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Abstract

Dispersal is an important mechanism contributing to both ecological and evolutionary dynamics. In metapopulation and
metacommunity ecology, dispersal enables new patches to be colonized; in evolution, dispersal counter-acts local selection,
leading to regional homogenization. Here, I consider a three-patch metacommunity in which two species, each with a
limiting quantitative trait underlain by gene networks of 16 to 256 genes, compete with one another and disperse among
patches. Incorporating dispersal among heterogeneous patches introduces a tradeoff not observed in single-patch
simulations: if the difference between gene network size of the two species is greater than the difference in dispersal ability
(e.g., if the ratio of network sizes is larger than the ratio of dispersal abilities), then genetic architecture drives community
outcome. However, if the difference in dispersal abilities is greater than gene network differences, then any adaptive
advantages afforded by genetic architecture are over-ridden by dispersal. Thus, in addition to the selective pressures
imposed by competition that shape the genetic architecture of quantitative traits, dispersal among patches creates an
escape that may further alter the effects of different genetic architectures. These results provide a theoretical expectation
for what we may observe as the field of ecological genomics develops.

Citation: Malcom JW (2011) Gene Networks and Metacommunities: Dispersal Differences Can Override Adaptive Advantage. PLoS ONE 6(6): e21541. doi:10.1371/
journal.pone.0021541

Editor: Jack Anthony Gilbert, Argonne National Laboratory, United States of America

Received May 6, 2010; Accepted June 3, 2011; Published June 28, 2011

Copyright: � 2011 Jacob W. Malcom. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a start-up grant from the University of Texas at Austin. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: jmalcom@mail.utexas.edu

Introduction

Bridging levels of organization is a key goal of biological

research. We would like to understand the genotype-phenotype

map (GPM) and the phenotype-environment map (PEM), with an

ultimate goal of integrating across both mappings to comprehend

the genotype-environment map (GEM). Progress towards this

integration requires accounting for known dynamics at both sub-

mappings. For example, it is thought at this time that the GPM is

best represented as an interacting network of genes, proteins, and

various environmental inputs, and this representation deviates

from the standard, purely additive model of the GPM. Elucidating

the GEM will require the derivation of a set of expectations for

what should be observed at different levels of organization.

Ecologists and evolutionary biologists increasingly recognize

that phenotypic evolution may alter ecological dynamics (and vice-

versa). For example, Hairston and colleagues [1] developed a

formal framework for partitioning variance between evolutionary

and ecological causes, and provided worked examples in which

evolution played a dominant or minor role. Fukami and colleagues

[2] used Pseudomonas fluorescens to test how evolution shapes

community assembly. Yoshida and colleagues [3,4] and terHorst

and colleagues [5] showed that prey evolution damped the effects

of predators in rotifer-algae and pitcher-plant communities,

respectively. These studies make important strides in the

‘‘Emerging synthesis between community ecology and evolution-

ary biology’’ [6], but are restricted to single, panmictic

populations.

In contrast, many species exist in sets of patches connected by

dispersal, a process that is well-known to affect both ecological and

evolutionary dynamics. In an ecological setting, the fields of

metapopulation ecology [7,8] and metacommunity ecology [9–11]

are dedicated to the interplay between population dynamics and

dispersal (i.e., local and regional processes). Patches may be

colonized by dispersing individuals (or propagules), while popu-

lations at other patches go extinct. Dispersal also provides the

introduction of novel predators, prey, competitors, or other

ecosystem engineers to local patches [12–17]. In an evolutionary

setting, dispersal has similarly multifarious [18] effects. For

example, dispersal may alternately drive swamping in which

genotypes maladapted to a local environment are consistently

introduced (i.e., migration load), breaking down locally-adapted

genotypes, or dispersal may introduce adaptive alleles that increase

fitness in a population [19–23].

Numerous researchers have examined the role of evolution in

metacommunities, where the effects of dispersal on ecological and

evolutionary dynamics should be important (see [24] for a review).

