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Abstract

Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in
1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular
pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum
type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different
megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single
sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the
neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic
content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization
experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all
neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and
the lincomycin resistance protein ImrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of
the Italian C. butyricum type E strains. Of note, a B-lactamase gene probe hybridized to the megaplasmids of eight
neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food
implicated in foodborne botulism, whereas this -lactam antibiotic resistance gene was absent form the megaplasmids of
the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of
linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an
important role in the emergence of C. butyricum type E as a human pathogen.
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Introduction

Clostridium butyricum is a butyric acid-producing anaerobic and
spore-forming bacterium widely distributed in the environment
and commonly present in the gut microflora of healthy humans
and animals. It is generally considered a harmless saprophyte and
it may be used for bioproduction of butyric acid, a widely applied
food preservation and flavour-enhancing additive [1]. In addition,
in certain countries, C. butyricum strains with proven absence of
toxicological effects are allowed for use as probiotics in humans
and animals, based on the beneficial effects that butyric acid and
the bacteriocin(s) produced by those strains are believed to exert
on the host intestine [2,3].

On the other hand, an i vitro cytotoxic effect of butyric acid
produced by C. butyricum has been demonstrated in various cells.
This effect has been hypothesized to be responsible for the
initiation of the intestinal lesions that lead to the mucosal necrosis
of the ileum and colon observed in neonatal necrotizing
enterocolitis, although conclusive evidence is still lacking [4,5].

Most notably, some strains of C. butyricum have been described
that are capable of synthesizing the type E botulinum neurotoxin
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(BoNT/E), which is one of the seven (A to G) antigenically distinct
protein toxins that cause the flaccid paralysis of botulism.
Neurotoxigenic C. butyricum type E strains were first isolated in
Italy in 1984 from two distinct cases of infant botulism [6], an
intestinal toxaemia by botulinum toxin-producing clostridia that
affects babies under 1 year of age. Except for the ability to produce
botulinum toxin, which is conventionally considered a distinctive
characteristic of members of the C. botulinum species, these
particular strains had all the phenotypic characteristics of the C.
butyricum species [7]: their taxonomic identity was later genetically
confirmed by DNA hybridization experiments and 16S rRNA
gene sequencing [8-10]. Since then, neurotoxigenic C. butyricum
type E has been implicated in further cases of infant botulism, as
well as in several episodes of intestinal toxaemia in adults and of
foodborne botulism (namely the classic intoxication caused by the
ingestion of preformed BoNT in improperly preserved foods) [11-
17]. Moreover, C. butyricum type E has been isolated from
numerous lake sediments in China [18], where an outbreak of
foodborne botulism had previously occurred [11]. Although
neurotoxigenic C. butyricum type L has been rarely isolated up to
now, it seems to be spread throughout the world, and in Italy it has
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been implicated in botulism cases more frequently than C.
botulinum type E [19].

It is assumed that neurotoxigenic C. butyricum type E strains
acquired the bont/E gene from a progenitor strain through mobile
genetic elements [20]. Recently, the bont/A,/B and/F genes of
certain C. botulinum strains were localized within circular plasmids
[20-24], whereas the bont/G gene of C. argentinense has long been
known to be plasmid-encoded [25], although whether the bont/ G-
encoding plasmid has a circular or linear structure remains
unknown. Remarkably, some of the bont-encoding plasmids have
been shown to be conjugative [26].

Previous studies have investigated the bont/E gene chromosomal
or plasmid location in the genomes of neurotoxigenic C. butyricum
type E. Although ecarlier experiments yielded discordant results,
more recent studies indicated a chromosomal location for the bont/
E gene in the neurotoxigenic C. butyricum type E isolates that had
been analyzed [20,27—29].

Here, we present evidence for the existence of previously
unrecognized extremely large linear plasmids in ten neurotoxi-
genic C. butyricum type E strains isolated from clinical, food, and
environmental sources in two widely separated geographical areas,
Italy and China (Table 1). Given these unexpected findings, and
because the genes encoding other BoNT types have been
demonstrated to be chromosomally or plasmid located, depending
on the clostridia strains being examined, the location of the bont/E
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gene in the genomes of the ten rare neurotoxigenic C. butyricum
type E strains was re-evaluated. The genomic location of
additional selected genes, including three different antibiotic
resistance genes, was also determined in order to investigate the
genetic content of the newly identified megaplasmids.

