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Abstract

Nitrosative stress compromises force generation in Duchenne muscular dystrophy (DMD). Both inducible nitric oxide
synthase (iNOS) and delocalized neuronal NOS (nNOS) have been implicated. We recently demonstrated that genetic
elimination of nNOS significantly enhanced specific muscle forces of the extensor digitorum longus (EDL) muscle of
dystrophin-null mdx4cv mice (Li D et al J. Path. 223:88–98, 2011). To determine the contribution of iNOS, we generated iNOS
deficient mdx4cv mice. Genetic elimination of iNOS did not alter muscle histopathology. Further, the EDL muscle of iNOS/
dystrophin DKO mice yielded specific twitch and tetanic forces similar to those of mdx4cv mice. Additional studies suggest
iNOS ablation did not augment nNOS expression neither did it result in appreciable change of nitrosative stress markers in
muscle. Our results suggest that iNOS may play a minor role in mediating nitrosative stress-associated force reduction in
DMD.
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Introduction

Duchenne muscular dystrophy (DMD) is an X-linked lethal

muscle disease affecting approximately 1–3 of every 10,000

newborn boys [1]. The primary genetic defect of DMD is

dystrophin gene mutation [2]. Dystrophin is a sub-sarcolemmal

structural protein essential for muscle cell membrane integrity and

signal transduction. In the absence of dystrophin, muscle cells

undergo degeneration and necrosis and eventually are replaced by

fibrotic and fatty tissues. It is currently not completely clear how

the lack of dystrophin leads to this devastating cascade of events.

Several mechanisms have been proposed including contraction-

induced sarcolemmal rupture, pathogenic calcium overloading,

free radical injury, ischemia, inflammation and aberrant signaling

(reviewed in [3,4,5]).

Recent studies suggest that inducible nitric oxide synthase

(iNOS) may represent a common link among several of these

proposed mechanisms [6]. iNOS is a calcium-insensitive NOS

[7,8]. Its expression is negligible under normal condition but iNOS

is highly up-regulated in inflamed tissues. In dystrophin-deficient

mdx mice and DMD patients, iNOS level is markedly elevated in

muscle [6,9,10,11]. It is currently not completely clear whether

iNOS elevation merely represents an inflammatory signature of

muscular dystrophy or it directly contributes to muscle disease in

DMD. A recent study by Bellinger et al suggests that iNOS may

play an active role in DMD pathogenesis [6].

In normal muscle, the ryanodine receptor (RyR) regulates

calcium release from the sarcoplasmic reticulum (SR). When RyR

is S-nitrosylated, it becomes leaky. Excessive entry of SR calcium

into the cytosol activates calcium-dependent calpain proteases and

causes muscle damage and force reduction [12]. Bellinger et al

observed a disease-associated RyR S-nitrosylation in the extensor

digitorum longus (EDL) muscle of mdx mice. Interestingly, they

also found a simultaneous increase of iNOS expression and for-

mation of an iNOS-RyR complex. Based on these findings, the

authors proposed that iNOS-mediated RyR S-nitrosylation and

subsequent intracellular calcium leaking represent important

downstream events in dystrophin-deficient muscular dystrophy.

Strategies to reduce iNOS-mediated RyR hypernitrosylation

and/or RyR calcium channel leaking may ameliorate DMD [6].

In support of this model, Bellinger et al indeed found that

pharmacological inhibition of RyR leaking improved voluntary

exercise and EDL muscle specific force in mdx mice [6].

In accordance with these findings, here we hypothesize that

genetic elimination of iNOS may improve EDL muscle contrac-

tility in dystrophin-null mice, presumably via reduced RyR S-

nitrosylation. To test this hypothesis, we crossed the C57Bl/6

(BL6) background iNOS knockout (KO) mice with the BL6

background mdx4cv mice. Progeny mice were genotyped by PCR.