As a recent empirical example, Venail and colleagues [25] used P.

fluorescens in a metacommunity setting to show that even minimal

dispersal increased both diversity and productivity as populations

adapted to the different carbon sources. Three papers since the

review are most-similar to the research described herein. Loeuille

and Leibold used a three-patch model in which three species

disperse between patches and compete for a common resource

[26]. They found a strong interaction between rates of dispersal,

mutation, and environmental change such that local adaptation
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could preclude invasion of a second species given low dispersal;

local adaptation may not lead to exclusion at high dispersal rates;

and community outcomes were contingent on the rates of

environmental change and mutation. Similarly, Urban and De

Meester used a three-patch model to further explore the effects of

colonization order and adaptive speed on the outcome of a two-

species community [27]. In their scenario, early colonization of a

species with high adaptive speed will regularly lead to the

exclusion of a subsequent colonizer, but this priority effect may

be lost if the original colonizer possesses a lower adaptive speed

than a subsequent colonizer. Urban and colleagues approached

the problem of evolutionary ecology in metacommunities and,

building on the work of Gomulkiewicz and Holt [28], found that

trait heritability may be a major factor in driving the successful

colonization of patches [11]. If there is a link between the genetic

architecture of quantitative traits and trait heritability, then there

should be a consistent mapping from the GPM to the PEM.

Study of the GPM is the purview of genetics, genomics, and

related fields; the ecological implications of the research are

generally not considered. Research from these fields are

important, however, insofar as conceptualizing the GPM not as

a purely linear, additive system, but rather, as complex networks of

interacting genes, proteins, and environmental inputs [29,30] with

extensive epistasis [31,32]. A few papers have considered the

implications of different network structures on ecological dynam-

ics. Kimbrell [33] and Kimbrell and Holt [34] examined the effect

of network connectivity on adaptation to, and colonization of, one

or more sink habitats. They found that lower connectivity

generally results in faster adaptation. Repsilber and colleagues

modeled gene networks of 3–10 genes and found smaller, less-

connected networks resulted in faster adaptation and longer

population persistence times for a single species in a heterogeneous

landscape [35]. Malcom modeled gene networks from 16–256

genes in size and different topologies in a variety of ecological

scenarios. He found that smaller, scale-free networks confer higher

trait heritability than larger, random-topology networks, thus

creating the link from genetic architecture to rates of phenotypic

change (i.e., heritability). This cascades to drive population

recovery after a sudden environmental change as well as

population persistence in a constantly-changing environment

[36,37]. Another interesting finding is that there is an adaptation

speed-accuracy tradeoff when two species compete [38]. Smaller

networks permit faster adaptation, but larger networks permit high

accuracy (and precision), which is an important aspect of trait

evolution [39].

Here I consider a two-species, three-patch metacommunity

similar to the scenarios examined by Loeuille and Leibold [26]

and Urban and De Meester [27]. Different from their simulations,

here, the GPM of each species is modeled as a gene network of 16,

64, or 256 genes arranged in a random or scale-free topology. The

two species compete for a limiting resource with two character-

istics, the first a quantity that limits the total number of individuals

in a patch but whose replenishment rate is fast enough to prevent

over-utilization. Second, the resource is characterized by a quality

(e.g., palatability) that evolves through time; the gene network-

encoded trait maps to this quality and must adapt in order for a

population to persist. I first examine how different genetic

architectures of the two species affect community outcomes in

terms of persistence times and the probability of the focal species

going to regional dominance. The major result is a distinct conflict

between the roles of the gene network characteristics and dispersal

rates: the probability of coexistence declines as the competing

species diverges along either axis. I also compare how a single-

species, multi-patch system (i.e., metapopulation) differs from the

two-species, multi-patch system (i.e., metacommunity). I close with

a discussion of the implications of these results for both genomics

(and related fields) and evolutionary ecological research.

Results

In addition to the trade-off between speed and accuracy of

adaptation as a function of genetic architecture–as is apparent in a

single-patch scenario [38]—dispersal rates emerge as an important

player in community dynamics when competition occurs among

three disjoint patches. The probability that two species will coexist

over the 750 generations of the simulations is largely a function of

the relative dispersal ability of the species and the relative size of

the underlying gene regulatory networks (Table 1). These

relationships are conditional on the heterogeneity of the patches,

i.e., whether the resource evolves at a single rate across all patches

or up to three unique rates. When each species has the same size

network, the probability of coexistence steadily increases as

dispersal rates become equitable (Figure 1A, right-hand side of

figure). Alternatively, when dispersal rates are identical between the

two competing species, coexistence becomes more likely as the

sizes of the networks converge (Figure 1A, dashed line and crosses).

