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Abstract

Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the
motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have
previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic
material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses
to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group
(sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A)
listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity
was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a
repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and
P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally
expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than
left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the
sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more
robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in
the absence of motor production.
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Introduction

Musicians and non musicians exhibit structural and functional

differences in a wide range of brain areas [1–12]. They show

increased cortical representations for tones of the musical scale

[1,13,14,15], for chord sequences [16] and melodies [17–18], even

when melodic predictions are generated by imagery [19].

Enjoyment of music relates to familiarity with musical genres

that help the listener to form and develop perceptual expectations

for musical events. In that sense pitch, harmony, timbre and

rhythm establish a musical predictive template that produces

musical expectations [20]. Violations of those expectations are

reflected in an electrophysiologically measurable event related

response, the mismatch negativity (MMN).

Musical pitch expectations can be quickly formed by short-term

musical piano training that shapes the brain activation within the

auditory cortex [21]. After eight sessions of multimodal piano

training in the form of learning to play short melodic chord

sequences on a keyboard, non musicians showed an increased

MMN in response to pitch incongruence, especially in the right

hemisphere. A control group, that merely listened carefully to and

made judgements about the music played by the experimental

group, showed no MMN enhancement. Thus, the multimodal

integration, the co-activation of auditory and sensorimotor areas

and attentional mechanisms, that are involved in musical training,

likely contribute to the brain plasticity effects that have been

shown in musicians.

In the same way that the chord structure of a musical piece

shapes expectations about upcoming melodic events, the temporal

structure of a musical piece induces anticipation of rhythmic

events in the listener. A number of studies indicate that

interactions between the auditory and motor systems may be

particularly strong when rhythm is involved [22–30]. We therefore

hypothesized that musical training, that is focused on the rhythm

of a melody, should lead to enhancements of rhythm perception

and correspondingly to enhancements of the cortical responses to

deviations in rhythmic musical material. Since several studies

suggest that the left hemisphere is specialized for temporal

processing [31,32,33], we hypothesized further that neural

activation increases induced by the rhythmic training should be

particularly pronounced in the left hemisphere. Thus, the goal of

this study was to investigate how rhythmic expectations within a

musical context can be changed by short-term musical training

involving either listening or learning to play the piano in a highly

controlled laboratory environment.

Methods

To investigate this hypothesis we measured the MMN to

rhythmic deviants before and after sensorimotor-auditory or

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21493



auditory musical training. Musical training strengthens expecta-

tions for musical events, which is reflected in the auditory system

as better performance on discrimination of tonal frequencies [34]

and temporal events [35]. This ability can be quantified

electrophysiologically in humans by means of completely non-

invasive electro- or magneto-encephalographic measurements of

the MMN (MMN in EEG, MMNm in MEG). MMN is a pre-

attentive fronto-central negative component of the event related

field, measured at latencies between 120 and 250 ms after stimulus

onset with brain sources within the primary and secondary

auditory cortices [21,36]. The MMN component can be elicited

by changes in auditory features such as frequency, intensity or

duration of a sound, but it can also reflect violations of more

complex aspects of auditory features [17,37]. In the present study

the duration mismatch negativity was used to determine changes

in cortical strength after a rhythmic incongruency.

Subjects
Twenty-four non musicians (14 females) between 24 and 38

years of age participated in the study. Participants had no formal

musical training, except for their compulsory music lessons at

school. The data of four subjects had to be excluded because of the

very low signal-to-noise ratio (insufficiently pronounced MMN).

Thus 20 subjects were included in the analyses. Subjects were all

right-handed as assessed by the Edinburgh Handedness Inventory

[38]. None of the subjects had a history of otological or

neurological disorders. We used pure tone audiometry to confirm

normal audiological status. Subjects were informed about the

nature of the study, which was approved by the Research Ethics

Board of the University of Münster. Based on a clear

understanding of what participation involved, subjects gave

informed consent to take part in this study. Subjects were

randomly assigned to the different experimental goups (sensori-

motor-auditory, SA and auditory, A). The SA-group learned to

play a musical sequence on the piano, whereas the A-group merely

listened carefully to the music that was played by the participants

of the SA-group and evaluated whether the sequences were

rhythmically correct or not.

