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Abstract

Background: MYCN is a transcription factor that is expressed during the development of the neural crest and its
dysregulation plays a major role in the pathogenesis of pediatric cancers such as neuroblastoma, medulloblastoma and
rhabdomyosarcoma. MeCP2 is a CpG methyl binding protein which has been associated with a number of cancers and
developmental disorders, particularly Rett syndrome.

Methods and Findings: Using an integrative global genomics approach involving chromatin immunoprecipitation applied
to microarrays, we have determined that MYCN and MeCP2 co-localize to gene promoter regions, as well as inter/intragenic
sites, within the neuroblastoma genome (MYCN amplified Kelly cells) at high frequency (70.2% of MYCN sites were also
positive for MeCP2). Intriguingly, the frequency of co-localization was significantly less at promoter regions exhibiting
substantial hypermethylation (8.7%), as determined by methylated DNA immunoprecipitation (MeDIP) applied to the same
microarrays. Co-immunoprecipitation of MYCN using an anti-MeCP2 antibody indicated that a MYCN/MeCP2 interaction
occurs at protein level. mRNA expression profiling revealed that the median expression of genes with promoters bound by
MYCN was significantly higher than for genes bound by MeCP2, and that genes bound by both proteins had intermediate
expression. Pathway analysis was carried out for genes bound by MYCN, MeCP2 or MYCN/MeCP2, revealing higher order
functions.

Conclusions: Our results indicate that MYCN and MeCP2 protein interact and co-localize to similar genomic sites at very
high frequency, and that the patterns of binding of these proteins can be associated with significant differences in
transcriptional activity. Although it is not yet known if this interaction contributes to neuroblastoma disease pathogenesis, it
is intriguing that the interaction occurs at the promoter regions of several genes important for the development of
neuroblastoma, including ALK, AURKA and BDNF.
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Introduction

MYCN is a member of the MYC family of basic helix-loop-helix

(bHLH) transcription factors which regulate a diverse range of

cellular processes including proliferation, differentiation and

apoptosis [1]. High level amplification of MYCN occurs in

multiple pediatric cancers, and for neuroblastoma it is the most

important genetic prognostic indicator of poor clinical outcome

[2]. Further evidence that this transcription factor directly

contributes to tumorigenesis is provided by the development of

neuroblastoma-like tumors in a transgenic mouse model over-

expressing MYCN [3].

MYC family members heterodimerize with MAX at DNA

target sequences known as E-boxes, recruiting histone acetyltrans-

ferases (HAT) and activating gene expression [4]. MYC proteins

have also been shown to act as transcriptional repressors by

association with MIZ1 and function through the inhibition of SP1

activity [5,6]. Previously, we demonstrated that MYCN has a

significantly greater affinity for the CATGTG motif than for

CACGTG, which is significantly associated with c-MYC binding

sites [7,8]. We further demonstrated that aberrantly high levels of

MYCN promote the occupancy of weaker affinity E-box elements,

thus commandeering the functional role of other transcription

factors [9]. Aberrant target sites for MYCN binding are highly

enriched for genes that regulate aspects of the cell cycle, leading

predominantly to the up-regulation of these genes [10]. In addition

to directly affecting the expression of genes [9–16] and miRNAs

[17–20] by direct binding to promoter regions, changes in MYCN

levels undoubtedly also cause a cascade of secondary alterations to

the transcriptome.
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Genome-wide analysis of MYCN binding has also established a

more global role for MYCN as a mediator of chromatin structure

[21]. Consistent with this concept, we recently reported the

association of MYCN to regions of DNA hypermethylation,

through the integration of chromatin immunoprecipitation on

chip (ChIP-chip) and methylated DNA immunoprecipitation on

chip (MeDIP-chip) data [9]. The aberrant hypermethylation of

gene promoters is a well known mechanism for the transcriptional

silencing of tumor suppressor genes in many forms of cancer

including neuroblastoma [22–24]. We hypothesized that the

association between MYCN binding and regions of DNA

hypermethylation may be due to the action of an intermediate

methyl binding protein (MBD). Of the MBD proteins, MeCP2 is

essential in human brain development and has been linked to

several cancer types and neurodevelopmental disorders [25–28].