That is, as the species become more similar in either the genetic

architecture of the limiting trait or their dispersal ability, neither is

able to garner an advantage of adaptive speed, adaptive accuracy,

or local adaptation over their competitor. The conditioning on

heterogeneity is readily apparent in Figure 1B. The persistence of

both species in a metacommunity is maximized when dispersal

and network characteristics are most similar (Figure 2). Dispersal

and network size explained 49% of the variance in persistence

times (P,2.2e216). Dispersal rate is the primary driver of

persistence, followed in equal weight by the size of the network

and the mutation rate (Table 2).

Priority effects, which have been observed in previous

metacommunity simulations [27], could be lost in these simula-

tions. In Figure 3A, both species possess the same dispersal

probability, but the species with a small network arrives at Patch 3

before the second species (which possesses a larger, and more

slowly-adapting, network). The first species’ population increases

rapidly, but the second species’ population eventually surpasses the

first species because it can adapt more accurately. Both species in

Figure 3B possess the same size gene network (n16), but the species

with the higher dispersal ability arrives in Patch 3 before the

species with lower dispersal. The later-arriving species again goes

to local dominance, presumably because its lower dispersal rate

permits greater local adaptation. In a second set of simulations, I

measured the environment-phenotype difference across all species

and patches to quantify the effect of dispersal on adaptation.

Higher dispersal rate reduced the mismatch between the trait and

the evolving environmental variable (p,2.2e216; Figure S1).

To compare the effects of the inclusion of a second species in the

three-patch system, I consider the amount of time that the

community spends above 90% of carrying capacity (0.9 K) as a

proxy of ecosystems processes: the more time that populations are

near capacity, the greater the energy or material flow through the

system. The addition of a second species to a multi-patch system

changes both the time required to reach 0.9 K and the time the

community’s population is greater than 0.9 K. First, as expected,

time-to-0.9 K declines by 2.4 to 5.3 generations (p,0.0001) when

comparing low-to-medium or low-to-high dispersal rates. Neither

genetic architecture nor landscape heterogeneity has an effect on

time-to-0.9 K (p0.12 and p0.6, respectively; whole model R20.24).

Second, network size, dispersal ability, and landscape heteroge-

neity all affect the proportion of time the community population

Gene Networks to Metacommunities
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size remained above 0.9 K (p,3.4e28 for each term, model

R20.32). Two-species communities tend maintain larger popula-

tions for a longer period of time (mean difference0.088), but the

difference is not statistically significant (SD0.11). The non-

significance is driven primarily by the fact that the presence of a

species with a large network (n256 genes) depresses the regional

population in relation to mid- and small-sized networks across all

landscape heterogeneities (3–11%, p,0.00014; Figure 4A). In

contrast to the time-to-0.9 K, time-above-0.9 K declines steadily

with increasing competitor dispersal rates (p1.7e212, Figure 4B).

Increasing landscape heterogeneity decreases the time-above-

0.9 K when two species are present in the community, especially

contrasting a homogenous landscape to either the two- or three-

patch speed scenarios (p1.6e28, Figure 4).

Discussion

The interplay between genetic architecture, phenotypes, and

evolutionary and ecological dynamics are complex, yet despite the

rapid acceleration of biological research, a fundamental under-

standing of the interplay among these factors remains elusive.

Progress is being made in refining the both the GPM and PEM,

and as progress is made in empirically spanning these levels of

organization, we need sets of theoretical expectations to unite the

constituent pieces. Here I have attempted a step in that direction

with a set of simulations that span from the gene regulatory

network underlying a quantitative trait to an evolving resource

quality to which the quantitative trait maps, with the added

realism of competition and dispersal. Smaller and scale-free

networks (in conjunction with lower recombination rates) tend to

increase trait heritability [35,36], which permits faster population

recovery and longer population persistence times. Including a

competitor in a single patch scenario, a tradeoff between adaptive

speed and adaptive accuracy, driven by genetic architecture, is

apparent [38]. By incorporating competition and dispersal in the

current models, I have increased the degree of realism and refined

expectations of what we should observe when linking genotypes to

ecological and evolutionary dynamics.

