity and glucose uptake via two distinct pathways (Figure 6).

Previous studies have shown that both FTS and the small

synthetic molecule F-FTS act primarily by inhibiting active Ras

proteins and are mimicked by dominant negative Ras [30,46].

Therefore, mice fed a high-fat diet and concomitantly treated with

F-FTS may serve as an appropriate in vivo model for examining the

effect of Ras inhibition on an experimental model of type 2

diabetes. Our results showed that treatment with either FTS or F-

FTS significantly attenuated the incidence of hyperglycemia in this

model. The potential contribution of Ras-mediated insulin

sensitization in this in vivo model is supported by the finding that

circulating insulin levels were decreased in the FTS-treated mice

(Fig. 5). The observed decrease of insulin level most likely resulted

from the increased uptake of glucose into the tissues but could also

be caused by a direct effect on the pancreas. Further studies should

be performed to clarify the cause of the decrease in serum insulin

levels.

Taken together, the results of this study showed that inhibition

of Ras signaling enhances both insulin sensitivity and glucose

uptake in vitro and in vivo. These observations were corroborated by

the beneficial effects of Ras inhibition that resulted in attenuation

of hyperglycemia in a conventional type 2 diabetes model. It

should be noted, however, that Ras inhibition may modify

inflammatory responses in other tissues as well. These findings

pave the way for a novel approach to the potential treatment of

insulin resistance and type 2 diabetes.
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