After confirming dystrophin and iNOS expression by western blot,

we examined the histopathology and contractile profile of the EDL

muscle in age-matched male BL6, mdx4cv, iNOS KO and iNOS/

dystrophin double knockout (iNOS/Dys DKO) mice. Much to our

surprise, ablating iNOS did not reduce histological signs of muscle

damage neither did it alter specific muscle forces. BL6 and iNOS

KO yielded similar specific twitch and tetanic forces. In mdx4cv
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and iNOS/Dys DKO mice, specific forces were significantly

lower than those of normal. However, there was no significant

difference between mdx4cv and iNOS/Dys DKO mice. Interest-

ingly, iNOS/Dys DKO mice appeared slightly more resistant

to eccentric contraction-induced injury. To further probe this

intriguing finding, we examined nNOS expression and muscle

nitrosative stress markers. We did not find evidence of nNOS

up-regulation in iNOS-null normal and dystrophic mice. Nitro-

tyrosine, total cellular ryanodine receptor 1 (RyR1) and S-

nitrosylated RyR1 levels were not altered by iNOS ablation

either. Our results suggest that iNOS may be less important than it

has been suggested in modulating force generation in dystrophin-

deficient muscle.

Materials and Methods

Animals
All animal experiments were approved by the Animal Care and

Use Committee of the University of Missouri (#6980) and were in

accordance with NIH guidelines. BL6, B6.129P2-Nos2tm1Lau/J

(iNOS KO) and (B6Ros.Cg-Dmdmdx-4Cv/J (mdx4cv) mice were

purchased from The Jackson Laboratory (Bar Harbor, ME).

Experimental iNOS/Dys DKO mice were generated by crossing

iNOS KO and mdx4cv mice (Figure 1A). The genotype of the

iNOS locus was determined using a protocol provided by The

Jackson Laboratory (http://jaxmice.jax.org/strain/002609.html).

Briefly, two independent PCR reactions were conducted using a

common primer (ACATGCAGAATGAGTACCGG) and a wild

type allele specific primer (TCAACATCTCCTGGTGGAAC) or

a mutant allele specific primer (AATATGCGAAGTGGACC-

TCG). The wild type allele yielded a 108 bp band and the mutant

allele yielded a 275 bp band (Figure 1B). The mdx4cv genotype

was determined by primer competition PCR as we recently

reported [13]. The primers include a common primer (GCGCG-

GCTTGCCTCTGACCTGTCCTAT), a wild type allele specific

primer (GATACGCTGCTTTAATGCCTTTAAGAACAGCT-

GCAGAACAGGAGAC) and an mdx4cv allele specific primer

(CGGCCAGAACAGCTGCAGAACAGGAGAT). The wild type

allele yielded a 141 bp band and the mdx4cv allele yielded a

123 bp band (Figure 1B). The average age of the experimental

mice was 9.060.7 months (range, 6 to 12 months). Only male

mice were used in the study.

Western blot
Whole muscle lysate was obtained from frozen limb muscles

[14]. Dystrophin was detected with a monoclonal antibody against

the dystrophin C-terminal domain (Dys2, 1:100, clone Dy8/6C5,

IgG1; Novocastra, Newcastle, UK). iNOS was detected with a

rabbit polyclonal antibody (#482728, 1:1,000, EMD Chemicals,

Gibbstown, NJ). nNOS was detected with a rabbit polyclonal

antibody against the N-terminal end of nNOS (1:1,000; Upstate,

Lake Placid, NY) [14,15,16]. Nitro-tyrosine was detected with a

mouse monoclonal antibody (1:1,000; Caymen Chemicals, Ann

Arbor, MI) [14]. RyR1 was detected with a mouse monoclonal

antibody (1:1000; Affinity Bioreagents, Golden, CO). For total

cellular RyR1, the sarcoplasmic reticulum membrane fraction was

prepared as described by Saito et al in the presences of 1%

protease inhibitor (Roche, Indianapolis, IN) [14,17]. For S-

nitrosylated RyR1, the sarcoplasmic reticulum membrane fraction

was further purified using a resin-assisted capture method as

reported by Forrester et al [14,18].