Stimuli
The musical stimuli for the MEG measurement before and after

training comprised six-tone piano sequences generated in a

realistic piano timbre with a digital audio workstation (Figure 1).

The sequences were composed of a d-minor broken chord in root

position followed by an A-major chord in first inversion: d’

(293.66 Hz) - f’ (349.23 Hz) - a’ (440.00 Hz) - c sharp (277.18 Hz)

- e’ (329.63 Hz) - a’ (440.00 Hz). These are the two most

important chords (tonic and dominant) in the key of d-minor, the

key of the training exercises described below. The standard

stimulus was composed of two rhythmic figures, each with an

eighth note (400 ms) at the beginning followed by two sixteenth

notes (200 ms each) for a total duration of 1600 ms. The deviant

stimulus (c.f. Figure 1a), was identical to the standard except that

the fifth tone was shortened by 100 ms to produce a duration

advance deviance of 100 ms on the sixth note and a total sequence

duration of 1500 ms. The two sequences (standard and deviant)

were presented in an oddball paradigm with two runs of 400 trials

separated by a short break. Each run consisted of 320 standards

and 80 deviants presented in a quasi random order such that at

least three standards occurred between two deviants. Note that the

rhythmic motive used during the MEG measurement was not

identical to that used during training so that we could test the

training effects under conditions requiring some generalizability.

Specifically, the order of the long and short notes was reversed.

Our previous melody study showed that participants were able to

abstract harmonic rules from training material and to transfer

them to new musical material. Thus, a similar effect in the present

study would allow us to draw conclusions about generalization of

training effects in the rhythmic domain as well. Although Western

music offers a large variety of melodic and also rhythmic material,

it is nevertheless based on a comparatively small rule catalogue,

and it lies in the nature of musical training that it generalizes to

different musical material. We wanted to demonstrate the

potentials of musical training for musical learning in general.

Training procedure
The first 16 measures of an exercise from a piano workbook for

beginners [39] were used for the piano training (Figure 1b). In

order to avoid possible differential plasticity effects in the two

hemispheres due to dissimilar movements of the two hands, we

chose a piano piece where both hands were similarly involved.

The piano exercise was in d-minor with a metrical time signature

of 3/8. The melody was built from a recurring small rhythmic

motive consisting of two sixteenth notes on the first beat followed

by two eighth notes on the second and third beats. The rhythmic

motive did not change during the whole piece. In the first 8

measures the melody was in the right hand whereas in the last 8

measures the left hand played the melodic line. In each case the

other hand played an interval on the first beat of each measure.

Figure 1. Stimulus material. (a) Tone sequences for the standard
and the deviant stimuli that were used in the MEG measurements
before and after training. (b) Musical score of the training piano melody.
The first line is repeated after the end of the second line. The measure
at the end of the first line concludes the melody. (c) Visual templates for
the SA training. Numbers represent the fingers (thumb, 1; index finger,
2 and so on) with which the subjects were supposed to press the
corresponding piano keys. The rectangles indicate that the left hand is
used, the circles mark the right hand. The numbers that were depicted
in one horizontal line had to be played simultaneously. The small circles
indicated that notes had to be played at double speed.
doi:10.1371/journal.pone.0021493.g001
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During the first 8 bars the motive was played on successively

higher scale steps each bar, and during the final 8 bars on

successively lower scale step each bar. In order to facilitate

training, we did not use the musical notation of the piano exercise,

but visual templates instead (Figure 1c). On each template the

image of the piano keyboard was depicted and the finger

placement was marked.

The SA-group was instructed in how to play the piano exercise.