I found that the strong opposing effects of genetic architecture

and dispersal were readily evident, similar to the results obtained

Figure 1. The probability of 2-species coexistence (±95% CI) in a metacommunity as a function of genetic architecture, dispersal
ability, and landscape heterogeneity. Coexistence is defined as both species existing in the regional community after 750 generations of
competition and dispersal among patches. Note the different y-axis scales between panels. Panel A. Coexistence is most-probable when neither
species has either an adaptive advantage (i.e., genetic architectures are identical) or a dispersal advantage (i.e., dispersal rates are identical).
Controlling for network size—i.e., looking vertically along the right-hand side of the figure—the prominent role of dispersal is readily apparent.
Controlling for dispersal rates—i.e., following the dashed line with cross points—the role of different network sizes is readily apparent. Conversely,
species reliably sort in the metacommunity when there is disparity in both dispersal ability and genetic architecture. Panel B. The probability of
coexistence as a function of landscape heterogeneity and genetic architecture. Coexistence is most-likely when heterogeneity is highest (species can
‘find’ the patch for which they are best evolutionarily matched). When all patches are identical (heterogeneity1), long-term coexistence is most likely,
but still relatively rare, when both species have identical genetic architectures.
doi:10.1371/journal.pone.0021541.g001

Table 1. Factors affecting the probability of coexistence, over
750 generations, in the metacommunity scenario.

Factor Direction df Deviance P-value

Competitor d (-) 1 68.9 1.40e212

Competitor n (-) 1 34.5 0.007

Heterogeneity (+) 1 22.1 0.02

Comp. n x Hetero. ( ) 1 2.7 0.11

Residual 319 231.8

Total 323 359.9

Direction refers to the effect on coexistence: (-)inverse, (+)direct; Heterogeneity
refers to the number of unique patch rates of environmental change (1, 2, or 3
unique); d is the dispersal rate; n is the number of genes in the network.
doi:10.1371/journal.pone.0021541.t001
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by Loeuille and Leibold [26]. I focused on network size, and the

‘rule-of-thumb’ that emerges is that if the ratio of species’ dispersal

rates is greater than the ratio of network sizes, then dispersal drives

the community outcome. Conversely, if the ratio of network sizes

is greater than the ratio of dispersal rates, then genetic architecture

drives community outcome. This ‘rule’ is conditional on the rates

of change of the resource quality, which interacts strongly with

network architecture as discussed previously [37,38]. As expected,

high-dispersing species tend to colonize the new patch quickly, but

gene flow impedes local adaptation. Thus, when genetic

architectures are similar, and even when the low-dispersing

species disperses only at 1% per generation, the rate is sufficient

to allow the colonization of the third patch and out-adapt the

initial colonizer who suffers the swamping effects of high dispersal.

Conversely, differences in genetic architecture can over-ride

differences in dispersal ability, and the ‘best’ match between

genetic architecture and rate of environmental change is found.

These results suggest that the evolvability of limiting traits may

over-ride dispersal effects and vice-versa.

Theories of community assembly and dynamics fall along a

spectrum of mechanisms from species sorting to neutral theory

[40–43]. Malcom [38] proposed that network size for particular

traits could be a novel axis of species sorting, such that there is

sorting according to a species adaptive capacity, as determined by

gene network characteristics, in addition to selection in the current

environment. At the same time, evolution of network size towards

a common, optimal size should be an equalizing mechanism that

permits long-term persistence of competing species. As Leibold

and Chase [42] and Loreau [44] have highlighted, dispersal is

likewise a niche axis that can describe the relationship to a limiting

resource such as space. These concepts are supported by the

present results where network size and dispersal are distinct niche

axes.

While priority effects similar to those discussed by Urban and

De Meester [27] occurred in these simulations, the priority could

be over-ridden by the competing effects of superior adaptive speed

or accuracy. Urban and De Meester describe the role of faster

adaptation in erasing priority effects, but the role of higher

adaptive accuracy erasing an early arrival advantage, as in

Figure 3A, has not been previously found to my knowledge. The

result is not particularly surprising in light of the results of the

single-patch competitive scenario where at sufficiently slow rates of

environmental change the higher adaptive accuracy of large

networks confers an advantage [38]. In addition to the tradeoff

between adaptive speed and accuracy, these simulations showed

the disadvantage that high dispersal can play, such as in the case of

Figure 3B. Here, although the two species have the same adaptive

potential as controlled by genetic architecture, the higher-

dispersing species arrives first in patch 3 only to lose the timing

advantage because the high migration reduces adaptive potential.

This latter result coincides, on the evolutionary side, with well-

established theory on the effects of dispersal [21] and is in

agreement with the results of Urban and De Meester.