Rapid blue staining of duplicated gels (Geno Technology,

St Louis, MO) was used as loading control for S-nitrosylated

RyR1. For all other western blots, membrane was probed with an

Figure 1. Generation of iNOS/dystrophin double knockout
mice. A, Outline of the breeding scheme. Dystrophin and iNOS
heterozygous male (Dys, Y/4cv; iNOS, +/2) and female (Dys, wt/4cv;
iNOS, +/2) mice were generated by crossing iNOS knockout mice with
mdx4cv mice. Crossing among heterozygous mice resulted in iNOS/
dystrophin double deficient male mice. Rectangle, male mice; Oval,
female mice. B, Representative genotyping photomicrographs. Top
panel, iNOS PCR. Wild type yields a 108 bp band. Knockout yields a
275 bp band. Bottom panel, mdx4cv PCR. Wild type yields a 141 bp
band. Mdx4cv yields a 123 bp band. In iNOS PCR, the mutant control is
an iNOS knockout mouse. In mdx4cv PCR, the mutant control is a
mdx4cv mouse. The first two lanes show typical results from two
independent iNOS/dystrophin double knockout mice. C, Representative
western blot results. DKO, double knockout; Dys, dystrophin; KO,
knockout; wt, wild type.
doi:10.1371/journal.pone.0021618.g001

Muscle Force in iNOS/Dystrophin DKO Mice
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anti-a-tubulin antibody as the loading control (1:3,000; clone B-5-

1-2; Sigma, St Louis, MO).

Histology, immunostaining and nNOS activity staining
Morphological studies were performed in the EDL and tibialis

anterior (TA) muscles. Both muscles mainly consist of fast-twitch

type II myofibers. Haematoxylin and eosin (HE) staining was used

to reveal general histology and centrally nucleated myofibers.

Sarcolemmal integrity was assessed with the IgG infiltration assay

[14,19,20]. Briefly, an Alex594 conjugated rabbit anti-mouse IgG

antibody (1:100; Invitrogen-Molecular Probe, Carlsbad, CA) was

applied to 8 mm muscle cross sections. After washing, damaged

myofibers were visualized as red color under the Texas red

channel with a Nikon E800 fluorescence microscope. Macrophage

infiltration was determined by immunohistochemical staining

using the Vectastain ABC kit (Vector Laboratories, Burlingame,

CA) [21,22]. The murine-specific anti-macrophage antibody

(1:500; rat anti-mouse F4/80) was obtained from Caltag Labo-

ratories (Burlingame, CA). Macrophage stained in dark brown

color. Fibrosis was examined with Masson trichrome staining

according to our published protocol [14,21,23,24]. Fibrous tissue

stained in blue color. Enzymatic nNOS activity staining was

performed as previously described [14,15,16].

In vitro evaluation of the EDL muscle force
Twitch and tetanic (50, 80, 120, and 150 Hz) forces of the EDL

muscle was measured in vitro at 30uC using a 300B dual-mode

servomotor transducer (Aurora Scientific, Inc., Aurora, Ontario,

Canada). The force data was analyzed using a DMC/DMA

software (Aurora Scientific) [25,26,27,28]. Muscle cross-sectional

area (CSA) was calculated according to the following equation,

CSA = (muscle mass)/(0.446Lo6muscle density). 0.44 represents

the ratio of muscle fiber length to optimal length for the EDL

muscle. Muscle density is 1.06 g/cm3. The specific force (kN/m2)

was calculated by normalizing the absolute muscle force with

the CSA. After tetanic force measurement, the muscle was rested

for 10 min and then subjected to eccentric contraction injury

according to our previously published protocol [25,26,27,28]. The

percentage of force drop following each round of eccentric con-

traction was recorded.

Statistical analysis
Data are presented as mean 6 standard error of mean.

Statistical analysis was performed with the SPSS software (SPSS,

Chicago, IL). Statistical significance was determined by one-way

ANOVA followed by Bonferroni post hoc analysis. Difference was

considered significant when P,0.05.