The piano sequence was demonstrated by the experimenter at the

beginning of the first training session. Training sessions were

scheduled on 8 days within two weeks, each session lasting 30

minutes. A computer recorded the keystrokes of the subjects

during the training through a MIDI connection. The MIDI data

of the SA-group provided the stimuli for the training of the A-

group. This included also the first training sessions when piano

performance of the SA-group was still poor. Consequently,

musical exposure of the SA- and A-group was identical. Each

participant of the A-group was paired with a participant of the SA-

group and listened to all the training session of that subject. Prior

to training the A-group received a short introduction to the correct

piano exercise. As in the SA-group, training sessions for the A-

group were scheduled on 8 days within two weeks. During

auditory training subjects of the A-group were seated in front of

the piano. However, they received no visual information regarding

the keys that had been pressed. Subjects in the auditory group

were instructed to press the right foot-pedal whenever they noticed

that the rhythm was played incorrect. This task ensured that

subjects of the auditory group listened thoroughly and participated

actively in the experiment.

Behavioral test
To evaluate the effect of the training on a behavioral level, all

subjects participated in an auditory discrimination test before and

after the two-weeks of training. For this test we extracted the first

two measures of the piano exercise and recorded them via MIDI

connection to a computer. Thus we obtained a sequence that

contained 8 notes in the melody part and two accompanying

intervals on the first beat of each measure. During the behavioral

test this sequence or temporally altered sequences were presented.

In temporally altered sequences a randomly chosen note of the

melody was played earlier or later than expected by 10, 20, 30, 40

or 50 ms. These temporal offsets were chosen through pilot

testing, which had revealed that a 50 ms time shift is easy to detect

even for non musicians, whereas a 10 ms or even 20 ms time shift

is very hard to detect. Sequences with temporal errors were

presented randomly interleaved with correct sequences and

subjects responded by pressing the left-foot pedal of the piano

whenever they detected a temporal advance or delay of a note. If

they did not detect a temporal error they had to press the right

foot-pedal to start the next trial. The test contained 243 trials and

lasted about 20 minutes. The first three trials were correct

sequences to accustom the subject to the task. The remaining 240

trials contained 120 error sequences and 120 correct sequences.

Each time shift was thus repeated 12 times during the test.

MEG data acquisition
The auditory MMN responses were measured from all

participants before and after training. Training induced plasticity

was evaluated by comparing the MMN differences before and

after training between the SA and A-groups.

Magnetic field responses were recorded with a 275-channel

whole-cortex magnetometer system (Omega 275, CTF Systems).

The MEG signals were low-pass filtered at 150 Hz and sampled at

a rate of 600 Hz. For each individual subject, epochs of 2 s for the

standard and of 1.9 s for the deviant stimulus beginning 0.2 s

before the last tone of the stimulus and ending 0.4 s after stimulus

offset were extracted from the continous data set. The total

recording time was 35 min. The recordings were performed in a

magnetically shielded and acoustically silent room. The subjects

were in an upright position, seated as comfortably as possible while

ensuring that they did not move during the measurement. Three

localization coils, that were fixed to the nasion and the entrances of

both ear canals, were used to check the subject’s head position at

the beginning and end of each recording block. Subjects were

instructed to move and blink as little as possible, to stay relaxed but

awake during the measurement, and to pay no attention to the

sound stimuli. Alertness and compliance were verified by video

monitoring. To control for confounding changes in attention and

vigilance, subjects watched a soundless movie of their choice,

which was projected on a screen placed in front of them.

MEG data analysis
The recorded magnetic field data were averaged separately for

the standard and the deviant stimuli. Epochs contaminated by

muscle or eye blink artifacts containing field amplitudes greater

than 3 pT in any MEG channel were automatically rejected by

the averaging procedure. The MMN was expected to be elicited in

the deviant sequences after the onset of the sixth tone. Therefore,

standard and deviant datasets were temporally aligned to the onset

of the sixth tone of the sequence and subtracted to generate

difference waveform data sets, representing the MMN.