MeCP2 can selectively bind to methylated CpG residues, has been

shown to localize to inactive heterochromatic regions of DNA, and

interacts with the transcriptional repressor SIN3A to recruit

histone deacetylases (HDAC) to repress transcription of methyl-

ated promoters [29,30].

However, this classic model of MeCP2 as a transcriptional

repressor has been called into question, as methylated and

imprinted genes remain silent in MeCP2-deficient mice [31] and

gene expression profiling experiments failed to identify MeCP2

target genes regulated by methylated promoters [32]. A genome-

wide study of MeCP2 binding sites revealed that a large

percentage of MeCP2-bound gene promoters were unmethylated

and actively transcribed [33]. This result was supported by

Charhour et al. [34] in a study showing the interaction of MeCP2

with the transcriptional activator CREB1 at active promoters.

Additionally, a new model of MeCP2 function proposes that

MeCP2 can act as a transcriptional modulator, regulating

chromatin structure at distal methylation sites to modulate the

expression of active genes [35]. (For reviews, see [28,36])

In this study, we have carried out genome-wide analysis of

MYCN and MeCP2 binding sites in combination with methyla-

tion analysis, and have characterized a novel co-occupancy of

these proteins at promoter regions. Gene expression analysis of

bound promoters reveals differential expression levels of genes

bound individually by, or in combination with MYCN and

MeCP2.

Taken together, our results suggest that the majority of

hypermethylated MYCN sites are also bound by the methyl

binding protein MeCP2, that a greater number of MYCN/

MeCP2 positive sites occur outside of hypermethylated loci and

points to a role for MeCP2 in the modulation of gene expression in

MYCN amplified tumors.

Results

Co-occupancy of Genomic Regions by MYCN and MeCP2
We previously reported that MYCN co-localizes to regions of

hypermethylated DNA in neuroblastoma cell lines at a signifi-

cantly higher than expected frequency [9]. Here, we test the

hypothesis that this association might be due to the interaction of

MYCN with MeCP2, which is capable of directly binding to

methylated DNA and is known to play a role in cancer and

neurodegenerative disorders [26–28]. For an initial assessment of

this hypothesis, chromatin from the MYCN amplified neuroblas-

toma cell line Kelly was immunoprecipitated with an anti-MeCP2

antibody and then hybridized to the NimbleGen HG18 two-array

promoter set and to a custom designed tiling array representing

528 miRNA loci, as described previously [9]. In order to

determine the extent of MYCN and MeCP2 co-occupancy to

regions of hypermethylation, MeDIP-chip was also performed on

the Kelly cell line, using the above array platforms.

The MeCP2 ChIP-chip experiments were carried out in

duplicate on both the HG18 two-array promoter set and the

custom tiling array, and as illustrated in Figure S1A, B and C,

there was a high correspondence between the biological replicate

experiments for each microarray (r = 0.89 and 0.92 for the two

array promoter set; r = 0.88 for the custom tiling array). For

further validation of the MeCP2 ChIP-chip experiments, qPCR

primers were designed for seven randomly selected regions

showing enhanced MeCP2 binding on the ChIP-chip experiments

(Table S1). Six out of seven qPCR experiments showed .1.5 fold

enrichment of DNA sequence from the MeCP2 immunopreci-

pated sample relative to the IgG negative control, indicating that

the microarray results were of high quality (Figure S1D).

Comparison of our data to previously published MeCP2 target

sites [34,37] confirmed the presence of positive MeCP2 sites at the

promoter regions of SST, MEF2C, GPRIN1 and SGK (Figure S2 A–

D). In an additional study, Yasui et al. [33] performed ChIP-chip

analysis of MeCP2 precipitated DNA from the neuroblastoma cell

line SH-SY5Y using a custom designed microarray which tiled

26.3 Mb of imprinted and non-imprinted regions. In total, twelve

positive promoters from this data set were selected and examined

for MeCP2 binding in our results. Of these, eight were positive for

high confidence MeCP2 binding sites (Figure S2 E, F and Table

S1). The discordance found between data sets could be due to

genuine biological differences between the cell lines used or

technical issues such as the use of different MeCP2 antibodies for

immunoprecipitation. The results from MYCN ChIP-chip and

MeDIP experiments have also been rigorously validated, as

detailed previously [9].

