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Abstract

Background: Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various cellular
processes such as cell survival, angiogenesis and proliferation. In the present study, we examined that betulinic acid (BA), a
triterpene from the bark of white birch, had the inhibitory effects on hypoxia-mediated activation of STAT3 in androgen
independent human prostate cancer PC-3 cells.

Methodology/Principal Findings: BA inhibited the protein expression and the transcriptional activities of hypoxia-inducible
factor-1a (HIF-1a) under hypoxic condition. Consistently, BA blocked hypoxia-induced phosphorylation, DNA binding
activity and nuclear accumulation of STAT3. In addition, BA significantly reduced cellular and secreted levels of vascular
endothelial growth factor (VEGF), a critical angiogenic factor and a target gene of STAT3 induced under hypoxia.
Furthermore, BA prevented in vitro capillary tube formation in human umbilical vein endothelial cells (HUVECs) maintained
in conditioned medium of hypoxic PC-3 cells, implying anti-angiogenic activity of BA under hypoxic condition. Of note,
chromatin immunoprecipitation (ChiP) assay revealed that BA inhibited binding of HIF-1a and STAT3 to VEGF promoter.
Furthermore, silencing STAT3 using siRNA transfection effectively enhanced the reduced VEGF production induced by BA
treatment under hypoxia.

Conclusions/Significance: Taken together, our results suggest that BA has anti-angiogenic activity by disturbing the
binding of HIF-1a and STAT3 to the VEGF promoter in hypoxic PC-3 cells.
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Introduction

Signal transducer and activator of transcription 3 (STAT3) is one of

STAT protein family and constitutively active in a wide range of human

cancer cells [1]. Activated STAT3 proteins by cytokines and growth

factors form homo- or heterodimers, and then translocate from the

cytoplasm to the nucleus, where they are binding to the promoter of

various gene products involved in anti-apoptosis (bcl-2, bcl-xL and

survivin), proliferation (cyclin D1), and angiogenesis (vascular endothelial

growth factor (VEGF)) [2]. Interestingly, recent studies reported that

STAT3 is activated in response to hypoxia, a common feature of various

solid tumors [3,4]. Activated STAT3 mediates the up-regulation of

hypoxia inducible factor alpha (HIF-1a), a major regulator to adapt

under hypoxic conditions by increasing its stability and transcriptional

activity [5]. Thus, recently STAT3 and HIF-1a are attractive target

molecules by natural compounds and herbal extracts in cancer research.

Betulinic acid (BA), initially reported as a human melanoma-specific

inhibitor, is a triterpenoid mainly derived from the bark of the white

birch (Betula pubescens) [6]. Recent evidences suggest the anti-cancer

effects of BA [7,8], anti-inflammatory [9] and anti-viral [10] activities

via various signaling pathways such as epidermal growth factor

receptor (EGFR) [11], hedgehog [12], signal transducer and activator

of transcription 3 (STAT3) [13] and nuclear factor-kappa B (NF-kB)

[14]. Nonetheless, there is no evidence that BA mediates anti-cancer

activity through inhibiting STAT3 signaling in solid tumors.

Thus, in the present study, we investigated the roles of STAT3

and HIF-1 a in BA induced anti-angiogenic activity in hypoxic

PC-3 prostate cancer cells by MTT assay, Western blotting,

immunocytochemistry, ELISA and EMSA.

Results

Cytotoxic effect of betulinic acid (BA) against PC-3 cells
Cytotoxic effect of BA (Fig. 1) was evaluated by MTT assay.

PC-3 cells were treated with various concentrations of BA (0, 12.5,

25, 50 or 100 mM) for 24 h. Cell viability was reduced to
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78.4965.67 and 62.6461.26% at concentrations of 12.5 and

25 mM, respectively, and sustained to,60% at over 25 mM

(Fig. 2A).

Effect of betulinic acid (BA) on hypoxia-induced HIF-1a
activation in PC-3 cells

Hypoxia is a hallmark of solid tumors [15] and HIF-1a is a

transcription factor that responses to hypoxia [16]. To examine

whether BA can affect HIF-1a induced by hypoxia, we first

determined the best time point of hypoxia-induced HIF-1a
expression in PC-3 cells. Cells were exposed to normoxia or

hypoxia for 0.5, 2, 4, 6, 8, 12 or 24 h. HIF-1a expression was

dramatically induced under hypoxic condition for 4 h (Fig. 2B).