Results

Generation of iNOS/Dys DKO mice
To eliminate potential influence of the genetic background, we

crossed iNOS KO with mdx4cv mice (Figure 1A). Both strains

were on the BL6 background. PCR genotyping revealed the loss of

wild type iNOS allele and the presence of iNOS KO allele and

mdx4cv mutation in iNOS/Dys DKO mice (Figure 1B) [13]. To

further confirm the absence of iNOS and dystrophin in iNOS/Dys

DKO mice, we performed western blot (Figure 1C). Dystrophin

was detected in BL6 and iNOS KO, but not mdx4cv and iNOS/

Dys DKO muscle lysates. BL6 muscle showed nominal iNOS

expression [29]. As expected, iNOS level was substantially

elevated in mdx4cv muscle but was completely eliminated in

iNOS KO and iNOS/Dys DKO muscle (Figure 1C) [10].

Body weight and the anatomic properties of the EDL
muscle

Adult male mice (9.060.7 months) were used in the study. No

significant difference was observed in body weight among BL6,

mdx4cv, iNOS KO and iNOS/Dys DKO mice (Table 1). The

EDL muscle optimal length did not show significant difference

either (Table 1). The EDL muscle weight and cross-sectional area

(CSA) were significantly increased in mdx4cv mice (Table 1)

[14,28,30]. The EDL muscle of iNOS KO mice had similar

weight and CSA to those of BL6 mice [31,32]. Genetic elimination

of iNOS significantly reduced the EDL weight and CSA in

mdx4cv mice. However, they were still significantly higher than

those of normal mice (Table 1).

Characterization of muscle histopathology in iNOS/
dystrophin double deficient mice

HE staining was performed to evaluate overall histopathology

changes (Figure 2A). BL6 and iNOS null mouse muscles showed

uniform myofiber size and peripherally localized myonuclei

(Figure 2A top panel). As expected, mdx4cv muscle displayed

characteristic dystrophic pathology including variable myofiber

size, profound central nucleation and patches of muscle inflam-

mation (Figure 2A middle and bottom panels). Exactly the same

histological lesions were seen in iNOS/Dys DKO mouse muscle

(Figure 2A middle and bottom panels).

To study sarcolemmal integrity, we performed an in vivo

IgG infiltration assay [14,19,27]. While minimal IgG infiltration

was seen in BL6 and iNOS KO muscles, we observed profound

IgG accumulation in mdx4cv and iNOS/Dys DKO muscles

(Figure 2C). We also examined macrophage infiltration by immu-

nohistochemical staining (Figure 2D) and non-specific esterase

staining (data not shown). Similar levels of macrophage infiltration

were found in mdx4cv and iNOS/Dys DKO muscles. To evaluate

fibrosis, we performed Masson trichrome staining. Muscle fibrosis

was not seen in BL6 and iNOS KO mice. In both mdx4cv and

iNOS/Dys DKO, we observed stripes of blue stained fibrotic

tissues (Figure 2E).

iNOS knockout did not alter specific forces of the mdx4cv
EDL muscle but resulted in a moderate protection
against eccentric contraction-induced force decline

To study the physiological consequences of iNOS ablation on

dystrophin-deficient muscle, we measured the specific twitch

(1 Hz) force and specific tetanic forces under low (50 Hz), mod-

erate (80 Hz) and high (120 and 150 Hz) stimulation frequencies

(Figure 2A and 2B). No significant difference was observed

between iNOS KO and BL6 mice. In mdx4cv and iNOS/Dys

DKO mice, specific twitch and tetanic forces were significantly

reduced. They only reached approximately 50 to 60% of those of

Table 1. Body weight and EDL muscle characterization.

Strain N Body Weight (g) Weight (mg) Lo (mm) CSA (mm2)

BL6 11 39.2361.97 11.1460.33 13.0660.08 1.8360.05

Mdx4cv 11 37.1861.41 18.5060.28 a 13.7960.14 2.8860.04 a

iNOS KO 5 32.9360.56 12.5860.41 13.1860.11 2.0560.06

iNOS/Dys
DKO

4 35.8560.35 15.8560.39 a 13.7160.07 2.4860.05 a

aSignificantly different from all other strains.
doi:10.1371/journal.pone.0021618.t001

Muscle Force in iNOS/Dystrophin DKO Mice
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normal mice (Figure 3A and B). Although iNOS/Dys DKO mice

showed slightly higher numerical values of the specific tetanic

forces than those of mdx4cv mice, the difference did not reach

statistical significance (Figure 3B).