The role of biodiversity in maintaining ecosystem function has

received attention since at least the 1970s, and interest has recently

increased as we become aware of the scope of anthropogenic

change [45–48]. In general, both theory and empirical research

suggest a positive relationship between biodiversity and ecosystem

function. Loreau has divided the mechanisms responsible for this

pattern into (non-exclusive) selection and complementarity effects

[44]. Although I did not model an ecosystem process here, we can

generally assume that the greater the total number of individuals

in a region, the greater the flux of materials and energy. The

systematic increase in total number of individuals in the regional

population in these simulations is an example of both comple-

mentarity and selection. In a single-species metapopulation,

patches may remain uninhabited (or inhabited at a lower density)

because of mismatches between adaptive capacity and rates of

environmental change. The addition of a second species, however,

tends to increase the time the population remains above 90% of

the maximum observed population because the adaptive capacities

of the species are complementary. The total regional population is

highest when landscape heterogeneity matches the number of

species (i.e., the resource quality changes at two rates). However,

total regional population is systematically lower than two-rate

scenarios (but typically higher than metapopulation scenarios)

when the resource quality changes at a different rate in each patch.

Figure 2. The duration of 2-species coexistence (±95% CI) in a
metacommunity as a function of genetic architecture and
dispersal ability. The duration of coexistence increases as dispersal
rates and genetic architectures of competing species converge. The
effect of differences in dispersal rate is generally greater than the effect
of different genetic architectures. Local adaptive accuracy is higher in
the species that disperses at a lower rate than the competitor, whereas
the higher-dispersing species tends to adopt an ‘‘average’’ phenotype
that does not confer an advantage.
doi:10.1371/journal.pone.0021541.g002

Table 2. Factors affecting the duration of coexistence in the
metacommunity scenario.

Factor Direction % Variance P-value

Explained

Competitor d (-) 45 ,2.2e216

Competitor n (-) 3 1.7e205

Competitor m (+) 3 2.7e205

Direction refers to the effect on coexistence: (-)inverse, (+)direct; d is the
dispersal rate; n is the number of genes in the network; m is the mutation rate.
doi:10.1371/journal.pone.0021541.t002
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Figure 3. Two examples of runs in which priority effects are lost. Panel A shows that even though the faster-evolving species (network
size16) arrives in Patch 3 before the slower-evolving species (network size128)—and for a period of time its regional population is considerably larger
than the competitor—the greater adaptive accuracy of the slow-evolving species results in its regional dominance for the majority of the run. Panel B
shows a similar situation, except that both species have the same genetic architecture (network size16, topologyscale-free, mutation rate1e23,
recombination rate0.05) but different dispersal probabilities. The high-dispersing species arrives at Patch 3 before the low-dispersing species and
goes to local dominance, but the cost of high dispersal on adaptive ability eventually cancels the priority effect and the low-dispersing species
outcompetes the high-dispersing species.
doi:10.1371/journal.pone.0021541.g003
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The results suggest that even low dispersal is homogenizing the

regional population slightly and reducing local adaptation. The

homogenization hypothesis is reinforced by the point that total

regional populations are depressed at higher dispersal rates

(Figure 4B). Note that this result is found even though only one

of the two species is dispersing at a higher rate. These outcomes

are consistent with the empirical results of Venail and colleagues

[25], who found that ecosystem function declined with increasing

dispersal in Pseudomonas communities. Because I did not explicitly

model nutrient flows, however, the source-sink effects of nutrient

movement were not recovered as in analytical metaecosystem

models [46,49].

How do these results compare to the real world? The short

answer is, we don’t know (see [36,38] for further elaboration). The

technological advances required for resolving the GPM are too

new for a knowledge base to have been established. A first order of

business is estimating the gene networks underlying quantitative

traits in various species to see if, in fact, there is considerable

variation in the size or topological characteristics of the networks.

An alternate hypothesis (and perfectly reasonable in the absence of

empirical evidence) is that any particular challenge requires

approximately the same size network regardless of the species in

question. Ultimately, either result—i.e., very similar network sizes

or different network sizes for a given trait—from data would be

interesting and informative, even if the latter makes the results

herein irrelevant. The next step down the line, to conduct

experiments in multiple-patch metacommunities with species

whose genetic architectures (for the relevant traits) are known, is

a distant prospect. Even once it is possible, the inherent difficulties

of metacommunity experiments will only be exacerbated.