Then, cells were treated with or without BA under hypoxia for

4 h. BA decreased hypoxia-induced HIF-1a expression in a dose-

dependent manner compared with hypoxia control (Fig. 2C). In

addition, hypoxia significantly activated HIF-1a transcription

while BA treatment inhibited the hypoxia-mediated transcriptional

activation of HIF-1a in a dose-dependent manner (Fig. 2D). These

results suggest that BA has the ability to inhibit the expression as

well as transcription of HIF-1a in hypoxic PC-3 cells.

Effect of betulinic acid (BA) on hypoxia-induced STAT3
activation in PC-3 cells

Recent studies reported that a transcription factor STAT3 is

involved in the transcriptional regulation of HIF-1a [17]. In our

study, hypoxia enhanced phospho-STAT3 level while normoxia

did not affect it. BA treatment inhibited hypoxia-mediated STAT3

phosphorylation in a dose-dependent manner (Fig. 3A). Also,

EMSA revealed that BA prevented the STAT3/DNA binding

activity under hypoxia in a dose-dependent manner (Fig. 3B).

Furthermore, imunocytochemical (ICC) staining with anti-HIF-1a
antibody showed a significant nuclear expression of HIF-1a under

hypoxic condition. In contrast, BA treatment attenuated HIF-1a
expression in the nucleus in hypoxic PC-3 cells (Fig. 3C),

suggesting its inhibitory effect on the nuclear translocation of

HIF-1a.

Effects of betulinic acid (BA) on hypoxia-induced
angiogenesis

Hypoxia is one of angiogenesis inducers through HIF-1a
activation [18]. Thus, the inhibitory effect of BA was evaluated

on hypoxia-mediated angiogenesis. VEGF, a critical angiogenesis

factor [19], was evaluated at the secreted cellular and protein

levels by ELISA and Western blotting, respectively. BA signifi-

cantly reduced VEGF production in a dose-dependent manner by

ELISA (Fig. 4A). Consistently, BA attenuated VEGF protein

expression in a dose-dependent manner by Western blotting

(Fig. 4B).

Additionally, HUVEC tube formation assay, which is known as

a typical angiogenesis in vitro model, was performed to confirm

anti-angiogenic effect of BA on hypoxia-mediated angiogenesis.

VEGF was used as a positive control of angiogenesis induction.

HUVECs mixed with the supernatants from PC-3 cells were

cultured in the absence or presence of BA under hypoxia. As

shown in Fig. 4C, hypoxia-induced tube formation was prevented

by BA treatment in PC-3 cells while clear tube formation was

exhibited in untreated control under hypoxia, suggesting that BA

inhibits hypoxia-mediated angiogenesis.

Effects of betulinic acid (BA) on the binding of STAT3 and
HIF1 a to VEGF promoter in hypoxic PC-3 cells

Recent studies revealed that STAT3 activation is directly link to

the transcriptional regulation of VEGF by binding to the VEGF

promoter [20,21]. In light of this event, we conducted chromatin

immunoprecipitation (ChiP) assay. As shown in Fig. 5A, the

binding activity of STAT3 and HIF-1a to the VEGF promoter

was detected under hypoxia (lanes 5-8) compared with normoxia

(lanes 1-4). Notably, BA treatment suppressed the binding of

STAT3 and HIF-1a to VEGF promoter in hypoxic condition

(lanes 9-12).

In order to confirm the critical role of STAT3 in anti-

angiogenic regulation of BA in hypoxic PC-3 cells, STAT3 siRNA

transfection was carried out in PC-3 cells. Treatment with either

BA or STAT3 siRNA reduced the production of VEGF by 39.6%

and 45.9% respectively, compared with untreated control.

Furthermore, BA treatment significantly reduced VEGF produc-

tion by 63.25% in STAT3 siRNA-transfected PC-3 cells (Fig. 5B).

Western blotting revealed that siRNA for STAT3, but not control,

efficiently blocked STAT3 (Fig. 5B).