Data generated from MYCN, MeCP2 ChIP-chip experiments

and MeDIP-chip experiments were analyzed using a custom Java

application to determine the extent of overlap between data sets.

Figure 1A depicts the number of significant MYCN, MeCP2 and

methylation sites which were in common and unique to each data

set from the promoter arrays, which includes an average coverage

of 4.7 kb around promoters for all annotated genes from RefSeq,

UCSC and the Mammalian Gene Collection. Similar to our

previous finding with the CpG Island/promoter array data set [9],

,11.5% (n = 415) of MYCN sites were associated with hyper-

methylated promoters, representing a statistically significant

enrichment of MYCN at these sites (P,0.001). Approximately

75% (n = 313) of these MYCN bound hypermethylated sites that

overlapped with MeCP2 binding sites. Remarkably, the co-

localization of MYCN/MeCP2 binding also occurred at promoter

regions lacking detectable hypermethylation, with 62% (n = 2,222;

P,0.001) of MYCN sites being co-occupied by MeCP2. The

percentage of hypermethylated MeCP2 bound sites was evenly

split between those uniquely bound by MeCP2 (312 sites) and

those co-occupied by MYCN (313 sites) and the vast majority of

hypermethylated sites (82%, 3,323 sites) within Kelly are not

bound by MYCN or MeCP2.

Figure 1B depicts a three-way Venn diagram of the analyzed

custom tiling array datasets for miRNA regions. In contrast to the

promoter array results, a significant increase in the percentage of

MYCN sites associated with MeCP2 at hypermethylated regions

was observed. Of the 447 MYCN positive sites, 58% (n = 261)

were co-occupied with MeCP2 at hypermethylated loci, compared

with just 9% (n = 313) of MYCN sites identified with the promoter

array (Figure 1C). A similar shift was observed for the number of

MeCP2 sites associated with regions of hypermethylation. Of the

935 MeCP2 sites, 50% (n = 470) were associated with hyper-

methylated loci, compared to just 6% (n = 312) of MeCP2 sites

Association of MYCN and MeCP2 in Neuroblastoma
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identified using the promoter array (Figure S3). The increased

association of MYCN and MeCP2 to regions of hypermethylation

could be explained in part by the structural functions of these

molecules, as the miRNA array contains a significant amount of

inter/intragenic sequence.

In order to demonstrate that MYCN, MeCP2 and hypermethy-

lation co-localization occurs on the same chromosomal homolog,

we examined a terminally deleted region on the long arm of

chromosome 18 in the Kelly cell line (Figure 2A). Integration of

aCGH, ChIP-chip and MeDIP-chip data revealed an overlap of

MYCN, MeCP2 positive and DNA hypermethylated sites

confirming that this co-occupancy occurs on the same chromo-

some homolog (Figure 2B). To confirm specificity of the array data

derived from the immunoprecipitation experiments, we performed

negative control ChIP-chip experiments using normal mouse IgG.

The lower tracks in Figure 2B depict the results of that experiment

showing no overlap with the MYCN, MeCP2 and MeDIP sites.

Given that, 75% of hypermethylated MYCN promoter sites

were associated with MeCP2, and that 61% of the total MYCN

promoter sites were co-occupied by MeCP2 were non-hyper-

methylated regions, we carried out a co-immunoprecipitation

analysis using the MeCP2 antibody on nuclear extract obtained

from Kelly cells to determine if the association detected by ChIP-

chip data was due to the direct interaction of MYCN with MeCP2

protein. As illustrated in Figure 2C, MYCN co-immunoprecipi-

tated with MeCP2, leading us to conclude that the majority of

hypermethylated MYCN sites are also bound by the methyl

binding protein MeCP2. The reciprocal experiment, involving

MYCN antibody on nuclear extract, was uninformative as it was

not possible to resolve MeCP2 by electrophoresis from a similarly

sized IgG protein.