Results

Detection of mega-sized linear extrachromosomal bands

in neurotoxigenic Clostridium butyricum type E isolates
Pulsed-field gel electrophoresis (PFGE) analysis of the undigest-
ed bacterial genomes has proven to be a valuable tool for
demonstrating the existence of multiple replicons in bacteria
[30,31]. Our PFGE experiments revealed that the undigested
genomic DNA preparations of each of ten neurotoxigenic C.
butyricum type E strains contained a mega-sized DNA band of
>600 kb in addition to the main chromosomal band (Figure 1).
This result was apparently in contrast with the result previously
obtained by Wang et al. [29], who detected by PFGE a single
DNA chromosomal band in several neurotoxigenic C. butyricum
type E strains, some of which were also analyzed in the present
study (Table 1). However, the electrophoretic mobility of the DNA
molecules is known to depend upon pulse times [32], and
discrepancies between the above results are likely due to the
different pulse time values used in the PFGE experiments: Wang
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Table 1. Clostridia strains used in this study.

Strain Source Botulism Country Year of Megaplasmid
isolation size (kb)?

Neurotoxigenic

C. butyricum type E°

1SS-20 Infant feces Infant botulism Italy 1984 >610

1SS-21 " “ " 1985 >610

1SS-190 " " " 2001 ~825

1SS-86 Adult feces Intestinal toxemia Italy 1995 ~825

1SS-109 " " " 1996 > 610

1SS-145/1 " Foodborne botulism Italy 1999 > 610

LCL-063 " " China 1973 ~825

LCL-155 Food " " 1997 ~825

KZ-1886 Soil - China 1999 ~750-785°¢

KZ-1890 " = " 1999 ~750-785°¢

Non-neurotoxigenic

C. butyricum

ATCC 19398 ATCC - USA -

UC-9035 Cheese - Italy -

UC-9041 " - " -

GP1 " = " =

C. botulinum

type E¢

CDC-4581 Adult feces Foodborne botulism USA -

CDC-4234 " “ " -

CDC-5256 " " -

“The megaplasmid sizes were determined by comparison with a molecular standard (S. cerevisiae chromosomal DNA, Biorad).

PReferences 6, 11, 13-15, 18.

“‘Megaplasmid size in the range between 750 kb and 785 kb.

d0btained from the culture collection of the Botulism Laboratory of the Center for Disease Control and Prevention, Atlanta, USA.

doi:10.1371/journal.pone.0021706.t001
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et al used pulse times increasing from 3 to 20 s [29], whereas we
used longer pulse times in different experiments (increasing from 5
to 60 s, or from 50 to 90 s) that allowed us to resolve the mega-
sized extrachromosomal elements.

The high intensity of the mega-sized extrachromosomal bands
after ethidium bromide staining indicated that they were present
in multiple copies or that they might have a linear structure. The
latter assumption is based on the different PFGE mobility of linear
DNA molecules compared with that of large circular DNA
molecules. Specifically, linear DNA molecules are totally released
from the wells of PFGE gels and freely migrate through the gel
according to their molecular size, whereas circular closed DNA
molecules are in part retained within the wells of PFGE gels or
they can partially migrate out of the wells in a supercoiled form,
the mobility of which depends on changes in the applied pulse
time values rather than on the molecular size, resulting in variation
in the apparent sizes of the DNA molecules [33]. Our results
supported the linear structure of the mega-sized extrachromo-
somal elements observed in the neurotoxigenic C. butyricum type E
strains. First, the apparent sizes of the mega-bands did not change
in relation to the linear bands of the molecular size standards when
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different pulse time conditions were used, consistent with the
behavior expected for linear DNA (Figure 1). Second, the
migration rate of the mega-sized extrachromosomal bands was
not affected by treatment with S1 nuclease, an enzyme used to
linearize circular DNA (data not shown). Finally, the mega-sized
extrachromosomal bands were degraded by treatment with ATP-
dependent exonuclease, an enzyme that selectively hydrolyzes
linear DNA without affecting supercoiled and circular DNA
(Figure 2), confirming that the extrachromosomal mega-bands had
a linear structure.