Next, we examined the force decline profile following repeated

cycles of eccentric contraction. iNOS KO and BL6 mice showed

similar profiles. In both cases, muscle force was largely preserved

over four rounds of eccentric contraction (Figure 3C). Eccentric

contraction resulted in significant force loss in both mdx4cv

and iNOS/Dys DKO mice. However, the withholding forces

of iNOS/Dys DKO mice were constantly higher than those of

mdx4cv mice. Statistic significance was reached following two and

three rounds of eccentric contraction (Figure 3C).

iNOS ablation did not increase nNOS expression
To determine whether iNOS knockout influences nNOS

expression, we performed western blot, nNOS activity staining

and nNOS immunofluorescence staining (Figure 4 and data not

shown). Consistent with previous reports [33], we did not see a

substantial elevation of the total nNOS level in iNOS KO and

iNOS/Dys DKO muscle (Figure 4A). Sarcolemmal nNOS

expression pattern was not altered either (Figure 4B).

Evaluation of nitrosative stress markers
We recently demonstrated that nNOS ablation reduced

nitrosative stress in dystrophin-deficient muscle [14]. To deter-

mine whether iNOS knockout resulted in similar benefits, we

Figure 2. Genetic elimination of iNOS does not reduce limb muscle histopathology in adult mdx4cv mice. A, Representative HE staining
photomicrographs. DKO, iNOS/dystrophin double knockout. Scale bar in BL6 image applies to top and middle panels. Middle panel, representative
high power photomicrographs revealing central nucleation in mdx4cv and DKO mice; Bottom panel, representative low power photomicrographs
showing muscle inflammation in mdx4cv and DKO mice. B, Quantification of myofiber with centrally localized nucleus. Asterisk, significantly higher
than those of BL6 and iNOS knockout mice but there is no significant difference between mdx4cv and iNOS/Dys DKO mice neither is there a
significant difference between BL6 and iNOS knockout mice. C, Representative mouse IgG immunostaining photomicrographs. Scale bar applies to all
images. There is minimal IgG infiltration in BL6 and iNOS knockout. D, Representative histochemical staining of macrophages. Scale bar applies to all
images. Arrow, dark brown stained macrophages. E, Representative Masson trichrome staining. Stripes of blue stained fibrotic tissues are evident in
mdx4cv and iNOS/dystrophin double knockout mice.
doi:10.1371/journal.pone.0021618.g002
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examined nitrotyrosine, total RyR1 and S-nitrosylated RyR1

(Figure 5). In normal mice, neither nNOS knockout nor iNOS

knockout changed nitrosative stress markers in muscle (Figure 5)

[14]. While nitrosative stress markers were greatly diminished in

nNOS/dystrophin double mutant mice [14], minimal differences

were noted between mdx4cv and iNOS/Dys DKO mice (Figure 5).

Discussion

Nitrosative stress-mediated RyR S-nitrosylation contributes to

force reduction in DMD [6,14]. Reactive nitrogen species derives

from nitric oxide (NO), a short-lived, highly reactive molecule

[34]. NO is synthesized by NOS. There are several types of NOS

including nNOS, iNOS and endothelial NOS. nNOS is the

predominant form in normal skeletal muscle [35]. It is anchored

at the sarcolemma by collaborative action of dystrophin spectrin-

like repeats 16/17 and syntrophin [15]. In the absence of

dystrophin, nNOS delocalizes from the sarcolemma to the cytosol

and the relative cytosolic NOS activity is substantially increased

[14,36,37,38]. As a consequence of pronounced muscle inflam-

mation, iNOS expression is greatly increased in dystrophic

muscle (Figure 1C and 2A, D) [6,9,10,11]. To determine which

NOS isoform is responsible for pathologic RyR S-nitrosylation

and force inhibition, we created two different strains of double

Figure 3. Characterization of EDL muscle contractility in iNOS/dystrophin double knockout mice. A, Specific twitch force. B, Specific
tetanic forces at 50, 80, 120 and 150 Hz. C, Relative force decline following four cycles of eccentric contraction. Sample size, N = 8 for BL10, N = 11 for
mdx4cv, N = 5 for iNOS KO, N = 4 for iNOS/Dys DKO. Asterisk, significantly higher than those of mdx4cv and iNOS/Dys DKO mice. However, there is no
significant difference between BL6 and iNOS KO mice neither is there a significant difference between mdx4cv and iNOS/Dys DKO mice. Pound sign,
value in iNOS/dystrophin double knockout mice is significantly higher than that of mdx4cv mice at the same round of eccentric contraction.
doi:10.1371/journal.pone.0021618.g003