Discussion

Prostate cancer classified as an adenocarcinoma is the second

most common malignant tumors in American men, with estimates

of 192,280 new cases and approximately 27,360 deaths in 2009

[22,23]. Betulinic acid (BA), a plant-derived pentacyclic lupane-

type triterpenoid, can be extracted from various plants such as

Sarracenia flava [24], Diospyros spp., Inga punctata [25], Ziziphus spp.,

and Vauquelinia corymbosa [26]. Several groups reported anti-cancer

activity of BA in various cancers including lung, colorectal, breast,

prostate and cervical cancer [27], but not normal cells [28]. Also,

BA completely inhibited tumour growth without toxicity in

athymic mice bearing human melanomas [6]. Moreover, anti-

cancer activity of BA was exerted by inducing apoptosis in the

cancer cells. For example, BA-induced apoptosis was independent

of p53 in neurorectodermal tumor [29] and melanoma cells [30].

In neuroblastoma cells, BA induced apoptosis through loss of the

mitochondrial membrane potential, reactive oxygen species (ROS)

production and caspase activation [31].

Interestingly, Karna and colleagues recently reported that BA

inhibited the expression of HIF-1a and vascular endothelial

Figure 1. Chemical structure of betulinic acid (BA). Molecular
weight = 456.
doi:10.1371/journal.pone.0021492.g001

Anti-Angiogenesis of Betulinic Acid in PC-3 Cells
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growth factor (VEGF) in human endometrial cancer cells [32].

However, the regulatory mechanisms whereby BA inhibits

angiogenesis are not fully understood. In the present study, we

found that BA suppressed hypoxia-mediated protein accumula-

tion, transcriptional activation and nuclear localization of HIF-1a
in PC-3 cells. Consistent with the results of Karna’s paper, our

data also showed that BA significantly inhibited VEGF secretion

and protein expression in hypoxic PC-3 cells. Additionally, in vitro

tube formation assay further confirmed anti-angiogenenic effect of

BA in hypoxic PC-3 cells.

Recently, Niu and colleagues suggested that constitutively

activated STAT3 up-regulated VEGF and induced tumor angio-

genesis [20]. Also, Wei and colleagues reported that STAT3

activation regulates the expression of VEGF and human pancreatic

cancer angiogenesis Furthermore, several papers described the role

of STAT3 as a potential modulator of HIF-1a-induced VEGF

signaling in cancer cells [4,33]. In this regard, the effect of BA on

STAT3 and HIF-1a activation was examined in hypoxic PC-3 cells

in our study. Consistent with the evidences by Pandey and colleagues

that BA suppressed STAT3 activation in multiple myeloma cells

[13], BA prevented hypoxia-induced tyrosine phosphorylation,

DNA binding activity and nuclear translocalization of STAT3,

suggesting the inhibitory effect of BA on STAT3 activation.

VEGF promoter contains various transcription factor binding

sites including STAT3 [20] as well as HIF-1 [34]. Physical

interaction of STAT3 with HIF-1 controls VEGF transcriptional

activation by their binding to the VEGF promoter [4]. In our study,

hypoxia promoted the binding of STAT3 and HIF-1a to the VEGF

promoter in PC-3 cells. In contrast, BA remarkably inhibited the

binding of STAT3 and HIF-1a to the VEGF promoter site under

hypoxic condition. Additionally, silencing STAT3 using its specific

siRNA significantly enhanced BA-mediated inhibition of VEGF

Figure 2. Effect of betulinic acid (BA) on hypoxia-induced HIF-1a activation in PC-3 cells. (A) PC-3 cells were treated with various
concentrations of BA (0, 12.5, 25, 50 or 100 mM) for 24 h. Cell viability was analyzed by MTT assay. (B) Cells were exposed to normoxia or hypoxia for
0.5, 2, 4, 6, 8, 12 or 24 h. Cell lysates were prepared and subjected to Western blotting to determine the expression of HIF-1a. (C) Cells were treated
with or without BA (5 or 10 mM) under normoxic or hypoxic condition for 4 h. Cell lysates were prepared and subjected to Western blotting to
determine the expression of HIF-1a. (D) Nuclear extract was prepared from the cells treated with BA (0, 10, 20 or 40 mM) under normoxia or hypoxia
for 4 h. HIF-1a transcription activity was measured by using TransAM HIF-1 transcription factor assay kit. Data represent means 6 S.D. ##, p,0.01 vs
normoxia control, and *, p,0.05 and ** , 0.01 vs hypoxia control.
doi:10.1371/journal.pone.0021492.g002
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production, implying the involvement of STAT3 in anti-angiogenic