At least four differently sized linear extrachromosomal bands
ranging from ~610 kb to ~825 kb, as estimated by comparison
with a molecular size standard (S. cerevisiae chromosomal DNA,
Biorad), were detected in the ten neurotoxigenic C. butyricum type E
strains examined in this study (Figure 1b). Specifically, a band
greater than the 610-kb band of the molecular standard was
observed in four Italian strains (ISS-20, ISS-21, ISS-109, ISS-145/
1). A band approximately in line with the 825-kb band of the
molecular size standard was observed in four strains, two from
Italy (ISS-86 and ISS-190) and two from China (LCL-063 and
LCL-155). The two remaining C. butyricum type E strains from
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Figure 1. PFGE experiments showing the presence of an extrachromosomal mega-sized DNA band of > 600 kb in the undigested
genomic DNA preparations from 10 neurotoxigenic C. butyricum type E strains: 1ISS-145/1 (lane 2); I1SS-20 (lane 3); 1SS-21 (lane 4);
ISS-109 (lane 5); 1SS-86 (lane 6); 1SS-190 (lane 7); KZ-1886 (lane 8); KZ-1890 (lane 9); LCL-063 (lane 10); LCL-155 (lane 11). An
additional extrachromosomal smaller band is evident in the DNA preparations from neurotoxigenic type E strains ISS-145/1, 1SS-20, 1SS-21, 1SS-109,
1SS-86, 1SS-190 (lanes 2-7), and KZ-1890 (lane 9). Lane 1, undigested genomic DNA from non-neurotoxigenic C. butyricum strain ATCC 19398. S.e.,
Xbal-digested genomic DNA fragments of Salmonella enterica serotype Braenderup strain H9812 (ref. 35). S.c., Saccharomyces cerevisiae chromosomal
DNA size marker (Biorad). PFGE conditions: 5-60 s pulse at 6 V/cm for 18 h (1a), and 50-90 s pulse at 6 V/cm for 20 h (1b). At the different PFGE
conditions applied, the apparent sizes of the extrachromosomal mega-sized DNA bands (lanes 2-11) did not change in relation to the linear bands of
the molecular size standards, consistent with the behaviour expected for linear DNA molecules. The mega-band sizes were estimated as follows
(Figure 1b): >610 kb for strains 1SS-20, 1SS-21, 1SS-109, 1SS-145/1 (lanes 2-5); ~825kb for strains 1SS-86, 1SS-190, LCL-063 and LCL-155 (lanes 6, 7, 10
and 11); and between 750 and 785 kb for strains KZ-1886 and KZ-1890 (lanes 8, 9). Migration of the extrachromosomal smaller DNA bands relative to
the linear DNA markers was inconsistent (lanes 2-7 and lane 9 of Figures 1a and 1b), consistent with the behavior expected for circular super-coiled
DNA molecules: as a consequence, the actual size of the extrachromosomal smaller bands of strains ISS-145/1, 1SS-20, 1SS-21, 1S5-109, 1S5-86, 1SS-190
and KZ-1890 could not be determined.

doi:10.1371/journal.pone.0021706.g001
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China (KZ-1886 and KZ-1890) displayed slightly different bands
ranging from 750 to 785 kb.

In addition to the mega-sized bands, the six neurotoxigenic C.
butyricum type E isolates from Italy showed a smaller extrachro-
mosomal band of an apparent size of ~55 kb, whereas one of the
strains from China (strain KZ-1890) displayed an additional
extrachromosomal band, the apparent size of which was close to
the 167.1-kb band of the molecular size standard (Xbal-digested
genomic DNA fragments of Salmonella enterica serovar Braenderup
strain H9812) [34] (Figure 1a). However, these smaller extrachro-
mosomal bands disappeared from the gel after S1 nuclease
treatment, indicating that they were susceptible to the enzyme
activity (data not shown). In addition, the smaller plasmids of the
Italian strains were not susceptible to the ATP-dependent nuclease
treatment (Figure 2), indicating that they had a circular structure.
The ~ 167 kb band of strain KZ-1890 disappeared after the ATP-
dependent nuclease treatment (Figure 2), indicating that it was a
linear DNA molecule; however, since the same plasmid of strain
KZ-1890 was susceptible to the S1 nuclease treatment and it
showed an inconsistent PFGE migration (Figures la and 1b)
typical of a supercoiled DNA molecule, it was concluded that this
plasmid could exist in both linear and supercoiled forms,
consistent with the behavior expected for circular DNA.
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PFGE of the undigested genomic DNA obtained from the non-
neurotoxigenic C. butyricum strains and from the C. botulinum type E
strains included in this study (Table 1) either showed no
extrachromosomal bands or extrachromosomal bands much
smaller than the mega-sized ones observed in the neurotoxigenic
C. butyricum type E isolates (Figure 3).

Analysis of the Xfol and Smal PFGE macrorestriction profiles of
the genomic DNA from the neurotoxigenic C. butyricum type E
strains revealed that the four Chinese strains clustered into four
different PFGE groups with both endonucleases, and the six
Italian strains clustered into two major PFGE groups with an
intra-linkage homology level of =90% with both Xkol and Smal
endonucleases (Figure 4). Each of the PFGE groups was consistent
with a different size of mega-sized extrachromosomal bands
observed among the strains.