In addition to our lack of data to confirm this work, we have to

consider that these models, like all models, are simplifications of

reality. The same caveats as highlighted by Malcom [36] apply:

Boolean regulatory networks gloss over real differences of gene

function, the details of which are interesting and may have

important ramifications; the networks I use here are further

simplified in that each gene is regulated by a single upstream

factor, whereas real genes are often multiply regulated; there is

ample evidence of widespread pleiotropy between real networks,

and the traits that these linked networks underlie may be under

different selection regimes. Lastly, the competition and dispersal

scenarios considered here are greatly simplified, and other (non-

network) research has shown the multi-species and multi-trophic

scenarios can alter eco-evolutionary trajectories in unpredictable

ways [50]. Including .2 species, and/or two or more trophic

levels, with the GPM defined as complex networks could further

refine our expectations of the links across the GEM. Lastly, I

considered dispersal as a fixed trait, but the phenotypic features

that enhance or dampen dispersal rates will often be evolvable

[51,52]. How does evolution of dispersal ability change the role of

the genetic architecture of quantitative traits in ecological

dynamics?

The primary conclusion to be drawn from these results is that

both the genetic architecture of a trait critical to competition and

dispersal rates of individuals can play important roles in

determining metacommunity dynamics. If the ratio of network

Figure 4. The effect (±95% CI) of a second species on the time that the regional population remains at or above 90% of carrying
capacity. These figures represent a measure of ecosystem function to the extent that when all three patches are at capacity, the material and energy
flows through the system should be maximized. The y-axis represents the difference in the percentage of time the regional population of a 2-species
metacommunity spends .90% carrying capacity (.0.9 K) compared to the percentage of time that a single-species metapopulation spend .0.9 K.
The presence of a second species with different genetic architecture tends to increase the amount of time that the regional population is .0.9 K,
except when heterogeneity is high and the competitor has a very large network (Panel A). The advantage of increased regional population conferred
by the presence of the competitor declines with the competitor’s increasing dispersal probability, likely a reflection of the cost of dispersal on local
adaptation (Panel B).
doi:10.1371/journal.pone.0021541.g004
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sizes (or some general measure of complexity that incorporates

network topology) of two species is greater than the ratio of their

dispersal rates, then the differences in adaptive capacity that the

networks afford should drive community outcomes. Alternatively,

if the ratio of dispersal rates is greater than the ratio of network

size, then the system will be dispersal-driven, overriding the

adaptive capacities of each species. Conversely, we should expect

that ecological dynamics, such as those exhibited in metacommu-

nities, will shape the genetic architecture of the traits that mediate

dynamics. For example, selection should favor evolution towards a

particular network size for long-term coexistence. These results

provide a set of theoretical expectations that can be empirically

tested.

Materials and Methods

Gene Network Model
I focus on individuals of two species competing in a three-patch

metacommunity for a resource whose quality fluctuates through

time at a variety of rates. Individuals of both species possess a

single quantitative trait that maps to the quality of the limiting

resource (see Introduction). The trait is encoded by a directed

Boolean network of n genes (genetic architecture parameters in

Table 3), with the on-off state of each determined dynamically.

The topology of the competitor’s network is initiated as either

random (no preferential attachment) or scale-free (with preferen-

tial attachment) in its out-degree distribution [30]. Randomly-

connected networks show an approximately Poisson degree

distribution, whereas scale-free networks exhibit a power law

degree distribution [53]. I use a lottery model algorithm to form

the scale-free networks, i.e., the probability of an existing gene

acquiring a connection to a new gene is proportional to the

number of existing connections [53]. Network size and topology

treatments, as well as other genetic architecture parameters, for

both the focal and competitor species are given in Table 3.

At the start of a run, every individual’s network is randomly

determined, as guided by the constraints of topological specifica-

tion. With these relatively small populations, it is very unlikely that

any two individuals possess the same exact network at simulation

initiation. The binary state [0, 1] of each gene in the network

except the upstream-most is determined by comparing the state of

the gene immediately upstream to the functional relationship of

the gene pair (Figure 5a, encoded by chromosome of 5c). The state

of the upstream-most gene is determined randomly for each

individual at simulation initiation, and is then inherited for

subsequent generations. Some genes may act as repressors and

others as activators, and the state of the downstream gene is

determined by the match or mismatch between the state of the

upstream gene and the function (Figure 5b). For example, if the

upstream gene is ‘‘on’’ (state1) and is a repressor (function0), then

the downstream gene takes the ‘‘off’’ state (state0). Alternatively, if

the upstream gene state is 0 and it is a repressor, then the

downstream gene takes the ‘‘on’’ state. Each gene except the basal-

most has a single input to ease computational requirements (the

number of calculations increases according to 22k

with k inputs

[54]), but may have one or more outputs (i.e., may be pleiotropic).