regulation of BA in hypoxic PC-3 cells. Similar to our study,

Gariboldi and colleagues reported that NVP-AEW541, a IGFR1

inhibitor, disrupted IGF/STAT3/HIF1 pathway in human glio-

blastoma cells [35]. Leeman-Neill and colleagues also reported that

Guggulsterone inhibited STAT3 and HIF-1a and suggested a

biologic rationale for further clinical investigation BA for human

head and neck squamous cell carcinoma (HNSCC) therapy [36].

Collectively, our data demonstrate that BA suppressed expres-

sion and transactivation of hypoxia-induced HIF-1a, STAT3,

VEGF as well as capillary tube formation in PC-3 cells. It is

noteworthy that anti-cancer activity of BA is exerted by inhibiting

angiogenesis via inhibition of binding of STAT3 and HIF-1a to

the VEGF promoter in PC-3 cells. Thus, our findings suggest that

BA can be a potent anti-angiogenic agent by targeting STAT3/

HIF-1a/VEGF signaling for prostate cancer therapy.

Materials and Methods

Compounds
Betulinic acid (BA) (Figure 1) was purchased from Sigma-

Aldrich (St. Louis, MO) and dissolved in dimethyl sulfoxide

(DMSO) as a 10 mM stock solution for experimental use.

Cell culture
Human prostate cancer cell line PC-3 was obtained from

American Type Culture Collection (ATCC, Rockville, MD) and

maintained in RPMI1640 (Welgene, Daegu, Korea) supplemented

with 10% fetal bovine serum (FBS) and 1% antibiotic-antimyotic

solution. Human umbilical vein endothelial cells (HUVECs) were

isolated from fresh human umbilical cord vein and maintained in

EBM-2 (Lonza, Valais, Switzerland) supplemented with 2% FBS,

0.04% hydrocortisone, 0.1% VEGF, 0.1% IGF-1, 0.4% hFGF-B,

0.1% hEGF, 0.1% ascorbic acid, and 1% heparin.

Hypoxia induction
Cells were incubated in anaerobic incubator at 94% N2, 5%

CO2 and 1% O2 (Thermo scientific, Rockford, IL) as previously

described [37].

Cytotoxicity assay
To evaluate cytotoxicity of BA, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay was performed as

previously described [38]. PC-3 cells were plated onto 96-well

microplates at a density of 16104 cells per well and exposed to

various concentrations of BA (0, 12.5, 25, 50 or 100 mM) for 24 h.

MTT solution (1 mg/ml) (Sigma-Aldrich) was added onto each

well and incubated for 2 h at 37uC. Extraction buffer (20% SDS

and 50% dimethylformamide) was then added and optical density

(OD) was measured using microplate reader (Tecan Austria

GmbH, Grödig, Austria) at 570 nm. Cell viability was calculated

as a percentage of viable cells in BA-treated group versus

untreated control by following equation.

Cell viability (%) = [OD (BA) - OD (Blank)] / [OD (Control) -

OD (Blank)] 6100

Figure 3. Effect of betulinic acid (BA) on hypoxia-induced STAT3 activation in PC-3 cells. PC-3 cells were treated with or without BA (5 or
10 mM) under normoxic or hypoxic condition for 4 h. (A) Cell lysates were prepared and subjected to Western blotting for phospho-STAT3 and STAT3.
(B) Nuclear extracts were prepared and applied to EMSA to analyze the STAT3-DNA binding activity. (C) Cells were treated with or without BA (10 mM)
under hypoxia. Immunocytochemistry was performed for STAT3. DAB (brown) and hematoxylin-eosin was used as a substrate and a counterstaining,
respectively.
doi:10.1371/journal.pone.0021492.g003
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Western blot analysis
Whole-cell extracts were prepared using lysis buffer [50 mM