Bont/E gene carriage and copy number

Southern-blot analysis following PFGE of the undigested DNA
of the neurotoxigenic C. butyricum type E strains with a specific
bont/E gene probe revealed an hybridization signal corresponding
to the chromosomal bands of all strains (Figure 5b).

The Xhol- and Smal-digested DNA samples of the neurotoxi-
genic C. butyricum type E strains were also hybridized with the bont/
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Figure 2. PFGE analysis of genomic DNA of six neurotoxigenic C. butyricum type E strains representative of the different
megaplasmids sizes: 1SS-109 (lanes 1 and 2); I1SS-190 (lanes 3 and 4); KZ-1886 (lanes 5 and 6); KZ-1890 (lanes 7 and 8); LCL-063
(lanes 9 and 10); LCL-155 (lanes 11 and 12). S.e,, Xbal-digested genomic DNA fragments of Salmonella enterica serotype Braenderup strain
H9812 (ref. 35). PFGE conditions: 5-60 s pulse at 6 V/cm for 18 h. — and + indicate absence and presence of treatment with ATP-dependent
exonuclease, respectively. The megaplasmid bands disappeared after treatment with the ATP-dependent nuclease, an enzyme that selectively digests
linear DNA molecules, indicating that all megaplasmids had a linear structure (lanes 2, 4, 6, 8, 10, 12). The smaller plasmids of strains I1SS-109 (lanes 1
and 2) and ISS-190 (lanes 3 and 4) were not susceptible to the ATP-dependent nuclease treatment, indicating that they had a circular structure. The
~167 kb band of strain KZ-1890 disappeared after the ATP-dependent nuclease treatment (lanes 7 and 8), indicating that it was a linear DNA
molecule; however, the same plasmid of strain KZ-1890 showed inconsistent PFGE migration typical of supercoiled DNA (lane 9 of Figures 1a and 1b).
Hence, the smaller plasmid of strain KZ-1890 can exist in both linear and supercoiled forms, consistent with the behavior expected for circular DNA.
doi:10.1371/journal.pone.0021706.g002
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Figure 3. PFGE of undigested genomic DNA of non-neurotoxi-
genic C. butyricum strains (lanes 1-4) and C. botulinum type E
strains (lanes 5-7). Strains: UC-9035 (lane 1); UC-9041 (lane 2); GP1
(lane 3); ATCC 19398 (lane 4); CDC-5234 (lane 5); CDC-4581 (lane 6);
CDC-5380 (lane 7). S.e., Xbal-digested genomic DNA fragments of
Salmonella enterica serotype Braenderup strain H9812 (ref. 35). PFGE
conditions: 5-60 s pulse at 6 V/cm for 18 h. Extrachromosomal bands
close to the 54.7 kb band of the molecular standard (S.e.) are evident in
lane 3 (non-neurotoxigenic C. butyricum strain GP1) and lane 6 (C
botulinum type E strain CDC-4581).
doi:10.1371/journal.pone.0021706.g003

E gene probe to determine the copy number of the bont/E gene.
The results showed a single hybridization band in all analyzed
neurotoxigenic C. butyricum type E strains, indicating that they all
contained a single copy of the bont/E gene (Figure 6).

Carriage of 16S rRNA and mobA genes

The genomic location of the 16S rRNA genes was investigated
to determine whether the mega-sized extrachromosomal bands
were plasmids or second chromosomes; by convention, the
presence of ribosomal RNA genes is indicative of a chromosome
because such essential genes of the translational machinery are
generally not carried within plasmids in bacteria [35]. The specific
16S rDNA gene probe that we used only hybridized to the
chromosomal bands of the ten neurotoxigenic C. butyricum type E
strains (data not shown), indicating that the extrachromosomal
bands were indeed mega-plasmids rather than second chromo-
somes.

BLAST comparison between the draft whole-genome sequences
of two neurotoxigenic C. butyricum type E strains (accession
numbers NZ_ACOMO0000000 for strain BL5262 that corre-
sponds to strain ISS-20 of this study, and NZ_ABDT00000000 for
strain 5521 that corresponds to strain ISS-21 of this study) and a
~8-kb bacteriocin-encoding plasmid from a non-neurotoxigenic
C. butyricum strain (pCBM588, accession number NZ_

@ PLoS ONE | www.plosone.org
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ABDTO00000000; the only available complete DNA sequence
from a non-neurotoxigenic C. butyricum strain) [36], showed a high
percentage of nucleotide identity (93%) in a 2-kb DNA region.
This region included a gene for a mobilization protein of the
MobA/MobL family that is essential for specific plasmid transfer
[37]. A specific mobA gene probe that we designed only hybridized
to the smaller extrachromosomal bands observed in the Italian C.
butyricum type E strains (Figure 7).