Although the alignment ensures that the onset time and

duration of the sixth tone of the standard and the deviant were

identical in both sequences there is still the possibility that the fifth

tone, which is shorter in the deviant than in the standard sequence,

provides additional MEG components that interfere with the

subtraction procedure. Since the fifth tone of the deviant sequence

is of shorter duration than the standard one, its corresponding N1

response will be closer to the onset of the sixth tone and this N1

component could then be mistakenly interpreted in the deviant-

standard difference waveform as an MMN component [37]. In

two test measurements with four musically experienced subjects we

therefore tested a different subtraction procedure. The two stimuli

were presented in two blocks as standard and deviant as described

above. Then, in two further measurement blocks the roles of

standard and deviant were reversed, i.e., the standard became the

deviant and vice versa. This procedure enabled subtraction of

physically identical stimuli, namely the shorter stimulus that was

the standard in the latter measurement from the identical shorter

stimulus that was the deviant in the earlier blocks. We compared

the results of this subtraction procedure with that of the direct

subtraction procedure in which the shorter deviant and the aligned

longer standard were subtracted. Both subtraction methods

yielded the same results, that is, the obtained MMN components

were nearly identical. Since the direct subtraction method

required a much smaller number of trials the direct subtraction

procedure was employed in the main experiment.

For the MMN source analysis a baseline correction was

performed relying on the 100 ms time interval prior to the onset

of the piano tone sequences. Then, the source analysis model of

two equivalent current dipoles (ECD) (one in each hemisphere)

was applied to the MMN component identified in the data

between 120 to 180 ms after tone onset. The two spatiotemporal

dipoles, defined by their dipole moment, orientation, and spatial

coordinates, were fitted simultaneously to the MMN derived from

the difference waveforms for both hemispheres and for each

recorded dataset before and after training. The source space

projection method [21,40] was applied, collapsing the 275 channel

Cortical Plasticity Induced by Rhythm Training
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data to one source waveform for each dipole. Finally, grand

average waveforms for the dipole moments were computed for

pretraining and posttraining data, groups (SA and A), and

hemisphere (left and right). To evaluate the MMN source strength

across participants, the MMN dipole moment peaks were

determined from the corresponding waveforms of each individual

participant and subjected to statistical analysis by means of a

repeated measures mixed-model ANOVA with factors group,

pretraining/posttraining and hemisphere. In all statistical tests, the

alpha-level was set at 0.05, and all test were two-tailed unless

otherwise stated.

Results

Training
Prior to the training procedure participants of both groups

listened to a correct version of the piano exercise. The subjects of

the SA-group started in their first training session to play the upper

line of the piece with the right hand only. The left hand was added

in later training sessions after subjects were able to play the first

part with the right hand correctly. After finishing the first line of

the piano piece the same procedure was applied for the second

line. The employment of the left and right hand was reversed,

however, since the melody in the second part of the piece was in

the left hand. The transfer of the melody to the left hand was

difficult for most of the subjects, but was eventually mastered by all

participants. Due to differences in learning progress among

subjects, the different steps during the training process (inclusion

of the second hand, switching to the second line) were performed

at different times during the training of each individual subject. At

the end of the training, after 8 sessions, all subjects of the SA-group

were able to play the piece within an acceptable speed with few

mistakes. However, two subjects only reached successful perfor-

mance of the second line with a reduced accompaniment in the

right hand. Instead of playing the complete intervals, they simply

played a single accompanying tone in each measure.

Behavioral test data
The Performance on the behavioral test was evaluated by

computing the detection rate for the error trials of each absolute

time shift (10, 20, 30, 40, or 50 ms). Positive and negative time

shifts were analyzed together. The data from one subject in the A-

group (due to technical failure) and two subjects from the SA-

group (due to misunderstanding the task) had to be excluded, so

that overall the data of 9 subjects of the A-group and 8 subjects of

the SA-group were analyzed.

The detection rates were fitted with a Weibull function and the

75% detection threshold was determined. A 262 mixed model

ANOVA with factors group and pretraining/posttraining revealed

a significant interaction of group x pretraining/postraining,

(F (1,17) = 5.098; p = 0.039), demonstrating that rhythmic discrim-

ination ability improved more strongly in the SA than in the A-

group. On average, the detection threshold in the SA-group

improved by 9 ms (Figure 2). No threshold improvement was

observed in the A-group. Main effects of group and session did not

reach statistical significance.