Figure 4. iNOS elimination does not augment nNOS expression. A, Representative western blot of total muscle nNOS. B, Representative
photomicrographs of nNOS activity staining. Scale bar applies to all images. DKO, iNOS/dystrophin double knockout.
doi:10.1371/journal.pone.0021618.g004

Muscle Force in iNOS/Dystrophin DKO Mice
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knockout mice (Figure 1) [14]. Both strains are based on

dystrophin-null mdx4cv mice. Besides dystrophin deficiency,

one strain carries a null mutation in the nNOS gene and the

other strain carries a null mutation in the iNOS gene.

In nNOS/dystrophin double null (n-dko) mice, mislocalized

cytosolic nNOS is completely removed [14]. At the same time,

markers of nitrosative stress (such as nitro-tyrosine and RyR S-

nitrosylation) were normalized in n-dko mice. Importantly, specific

muscle forces were significantly enhanced [14].

Recently, Villalta et al generated iNOS/dystrophin-double null

mice by crossing BL6 background iNOS KO mice with C57Bl/10

background mdx mice [9]. Interestingly, the authors focused their

analysis on the soleus muscle, a muscle dominated by slow twitch

myofibers. They observed reduced myofiber injury and reduced

central nucleation but macrophage density and neutrophil number

were not altered in the soleus muscle of iNOS-null mdx mice [9].

To exclude the confounding factor of the genetic background,

we generated iNOS/Dys DKO mice in the same genetic

background (BL6) (Figure 1). Since DMD preferentially affects

fast twitch muscles (such as the EDL and TA muscles) [39,40]

and also since our previous studies were performed on the EDL

muscle, here we opted to focus our study on the fast twitch

muscle. We examined histopathology and also measured specific

forces of the EDL muscle (Figures 2 and 3). Based on the findings

of Villalta et al [9], we initially thought we should detect

substantial reduction of muscle disease in iNOS/Dys DKO mice.

Similar to Villalta et al, we did not see a dramatic change in

macrophage infiltration (Figure 2D) [9]. However, analysis of

multiple aspects of histological lesions (central nucleation,

sarcolemmal integrity and muscle fibrosis) did not yield

convincing evidence of muscle disease amelioration (Figure 2).

According to the model of iNOS-mediated RyR S-nitrosylation

[6], we initially expected iNOS/Dys DKO mice to produce

significantly higher specific force than mdx4cv mice. Surprisingly,

genetic elimination of the iNOS gene did not alter contractility of

the EDL muscle in mdx4cv mice (Figure 3). The slight difference

in the numerical values of specific tetanic forces was apparently

due to the difference in the muscle weight and CSA (Figure 3,

Table 1). Additional studies suggest that iNOS ablation did not

alter nNOS expression neither did it reduced nitrosative stress

markers in iNOS/Dys DKO mice (Figures 4 and 5).

The results from our n-dko mice and iNOS/Dys DKO mice

suggest that mislocalized nNOS, rather than elevated iNOS, may

play a determining role in nitrosative modification of RyR and force

decline in dystrophin-deficient muscle (Figures 3 and 5) [14]. In

contrast to nNOS, iNOS activation is not dependent on calcium

[7,41,42]. This also seems to fit our model. Considering the fact that

resting intracellular calcium concentration is abnormally elevated in

DMD muscle [43], it is perceivable that there may exist a positive

feedback loop between S-nitrosylated leaky RyR channel and

cytosolic nNOS activation. On the other side, the moderate impro-

vement of the eccentric contraction profile of iNOS/Dys DKO mice

suggests that elevated iNOS remains a detrimental insult in DMD [9].
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