Carriage of antibiotic resistance genes

Several antibiotic resistance genes were present in both draft
genome sequences of the Italian neurotoxigenic C. butyricum type E
strains. As antibiotic resistance genes are often found within
bacterial plasmids, we investigated the location of representative
antibiotic resistance genes (i.e., the tetracycline fe(P) gene, the
lincomycin resistance protein fm/B gene, and a B-lactamase gene) in
the genomes of the ten neurotoxigenic C. butyricum type E strains.
The tef(P) gene probe that we used hybridized to the chromosomes
of all ten strains that were analyzed. The /B gene probe
hybridized to the chromosomes of the six strains isolated in Italy,
whereas no hybridization signal was observed for the four strains
from China (data not shown), indicating that only the Italian strains
contained the /mB gene. Finally, the B-lactamase gene probe
hybridized to the megaplasmid bands of eight of the ten
neurotoxigenic C. butyricum type E strains (Figure 5c), of which six
from Italy and two from China (LCL-063 and LCL-155); the two
remaining Chinese strains (KZ-1886 and KZ-1890) did not show
any hybridization signal with the B-lactamase gene probe that we
used, indicating that they did not harbor that B-lactamase gene.

Discussion

In this study, we show the presence of a linear megaplasmid in the
genomes of ten neurotoxigenic C. butyricum type E strains with
different clinical and geographical origins. The linear megaplasmids
displayed size heterogeneity, with at least four different sizes being
recognized. The differently sized megaplasmids were distributed
among the C. butyricum type E strains according to the distinct PFGE
groups they belonged to, indicating that the megaplasmids likely
contributed to the clonal diversity. Besides, some of the analyzed
strains were shown to possess additional smaller circular plasmids.
These unprecedented findings indicate that neurotoxigenic C.
butyricum type E strains share a complex genomic organization, with
multiple linear and circular replicons, thus providing new insights
mto the genetics of these microorganisms.

The occurrence of plasmids has already been reported in several
Clostridium spp, including C. perfringens, C. difficile, C. tetan:, C.
argentinense and C. botulinum [38]. However, to our knowledge, the
largest plasmid described so far in the clostridia genus is a 270-kb
circular plasmid (pCLJ, Accession Number NC_012654) that
simultaneously harbors two bont genes, the bont/A and/B genes
[22]. This plasmid is considerably smaller than the megaplasmids
of 600 kb to 850 kb that are described here. DNA molecules of
these huge sizes have largely remained undetected due to the
considerable technical challenges that their separation from the
chromosomes involves. Considering that the sizes of two
neurotoxigenic C. butyricum type E genomes have been estimated
to be ~4.5 Mb and 4.7 Mb [20], the megaplasmids would
constitute 13-19% of the whole bacterial genome. Such genome
sizes are larger than all €. botulinum genomes available to date in
the GenBank database, which have reported sizes of 2.3 Mb to
4.2 Mb, in line with the presence of megaplasmids in the genomes
of neurotoxigenic C. butyricum type E strains. However, comparison
with the genome sizes of non-neurotoxigenic C. butyricum is not

June 2011 | Volume 6 | Issue 6 | 21706



(=] W =] 0 o W
BB B .8 BB
4
475
s ® & B @ 8
A UL U P L I JORIL [P UL

903

490 52

[
=
-

-Lactamase-Encoding Linear Megaplasmids

Strain Xhol
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1SS-145/1
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Figure 4. Clustering analysis of the PFGE profiles of the ten neurotoxigenic C. butyricum type E strains obtained by Xhol (4a) and
Smal (4b) endonucleases. The similarity of PFGE profiles was evaluated using the Bionumerics software (version 4.0) (Applied Maths, Sint-Martens-
Latem, Belgium); a similarity level of = 90% was used to define PFGE groups. The 10 neurotoxigenic C. butyricum type E strains were divided in 6

PFGE groups with both endonucleases.
doi:10.1371/journal.pone.0021706.g004

possible because genome sequencing data are lacking for that
organism.