MEG data
The MEG data showed a clear MMN dipolar pattern in most of

the individual subjects, which justified the use of a single

equivalent current dipole model for the cortical source analysis

of the data. Figure 3a shows the averaged source waveforms

obtained after the performed source space projection for the pre-

and posttraining conditions in both groups. A clear MMN is

discernible in all panels. The MMN is similar in size in both

groups in the pretraining condition. A well-pronounced enhance-

ment of this component in the posttraining condition is visible in

the SA-group. In contrast, in the A-group no clear MMN change

was observed.

Group averages of the pre/post-training differences of the

individual MMN source strength peak amplitudes are shown in

the bar plots of Figure 3b. A mixed model ANOVA with factors

group, pre-training/post-training and hemisphere gave a signifi-

cant main effect of training, (F (1,18) = 6.54; p = 0.022), indicating

that there was an overall training effect for both groups, and a

pre/posttraining x group interaction, (F (1,18) = 4.83; p = 0.044),

indicating that the training effect in the SA-group was stronger

than in the A-group. The three-way interaction pre/posttraining x

group x hemisphere was not significant, F(1,18) = 0.025; p = 0.88.

A further observation was a difference in source strength

between pre- and post training in the SA-group at about 230 ms.

This indicates an increase in the P2 wave of the slow auditory

evoked response to the deviant stimuli after training. The group

averages of the pre-training/post-training differences of the

individual source strength amplitudes of the P2 difference between

deviant and standard were therefore tested for statistical

significance (Figure 4). A mixed model ANOVA revealed a

significant main effect of training, (F(1,18) = 13.69; p = 0.002), and

a significant main effect of hemisphere, F(1,18) = 8.76; p = 0.009,

indicating an overall training effect in both groups and an overall

stronger P2 response in the right hemisphere. The ANOVA

further revealed a significant interaction between training and

group, (F(1,18) = 13.52; p = 0.002), showing that the P2 training

enhancement was especially pronounced in the SA-group. The

three way interaction training X hemisphere X group,

(F(1,18) = 4.46; p = 0.051), indicated that the P2 training enhance-

ment of the SA-group was particularly strong in the right

hemisphere.

Discussion

Rhythm-focussed sensorimotor-auditory training in non musi-

cians results in representational changes in the auditory cortices.

The SA-group that had received sensorimotor-auditory piano

training showed a significant post-training enhancement of the

MMN to temporal deviants in rhythmic sequences. The A-group

that had received only auditory training showed no significant

Figure 2. Group means of behavioral performance in the
auditory discrimination test before and after training: pre,
pretraining; post, postraining. Error bars indicate SEM.
doi:10.1371/journal.pone.0021493.g002
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training effect on MMN. This is consistent with the behavioral

finding that thresholds for detecting temporal errors only

improved in the SA-group but not in the A-group. However,

both groups showed significant enhancement of the P2 component

between deviant and standard after training, although the

enhancement was larger in the SA-group, indicating that even

the auditory-only training led to some plastic changes in auditory

cortex. Previous studies indicate that the P2 component is larger in

skilled musicians [14] and is highly neuroplastic with frequency

discrimination training [41,42]. Our data extend these findings by

showing that the P2 difference component, which is mainly based

on the training effect on the P2 response to the deviants, is also

sensitive to rhythmic processing after short-term training. In sum,

in comparison to the A-group, the SA-group showed significantly

larger training effects on behavioural thresholds, MMN amplitude,

and P2 amplitude.

Training and test stimuli were not identical, indicating that the

multimodal effects of the training generalized. Because MMN and

P2 are generated primarily in auditory cortices [43], the results

point to strong effects of sensorimotor practice on auditory

representations for musical rhythm. These results extend the

findings of our previous study which described increased neural

activation within the auditory cortex in the form of MMN

enhancement after musical training that focussed on melodic

chord progressions [21]. Whereas the present study examined

brain responses to deviants in the temporal domain, the previous

study examined responses to deviants in the pitch domain. Perhaps

most interesting is that for both pitch-based and rhythm-based

training, larger plastic enhancements of responses from auditory

cortex were seen after sensorimotor-auditory training than after

auditory-alone training, suggesting that multimodal stimulation

has a larger effect on auditory cortex than auditory stimulation

alone.