All network information is stored on a single chromosome

consisting of two parts (Figure 5c). First, the topology is defined

by a ‘‘tails list’’ of the downstream genes; the ‘‘heads list’’ (the

controlling, upstream genes) is inferred from the index position of

each tail list element. The relationship between heads and tails

genes is randomly determined at the start of a simulation run, but,

as noted above, the out-degree distribution is constrained by the

scale-free versus random topological assignment. Figure 5a is an

example 13-gene network whose states have been calculated given

the information from the chromosome in Figure 5c.

Each individual’s phenotype is determined by summing the

states of all terminal genes in the network, i.e., genes with out-

degree0, and scaling the value to the range of the environment

(140). For example, the network in Figure 5a possesses eight

terminal genes, four of which are ‘‘on’’, thus the individual

possesses a phenotype of 70 ( = (140/8) * 4). I am thereby

assuming that there are no biochemical limits given a particular

network size: individuals with a 16-gene network can approximate

a phenotype of 140, as can individuals with a 256-gene network.

The consequence for this re-scaling is that smaller networks have

lower resolution than larger networks, which is a reasonable

assumption given that dividing any particular task among fewer

actors will result in lower overall accuracy. I stored the phenotypes

of each individual’s parents and used mid-parent regression to

estimate the trait’s heritability in the population. Additive genetic

variance was derived by multiplying the phenotypic variance by

the heritability.

Each individual’s phenotype is translated to a fitness relative to

the environment using a Gaussian function of the form,

RF~e{0:001|Dv
,

where D is the absolute value of the difference between the

environment and the individual’s phenotype, and v is a value that

changes the breadth of the selection function. That is, I assume

that the environmental effect is absolute and the phenotypic

variance of the population plays no role in how an individual is

selected. I fixed v at 2 in these simulations, based on the results of

[36,37]. Each individual’s RF does not affect the number of

offspring produced, but does affect the probability that an

individual will survive to reproduce.

Individuals are sexually-reproducing hermaphrodites who mate

at random. The number of offspring from a mating is determined

by drawing a random value from a Poisson distribution with l1.5.

Gametes undergo recombination during a diploid meiotic stage to

create an offspring chromosome that is a mixture of parental

alleles, which in this model are the tails list and the functional

relationships. The first element of the offspring chromosome is

chosen from the first element of one parent, then subsequent

elements are taken from the same parent until a random uniform

number less than the recombination rate is drawn, at which point

Table 3. Basic experimental design of the metacommunity scenario.

Network Size Network Topology Mutation Rate Recombination

Focal species 16 scale-free 1e-4 0.05

Competitor 16, 64, 256 scale-free, random 1e23, 1e24, 1e25 0.05, 0.5

doi:10.1371/journal.pone.0021541.t003
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the element is drawn from the opposite parent. This continues the

length of the chromosome. Mutation, as determined by testing a

uniform random number against the mutation rate for each

chromosomal element, occurs after the new chromosome is

created. Although these mutation rates appear high, as noted by

Frank [54], the effective mutation rate is about one order of

magnitude lower because the trait is directly related to fitness. All

mutations are non-synonymous and may affect either the

controlling function of a gene (an activator mutates to suppressor)

or the relationship to another gene (i.e., alter network topology).

Death occurs after reproduction in three stages. First, all parents

are killed to prevent over-lapping generations. Next, the new

generation is culled according to each individual’s relative fitness:

if the RF is less than a uniform random number, then the

individual dies. This is the step in which competition is

operationalized: if one species’ mean fitness is higher than the

second species’, then fewer individuals of the first species will die

and the species gains a numeric advantage. Last, a carrying-

capacity is enforced by randomly killing individuals to bring the

population below K200 in each of the three patches, for a regional

number of individuals#600.

The Metacommunity
The basic experimental design of the metacommunity simula-

tions follows the single-patch scenario [38] in that the focal species

is held constant and the competitor takes different genetic

architectures, with the added factor of differing dispersal abilities

(Table 3). The resource quality variable is initialized at the same

value (70 units) for all three patches, but each rate of resource

quality change in each patch is 1e23, 2.5e24, or 1e24 units per

generation. Note that these rates are slightly different from those

used in the single-patch competition scenario of Malcom [38], but

cover a similar same range of values. Three metacommunity-level

patch heterogeneities are possible: all patches change at the same

rate, two change at the same rate, or all three change at different

rates. Two patches are initialized each with 100 individuals of a

single species. After 20 canalization generations in their starting

patch, both species may begin dispersing at their given rate

(Table 3). Review of additive variance plots from [38] showed that

canalization tended to occur by the 15th generation, and fluctuated

around the stable mean through generation 20, hence the decision

for 20-generation canalization. Note that the additive and

phenotypic variances are not exactly equal, but results from [37]

showed that the effect of the differences was very small compared

to the effect of network size.