Furthermore, our results indicate that the megaplasmids
identified in the neurotoxigenic C. butyricum type E strains have a
linear structure. Bacterial linear plasmids cannot readily be
recognized by genome sequencing owing to the inability to generate
a closed circular DNA sequence; however, they can be identified by
their migratory behaviour under different PFGE conditions and by
the use of specific nucleases that selectively cut linear or circular
DNA molecules. Although linearization of circular plasmids may
occur due to cell death and/or during DNA extraction, the
concomitant presence in some of the tested C. butyricum type E
strains of additional smaller plasmids that were not linearized under
the same experimental conditions provided an internal control for
the absence of DNA breakage, indicating that the megaplasmids
were native linear DNA molecules and not simple artefacts.

Linear plasmids have been established in both Gram-positive and
Gram-negative bacteria, including Streptomyces spp, Mycobacterium spp,
Bacillus spp, Borrelia spp, Lactobacillus spp, Rhodococcus spp, Micrococcus
spp, Lscherichia  coli, Salmonella  enterica, Klebsiella  oxytoca, Yersinia
enterocolitica, as well as in some eukaryotic microorganisms [39].
However, no linear plasmids have yet been reported in Clostridium spp.

@ PLoS ONE | www.plosone.org

In general, comparative genomic studies have indicated that
bacteria with large composite genomic structures might be more
ecologically successful in certain environments [40]. In particular,
both linear and circular plasmids are usually assumed to confer a
selective advantage to the host, by providing an additional
repertoire of genes that significantly extend the metabolic
versatility, fitness and stress resistance of the microorganism, even
though cryptic linear and circular plasmids also exist. Our
attempts to localize within the newly recognized linear mega-
plasmids some of the genes important for the biology of
neurotoxigenic C. butyricum type E, including the bont/E-encoding
gene, a plasmid mobilization protein gene, and two antibiotic
resistance genes (fe{P) and /B genes) were unsuccessful.
However, a major finding of this study was that the megaplasmids
of eight of the ten analyzed neurotoxigenic C. butyricum type E
strains carried a gene coding for a B-lactamase, an enzyme that
hydrolyzes the B-lactam class of antibiotics such as penicillins and
cephalosporines. Interestingly, most of the C. butyricum type E
strains that contained the megaplasmid-encoded B-lactamase gene
had originally been isolated from the clinical specimens of people
affected with intestinal toxaemia botulism (five strains) or
foodborne botulism (two strains). Thus, it is likely that the

June 2011 | Volume 6 | Issue 6 | 21706
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Figure 5. PFGE of undigested genomic DNA of strains 1SS-145/1 (lane 1); ISS-20 (lane 2); ISS-21 (lane 3); 1SS-109 (lane 4); 1SS-86
(lane 5); I1SS-190 (lane 6); KZ-1886 (lane 7); KZ-1890 (lane 8); LCL-063 (lane 9); LCL-155 (lane 10). S.e., Xbal-digested genomic DNA
fragments of Salmonella enterica serotype Braenderup strain H9812 (ref. 34). PFGE conditions: 5-60 s pulse at 6 V/cm for 18 h (5a). Southern
hybridization with a bont/E gene probe showing that the gene probe hybridized to the chromosome bands of strains (5b). Southern hybridization
with a B-lactamase gene probe showing that the gene probe hybridized to the megaplasmids of strains ISS-145/1 (lane 1); ISS-20 (lane 2); I1SS-21 (lane
3); ISS-109 (lane 4); 1SS-86 (lane 5); 1SS-190 (lane 6); LCL-063 (lane 9); LCL-155 (lane 10) (5c).

doi:10.1371/journal.pone.0021706.g005
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Figure 6. PFGE of Xhol-digested DNA of strains 1SS-145/1 (lane 1); I1SS-20 (lane 2); ISS-21 (lane 3); ISS-109 (lane 4); 1SS-86 (lane 5);
1SS-190 (lane 6); KZ-1886 (lane 7); KZ-1890 (lane 8); LCL-063 (lane 9); LCL-155 (lane 10). S.e., Xbal-digested genomic DNA fragments of
Salmonella enterica serotype Braenderup strain H9812 (ref. 34). PFGE conditions: 4-40 s pulse at 6 V/cm for 18 h (6a). Southern hybridization with a
bont/E gene probe showing that the gene probe hybridized to single restriction bands, as indicated by the black arrows (6b).
doi:10.1371/journal.pone.0021706.g006
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Figure 7. PFGE of undigested genomic DNA of strains ATCC 19398 (lane 1); ISS-145/1 (lane 2); 1SS-20 (lane 3); ISS-21 (lane 4); ISS-
109 (lane 5); I1SS-86 (lane 6); 1SS-190 (lane 7); KZ-1886 (lane 8); KZ-1890 (lane 9); LCL-063 (lane 10); LCL-155 (lane 11) (7a). S.e., Xbal-
digested genomic DNA fragments of Salmonella enterica serotype Braenderup strain H9812 (ref. 35). PFGE conditions: 5-60 s pulse at 6 V/cm for 18 h.
Southern hybridization with a specific mobA gene probe showing that the gene probe hybridized to the smaller plasmids observed in lanes 2-7