Several studies show different brain responses in musicians and

non musicians to pitch-, melodic- or harmonic-based deviants

[16,17,18,19,21] or during rhythm perception [23,32,44,45,

46,47]. However, when comparing adult musicians and non

musicians, it is difficult to determine definitively whether the

differences seen are primarily the result of the extensive experience

of the musicians in practicing their instruments or whether they

Figure 3. MMN results. (a) Group averages of the source waveforms
obtained after performing source-space projection before and after
training for both groups and hemispheres. Data for the SA-group are
shown in the upper row, data for the A-group are shown in the bottom
row. Data from the left hemisphere (LH) are presented on the left and
those of the right hemisphere (RH) are presented on the right. Thin lines
indicate pretraining and thick lines posttraining data. (b) Group
averages of the pretraining/posttraining differences of the individual
MMN source waveform peak amplitudes from both groups and
hemispheres. Left: left hemisphere; right: right hemisphere; seq:
sequence. Error bars indicate SEM.
doi:10.1371/journal.pone.0021493.g003

Figure 4. Group averages of the pretraining/posttraining
differences of the individual P2 source waveform peak
amplitudes from both groups and hemispheres. Left: left
hemisphere; right: right hemisphere; seq: sequence. Error bars indicate
SEM.
doi:10.1371/journal.pone.0021493.g004
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are largely a result of pre-existing congenital differences that led to

the decision to undertake extensive musical training. The design of

our study exposes the effects of experience directly. Because we

randomly assigned subjects to different training groups, and

because we controlled the experience and measured responses

before and after training, we can conclude that the effects that we

report are the result of the experience itself.

Our finding of superior learning with multimodal training is in

line with other evidence that the brain is very sensitive to relations

across modalities. The interaction and integration of different

sensory modalities is especially important when playing a musical

instrument. The multimodal effects that we obversed likely

involved both somatosensory and motor interactions with auditory

processing. Previously, Schulz et al. [48] found evidence for

auditory/somatosensory reorganization of cortical functions in

musicians by comparing trumpet players and control subjects who

had never played an instrument. In the trumpet players,

concurrent stimulation of the lips and presentation of a trumpet

tone led to a stronger cortical activation compared to the sum of

the responses to the two types of uni-modal stimulations, either

trumpet tone or tactile lip stimulation. In the present study, it is

likely that in the SA- group, the concurrent experiences of

touching the keys (somatosensory) and hearing the piano tones

(auditory) led in part to the enhanced learning seen in this group.

As far as the importance of the motor aspect of our training

protocol, the concept of a strong link between the auditory and

motor systems has a long history [49]. Musical stimuli give rise to

rhythmical organized motor behavior [27,28,30], and synchro-

nized movement to music is found in all cultures [50]. Even 5- to

25-months-old infants coordinate their movement to musical

rhythmic stimuli and adapt the tempo of their rhythmic movement

to the tempo of the auditory rhythmic stimuli [51]. Executing

rhythmic movements involves a network of brain areas spanning

the basal ganglia, cerebellum, motor, premotor cortex, and

supplementary motor cortex [30]. Recent fMRI studies have

shown, however, that these movement-related areas are also

activated during auditory perceptual tasks [24,52]. In particular,

the cerebellum [53]) and the premotor cortex [22] are activated

during auditory discrimination, and disruption of auditory

feedback affects motor execution [54].