An individual disperses at a random angle and a random

distance of 0–100 units if a random uniform number is less than

the dispersal rate (0.1, 0.05, or 0.01). The three patches are

equidistant and spaced at 50 units from edge to edge. Individuals

die immediately if they do not land on one of the three patches.

Here I am considering passive dispersers, such as seeds or

zooplankton resting-stage eggs, rather than organisms that select

patches to colonize. The simulations encompassed a full-factorial

design of genetic architectures and rates of environmental change

across the three patches. Each simulation continued 750

generations or until one of the two species went extinct.

Analyses were broken into two major groups. First, I examined

the probability of both species coexisting in the metacommunity at

750 generations using a generalized linear model with a binomial

distribution and logit link function. I then examined how

persistence time was influenced by characteristics of the genetic

architecture of the competing species and the rates of environ-

mental change across patches using a linear model. Second, I

compared a single-species scenario (i.e., metapopulation) to the

two-species scenario (i.e., metacommunity). I focus on two metrics

of the effects of a second species using the three patches: the time

required for the community to reach 90% of the maximum

observed regional population, and the percentage of time that the

community remains above 90% of carrying capacity (0.9 K). The

first metric is a joint measure of different dispersal rates and

adaptability to the patches. The second metric may be considered

a measure of ecosystem function, assuming that higher regional

populations result in greater throughput of material or energy. I

used the same model for the metapopulation as used in the

metacommunity simulations, but kept only the focal species (with

genetic architecture as in Table 3). I ran three replicate runs at

each of the seven unique landscape combinations. I set the critical

population size as 0.9 times the maximum regional population

observed across all simulations, then extracted the first time

(generation) at which the regional population was greater than the

critical population size. Second, I extracted the percentage of time

the regional population spent above the critical population size. I

Figure 5. An example network, functional map, and chromo-
some. Panel A shows an example 13-gene Boolean network. Black
nodes are up-regulated (‘‘on’’; state1) genes and white nodes are down-
regulated (‘‘off’’; state0). If an edge connecting two nodes is black, the
‘‘head’’ gene (upstream) activates the ‘‘tail’’ gene (downstream), and if
an edge is gray, the head represses the tail gene. Panel B provides the
functional map; for example, if the head gene is ‘‘off’’ and the edge
connecting the head and tail genes is an activator, then the tail gene is
off (upper-right quadrant). Panel C shows the chromosome corre-
sponding to the network in Panel A. Each block represents a gene
(numbers along the left-hand side); within each block, the top number
defines the ‘‘head’’ (i.e., immediately-upstream) gene while the bottom
number defines the functional relationship (e.g., if 0, then the head
gene is a repressor).
doi:10.1371/journal.pone.0021541.g005
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calculated the mean of time-to-0.9 K and proportion of time

above 0.9 K for each of the seven unique combinations of rates of

environmental change among the three patches for both the

metapopulation and metacommunity scenarios. To draw contrasts

for time-to-0.9 K and time-above-0.9 K, I subtracted the mean

value from the metapopulation simulations from each run of the

metacommunity simulations, matched for landscape arrangement.

I then used a set of linear models to relate characteristics of the

competitor species (genetic architecture, dispersal ability) to the

change in time-to-0.9 K and time-above-0.9 K.

I used NetLogo 4.1[55] for all simulations; the model code is

available in Text S1. All statistical analyses were conducted in R

2.10 [56]; I used Tukey’s HSD [57] for post-hoc tests and Akaike’s

Information Criterion for model selection [58] where necessary.

Supporting Information

Figure S1 Mean difference between average phenotype
and resource quality (i.e., the optimum) as a function of
competitor dispersal rate. Higher dispersal leads to regional

homogenization such that, on average, the difference between trait

value and the environment is greater. The mean differences were

calculated as the absolute value of the average trait value in each

patch minus the resource quality in each patch, and weighted

according to the number of individuals (competitors) in the patch.

(TIF)

Text S1 The NetLogo code for the metacommunity
simulations. Note that the species are named buggles and

wuggles, rather than Sp1 and Sp2, just for fun.

(DOC)
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