(strains 1SS-145/1, 1SS-20, 1SS-21, 1SS-109, 1S5-86, 1SS-190) (7b).
doi:10.1371/journal.pone.0021706.g007

neurotoxigenic €. butyricum type E strains harbouring the
megaplasmid-encoded B-lactamase gene might have a selective
advantage in a clinical setting. Although antibiotics are not
recommended for treating intestinal toxaemia botulism and
foodborne botulism, their use may be necessary to control
secondary infections [41]; B-lactam antibiotics are among the
most commonly prescribed antimicrobial drugs, thus inducing
selective pressure for resistance genes. Both neurotoxigenic C.
butyricum type E strains whose megaplasmids did not hybridize to
the B-lactamase gene probe were from environmental sources
(Chinese soil samples): whether the megaplasmids of those strains
carry antibiotic resistance genes other than the B-lactamase gene
remains to be determined.

The B-lactamase probe that hybridized to the megaplasmids of
eight C. butyricum type E strains was located at 279338-279745
within contig 1 (NZ_ACOMO01000001.1) of the draft genome
sequence of strain BL5262 (ISS-20 of the present study). Hence,
the megaplasmid of strain ISS-20, whose size was estimated
>610 kb by comparison with a molecular marker in the present
study, is likely (part of) this contig (757,653 bp). Interestingly,
another B-lactamase-encoding gene, a gene coding for a metallo-3-
lactamase family protein, and a B-lactamase domain protein gene
are also present within contig 1. Besides, this contig contains other
important putative genes, including the o-subunit of a DNA
polymerase III (Gram-positive type) gene, the nitrogenase operon
that is absent from the other sequenced contigs, genes coding for
the phosphotransferase (PTS) systems for the import of sugars,
genes reminiscent of phage proteins such as a phage membrane
protein and a recombinase of the phage integrase family, and the

@ PLoS ONE | www.plosone.org

Table 2. Primers used to generate the specific gene probes
for the Southern blot experiments.

Gene primers Sequence (5'— 3’) Amplicon size (bp)

cntE 508
forward AATGGGAGCAGAGCCTGATTT

reverse TACCGAATAAATTCCGCTAGC
B-lactamase' 408
forward ATGGGGAGAACGTCATAC

reverse TTGCCGTCATAGTGAGGT

16SrRNA 392
forward TAGATACCCTGGTAGTCCACG

reverse GATGATTTGACGTCATCCCCA

mobA 911
forward CTAATGAATTGACCTCTCTAC

reverse TGCTCATGTAATGCTGACTAT

tet(P) 372
forward AGTAAGTGCAGCAGAAGGTGT

reverse TCATCCTGAAGAGCACATCCT

ImrB 417
forward AATCCAGAAGCAACTGCACTC

reverse TTCACAGCTGCTATGGCACTT

"B-lactamase gene located at nucleotides 278991-280007 within contig 1
(NZ_ACOMO01000001.1) of the draft genome sequence of strain BL5262.
doi:10.1371/journal.pone.0021706.t002
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genes encoding the CRISPR-associated Cas proteins involved in
the acquired immunity against viruses and plasmids (a system
evocative of the eukaryotic RNA interference system), several
membrane sensor proteins and ATP-binding transporter (ABC
transporter) of various substrates.

It will be interesting to analyze and compare the gene contents of
the other C. butyricum type E megaplasmids identified in the present
study, specially those that are greater than the one of ISS-20 strain,
in order to understand which genes are conserved within the
megaplasmids and which ones have more recently been acquired.

In conclusion, the widespread occurrence of linear megaplasmids
in the neurotoxigenic C. butyricum type E isolates, and their absence
from non-neurotoxigenic C. butyricum and C. botulinum type E isolates,
would suggest that they are essential for the survival and growth of
the former microorganisms. The fact that the megaplasmids of
neurotoxigenic C. butyricum type E strains associated with human
botulism carry a B-lactam resistance gene could have contributed to
the emergence of neurotoxigenic C. butyricum type E as a human
pathogen. Research on the role of the megaplasmids in the spread of
antibiotic resistance among clostridia and/or other microorganisms
1s warranted. We believe that findings reported in the present study
can give new impulse for completing the genome sequences of the
neurotoxigenic C. butyricum type E strains.