Tris (pH 7.5), 150 mM NaCl, 1% triton X-100, 0.01% SDS,

1 mM EDTA (pH 8.0) and protease inhibitor cocktail tablets

(Roche Applied Science, Inndianapolis, IN)]. Nuclear and

cytoplasmic extracts were obtained by fractionated by using NE-

PER nuclear and cytoplasmic extraction reagents (Thermo

scientific, Rockford, IL). Protein samples were separated on 10%

SDS-PAGE gel and transferred to a nitrocellulose membrane. The

membrane was blocked in 5% nonfat skim milk, and probed with

primary antibodies for HIF-1a (1:500, Gene Tex, Irvine, CA),

STAT3 (1:1000, Cell Signaling, Danvers, MA), phospho-STAT3

(1:500, Cell Signaling, Danvers, MA), VEGF (1:500, Santa Cruz

Biotechnologies, Santa Cruz, CA) and b-actin (Sigma, St. Louis,

MO) overnight at 4uC. The membranes were exposed to HRP-

conjugated secondary antibodies for 2 h at room temperature and

protein expression was detected by using enhanced chemilumi-

nescence (ECL) Western blotting detection reagent (GE Health

Care Bio-Sciences, Piscataway, NJ).

HIF-1a transcription activity assay
HIF-1a transcriptional activity was analyzed by HIF-1a

transcription factor assay using TransAM HIF-1 transcription

factor assay kit (Active Motif, Carlsbad, CA) according to the

manufacturer’s instructions. Briefly, nuclear extracts were added

onto 96-well microplate coated with oligonucleotides containing

hypoxia response element (HRE) (59-TACGTGCT-39) from the

erythropoietin (EPO) gene. HIF dimers present in nuclear extracts

Figure 4. Effect of betulinic acid (BA) on hypoxia-induced angiogenesis. (A and B) PC-3 cells were treated with 0, 5 or 10 mM BA for 24 h. (A)
VEGF levels in the culture supernatants were measured by using a Quantikine VEGF ELISA kit. (B) Cell lysates were prepared and subjected to Western
blotting to determine VEGF expression. Graphs represent relative band intensities of VEGF/b-actin. Data represent means 6 S.D. ##, p,0.01 vs
normoxia control, and *, p,0.05 and ** ,0.01 vs hypoxia control. (C) HUVECs were treated with VEGF (20 ng/ml) as positive control or the culture
supernatant from PC-3 cells treated with or without BA (10 mM) under normoxia or hypoxia. Tube formation assay was performed using growth factor
reduced Matrigel. Cells were fixed with Diff-Quick solution, photographed randomly under an Axiovert S 100 light microscope at6100 magnification
and counted.
doi:10.1371/journal.pone.0021492.g004
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bind with high specificity to this response element and are

subsequently detected with an antibody directed against HIF-1a.

Addition of a secondary antibody conjugated to horseradish

peroxidase (HRP) provides a sensitive colorimetric readout that is

easily quantified by spectrophotometry. Values are expressed as

optical density (OD) at 450 nm with a reference wavelength of

655 nm.

Immunocytochemistry
PC-3 cells were seeded on 4-chamber slides at a density of 36104

cells per chamber and treated either with or without BA (10 mM)

under hypoxia as previously described [37]. The cells were fixed in

4% formaldehyde solution for 10 min at room temperature and

blocked in blocking buffer (10% BSA/Triton X-100 in PBS)

containing 6% horse serum for 1 h at room temperature. The slides

were incubated with anti-STAT3 (1:100) antibody overnight at 4uC
and then probed with anti-mouse or rabbit biotinylated antibodies

(Vector Labs, Burlingame, CA) for 1.5 h at room temperature. The

expression was detected by using Vector ABC complex/HRP kit

(Vector Labs, Burlingame, CA) and color-developed with 3,39-

diaminobenzidine tetrahydrochloride in dark. The specimens were

then counterstained with hematoxylin-eosin (Sigma-Aldrich, St.

Louis, MO) and analyzed under a microscope (Leica Microsystems

Res., Wetzlar, Germany).