In addition, the results of the present study indicate that the

interaction between auditory and motor areas is bidirectional,

suggesting that movement can affect auditory processing. Phillips-

Silver & Trainor [25,26] showed that for both infants and adults,

bouncing on every second beat of an auditory metrically-

ambiguous rhythm pattern biased listeners to hear the ambiguous

pattern as a march whereas bouncing on every third beat of the

same pattern biased them to hear the same ambiguous pattern as a

waltz. Recent physiological evidence also indicates strong

bidirectional connections between auditory and movement-related

areas [30]. For example, auditory cortex is activated when

musicians observe someone else play a keyboard [55]. Further-

more, similar auditory and motor areas are activated when pianists

play a piece without being able to hear it and when they listen to it

without playing it [56,57]. The results of the present paper are

consistent with all of these findings, demonstrating that sensory-

motor training affects auditory cortical areas.

Since the mismatch negativity is mainly generated in the

auditory cortex, the mismatch paradigm is not suited to directly

investigate response changes in motor related areas to musical

stimuli after musical training. A different experimental design

would be needed to demonstrate directly this connection.

However, we suggest that auditory-motor interaction is bidirec-

tional because the auditory input was identical for both groups, the

only difference was motor-execution with associated attentional

mechanisms in the SA- group. We therefore reason that auditory-

motor interactions are likely involved in the generation of the

increased mismatch negativity after sensorimotor training.

Whereas many studies show larger MMN in the right compared

to left hemisphere, the present results showed no difference in

hemispheric involvement. It is possible that MMN tends to be

right-hemiphere dominant for pitch-based discriminations, but not

for duration-based discrminations. Indeed, our previous training

study involving melodic chord sequences showed a greater

plasticity effect in the right hemisphere whereas the present

rhythm training study showed plastic changes of similar magnitude

in both hemispheres. The strong involvement of the right

hemispheric auditory cortex in the melody study, and the relatively

well-pronounced involvement of the left auditory cortex in the

rhythm study are consistent with data showing preferential

encoding of spectral information on the right and temporal

encoding on the left [31,32,58,59,60].

It has also been suggested that musical expertise could lead to a

higher degree of analytical processing, which is believed to favor

left hemispheric mechanisms [61,62]. The results from our study

are somewhat more complicated in that we found statisically

equivalent effects of training in the right and left hemispheres in

the SA-group for MMN, but significantly greater effects of training

in the right than left hemisphere for the P2 component in both the

SA and A-groups. One reason for our findings might be that our

stimuli included also pitch and melodic variation, which might

have interacted with the rhythmic elements [63]. Another reason

might be that the sensorimotor-auditory training was too short to

reveal differential hemisphere effects.

Playing the piano is a motivating and demanding task. It is

thus conceivable that the participants in the SA-group were

more motivated or more engaged in their task than the

participants of the A-group. The stronger MMN plasticity in

the SA-group, therefore, might originate also from a stronger

involvement of motivation or attention in this group. Attention,

and other top-down modulatory signals, can increase plasticity

effects in the auditory cortex [64,65,66]. However, the

participants of the A-group also had to concentrate on a task

that demanded alertness and attention, namely, the detection of

the rhythmic errors in the auditory material of the SA-group.

Thus, their attention was directed to the same stimulus feature

(rhythmic correctness) as in the SA-group, such that the level of

attention on the auditory input was likely comparable in both

groups. The groups differed in that the SA group performed

motor behavior and acted to create the acoustic material, while

the A group merely listened attentively to the created material.

Thus, while we cannot rule out that attentional or motivational

factors differed between the groups, any difference in that

regard would be driven by the active involvement and the motor

behavior of the piano playing.

We conclude that sensorimotor-auditory training of rhythmic

material can increase the neural responses to a temporal mismatch

in non musicians. The response increase was achieved after only

eight training sessions. The enhancement of cortical activity was

based on new musical material, suggesting strong generalization

effects of sensorimotor-auditory training. Since cortical activity

was enhanced to a lesser degree in the control group after auditory

only training, we conclude that rhythm-focussed multimodal piano

training has causal effects on auditory cortex plasticity. Together

with our previous study [21] we conclude that harmonic and

rhythmic expectations can be shaped by short-term experience,

and that multimodal sensorimotor-auditory training is much more

effective than auditory alone training at inducing plastic changes
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to auditory areas. These results have educational implications in

that they show that multimodal training leads to more effective

and faster learning than unimodal training.
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