Materials and Methods

Clostridia strains

The clostridia strains used in this study are listed in Table 1.
Ten strains were neurotoxigenic C. butyricum type E. Of these, six
had been isolated in Italy from as many patients suffering either
from intestinal toxaemia botulism (ISS-20, ISS-21, ISS-86, ISS-
109, ISS-190) or food-borne botulism (ISS-145/1) [6,13-15]: they
were obtained from the ISS culture collection. The other four C.
butyricum type E strains were from food (LCL-155) and human
(LCL-063) specimens isolated from two different food-borne
botulism outbreaks in China, and from soil samples (KZ-1886
and KZ-1890) collected from the areas where the outbreaks had
occurred [11,18]: they were a kind gift from Professor Nakamura,
Kanazawa University, Japan.

All strains had genetically been confirmed as C. butyricum
[8,9,42]; however, they all produced BONT/E and carriage of the
corresponding bont/E gene had previously been shown by PCR
[13,15,29,43]. In addition, four non-neurotoxigenic C. butyricum
strains and three Clostridium botulinum type E strains were included
in the experiments (Table I).

All clostridia strains were stored at —80°C in microbank
cryogenic vials (Prolab Diagnostics, Austin, TX). Clostridia stock
cultures were grown for 48 h at 37°C on egg yolk agar (EYA)
plates (Oxoid, Milan, Italy) under anaerobiosis (GasPack jars,
Oxoid). For growth of broth cultures, TPGY broth (5% Trypti-
case, 0.5% peptone, 0.4% glucose, 2% yeast exctract, 1% L-
cysteine hydrocloride monohydrate) was used.

Pulsed-field gel electrophoresis (PFGE)
Overnight TPGY cultures of the clostridia strains were used for
DNA preparation. Cells were embedded in 1.5% low-melting-point
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agarose (Invitrogen, Carlsbad, CA, USA) plugs and genomic DNA
was extracted as described previously [23]. Some DNA plugs were
treated with S1 nuclease (MBI Fermentas, Lithuania) as detailed
elsewhere [23]. Other DNA plugs were digested with ATP-
dependent exonuclease (Epicentre Technologies, Madison, WI)
according to the manufacturer’s instructions. Restriction of the DNA
plugs with Xhol or Smal (New England BioLabs, Ipswich, MA) was
performed under conditions recommended by the manufacturers.

Undigested and enzymatically treated genomic DNA samples
were separated in a contour-clamped homogeneous electric field
system (CHEF Mapper apparatus, BioRad Laboratories, Hercules,
CA) through 0.8% Seakem Gold agarose gel (Cambrex, East
Rutherford, NJ) in 0.5 X Tris-borate-EDTA buffer. Electrophoresis
was performed at 6 V/cm and 14°C. The pulse time increased from
5 to 60 s (linear ramping factor) over 18 h. The DNA isolated from
Salmonella enterica serovar Braenderup strain H9812 and restricted
with Xbal (New England BioLabs, Ipswich, MA) was used as the
molecular marker [34]. In some experiments, the undigested DNA
samples were separated by increasing the pulse time from 50 to 90 s
over a 20 h run, to more accurately estimate the sizes of the DNA
molecules; when these parameters were applied, Saccharomyces
cerevisiae chromosomal DNA (Biorad) was used as molecular marker.

Gels were stained with ethidium bromide and visualized using a
GelDoc 2000 apparatus (Bio-Rad). The PFGE restriction profiles
were compared using Bionumerics software (version 4.0) (Applied
Maths, Sint-Martens-Latem, Belgium). Clustering was performed
by applying the Dice coeflicient and the unweighted pair-group
method using arithmetic averages (UPGMA), with 1% optimiza-
tion and 1% position tolerance.

Southern-blot analyses

Digoxigenin (DIG)-labeled probes were generated by a PCR
DIG Probe Synthesis kit (Roche Diagnostics GmbH, Mannheim,
Germany). Primers for the preparation of probes from the bont/E,
16SrRNA, mobilization protein (mobA), tetracycline tet(P), lmB
efflux, and B-lactamase genes are described in Table 2 and were
purchased from Eurofins MWG (Ebersberg, Germany). Southern
hybridizations of pulsed-field gels with the gene probes were
performed as previously described [23]. DIG detection reagents
were obtained from Roche Diagnostics. The CSPD substrate
(Roche Diagnostics) was used for detection of hybridized probes
according to the manufacturer’s instructions.
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