Electrophoretic mobility shift assay (EMSA)
The STAT3-DNA binding was analyzed by electrophoretic

mobility shift assay (EMSA) using Gelshift Chemiluminescent

Figure 5. Effect of betulinic acid (BA) on STAT3 binding on the VEGF promoter in hypoxic PC-3 cells. (A) PC-3 cells were treated with or
without BA (10 mM) under normoxia or hypoxia for 4 h. The immunoprecipitated DNA with rabbit normal IgG, HIF-1a or STAT3 antibody was
amplified by PCR analysis for VEGF promoter. (B) Cells were transiently transfected with siRNA for scramble or STAT3 for 24 h and treated with or
without BA (10 mM) for 18 h under hypoxia. VEGF levels in the culture supernatants were measured by using a Quantikine VEGF ELISA kit. Data
represent means 6 S.D. #, p,0.05 vs control, and *, p,0.05 vs control siRNA. Cell lysates were subjected to Western blotting for phospho-STAT3,
STAT3 and HIF-1a.
doi:10.1371/journal.pone.0021492.g005
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EMSA kit (Active Motif, Carlsbad, CA) as previously described

[39]. Briefly, nuclear extracts were prepared from anethole-treated

cells and incubated with STAT3 consensus oligonucleotides (59-

CTT CAT TTC CCG TAA ATC CCT AAA GCT-39) (Santa

Cruz Biotechnologies, Santa Cruz, CA). The DNA-protein

complex formed was separated from free oligonucleotides on 5%

native polyacrylamide gels. Chemiluminescent detection was

performed using ECL reagents according to the vendor’s protocols

(GE Health Care Bio-Sciences, Piscataway, NJ).

In vitro tube formation assay
In vitro tube formation assay was performed as previously

described [40]. Matrigel (BD) was added on 24-well plates and

polymerized by incubating for 1 h at 37uC. HUVECs were seeded

onto Matrigel coated plates and incubated in EBM-2 supplement-

ed with VEGF (20 ng/ml) or the supernatant from PC-3 cells

treated with BA (0 or 10 mM) under normoxia or hypoxia for 24 h.

After 8 h incubation, cells were fixed with 4% formaldehyde and

randomly chosen fields were photographed under an Axiovert S

100 light microscope (Carl Zeiss, Weimar, Germany) at

1006magnification.

Enzyme-linked immunosorbent assay (ELISA) for VEGF
PC-3 cells were plated onto 60-mm dish at a density of 16106

cells/plate and incubated in the absence or presence of BA

(10 mM) under normoxia or hypoxia for 24 h. VEGF level in the

supernatant was measured by using human VEGF ELISA kit

according to the manufacturer’s protocol (Biosource International

Inc., Camarillo, CA).

Chromatin immunoprecipitation (ChiP) assay
PC-3 cells were plated onto 100-mm dishes at a density of

1.56106 cells/dish, treated with BA for 4 h under normoxic or

hypoxic condition and then 1% formaldehyde and 0.125 M

glycine. Soluble chromatins were isolated by using EZ-Zyme

chromatin prep kit (Millipore, Billerica, MA) and immunoprecip-

itated with antibodies of normal rabbit IgG (EMD biosciences,

Gibbstown, NJ), HIF-1a or STAT3. Histone/DNA crosslinks

were reversed by adding 5 M NaCl at 65uC for 4 h, followed by

phenol/chloroform extraction and ethanol precipitation. PCR

reaction was performed to amplify VEGF promoter using ChiP

primers (sense 59-AGACTCCACAGTGCATACGTG-39 and

antisense 59-AGTGTGTCCCTCTGACAATG-39.

siRNA trasnfection
PC-3 cells were transiently transfected with scramble or STAT3

siRNA (SantaCruz biotechnology, SantaCruz, CA) at 50 nM by

using INTERFERin siRNA transfection reagent (Polyplus-trans-

fection Inc., New York, NY). After incubation for 24 h, the cells

were treated with BA and maintained for 18 h under hypoxia.

Statistical analysis
All data were expressed as means 6 S.D. Statistical significance

was analyzed by student’s t-test.
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