CpG Island Occupancy and Effects on Gene Expression
In the context of gene expression, hypermethylation generally

has a negative regulatory impact when occurring at CpG islands

within the promoter region of a gene, so it was of interest to

compare how the occupancy of MYCN and MeCP2 at such sites

impacts upon gene expression [Tables 1]. Among the 4,050

hypermethylated regions identified in Kelly using the two-array

promoter set, 1,077 were associated with a UCSC annotated CpG

island, representing a significant enrichment of hypermethylation

at CpG island sites. Consistent with a previous report, our data

shows that only 7.6% (383 sites) of the 5,010 MeCP2 binding sites

are associated with CpG islands [33]. Overall, there was a

significant under-representation of MYCN or MeCP2 at hyper-

methylated CpG islands, with 92% (984 sites) of such sites being

free of MYCN and MeCP2 binding. MeCP2, as a methyl binding

protein, had a higher association with hypermethylated CpG

islands (49 sites; 4.6% of hypermethylated CpG islands) than

MYCN (9 sites; 0.8%). Of the 313 hypermethylated sites co-

occupied by MYCN and MeCP2, only 35 sites were associated

with CpG islands, representing just 3.5% of the total hypermethy-

lated CpG island loci.

Gene expression analysis of the Kelly cell line was performed

using NimbleGen 4-plex 72K arrays in order to determine how

MYCN and/or MeCP2 binding might influence gene expression

Figure 1. Genome-wide analysis of MYCN and MeCP2 binding sites. (A) & (B) Three-way Venn diagrams displaying the number unique and
overlapping binding sites from MYCN and MeCP2 ChIP-Chip experiments along with the hypermethylated sites identified from MeDIP analysis of the
Kelly cell line, hybridized to (A) the two-array promoter set and (B) custom tiled arrays (B). (C) Pie charts representing the percentage of MYCN sites
which are unique to the MYCN dataset and which overlap sites enriched for MeCP2 binding and regions of hypermethylation.
doi:10.1371/journal.pone.0021436.g001

Association of MYCN and MeCP2 in Neuroblastoma
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at hypermethylated promoter sites with and without CpG islands.

Results from the expression microarrays had a high correlation

with selected TaqMan qPCR probes (r = 0.95; P = 0.001; Figure

S4). Median expression levels of genes whose promoter regions

varied in methylation status, CpG island status, MYCN or MeCP2

binding status were compared and evaluated by the Mann-

Whitney nonparametric test, as illustrated in Figure 3.

Overall, hypermethylation of promoter regions had a negative

impact on gene expression, as the median expression of genes at

non-hypermethylated promoters bound by MYCN was 2.6 fold

higher than hypermethylated promoters bound by MYCN

(P = 0.02; Figure 3A). The median expression of genes with

non-hypermethylated promoters that were bound by MYCN was

,2.8-fold higher than similar promoters occupied by MeCP2

(P,0.0001; Figure 3B), consistent with MYCN having a positive

impact on transcription. Overall, the median expression of genes

with non-hypermethylated promoters and co-localization of

MYCN and MeCP2 was intermediate between those occupied

only by MYCN or MeCP2 (Figure 3B), indicating that MeCP2

interaction with MYCN can moderate gene expression. Interest-

ingly, there was no difference in median expression for MeCP2

bound promoters that were non-hypermethylated versus those that

were hypermethylated (Figure 3C); consistent with the hypothesis

that MeCP2 binding in the absence of hypermethylation can have

Figure 2. Analysis of MYCN, MeCP2 and hypermethylation in a region of hemizygous deletion. (A) Array CGH analysis of the Kelly cell
line showing a large 52.6MB terminal deletion on the long-arm of chromosome 18. (B) A tiled 70.5-kb section of the hemizygously deleted region on
chromosome 18, the upper panels display the raw log2 ratios and the identified, consistent binding sites for both MYCN and MeCP2. Peaks displayed
are considered high confidence binding sites with an FDR score of ,0.05 (red peaks) and 0.05-0.1 (orange peaks). Kelly MeDIP results are represented
by the panels in blue, including the raw log2 ratios, Kolomogorov-Smirnov test p-values (2log10), and the identified peaks of hypermethylation. The
lower panels show the results of a negative control experiment using normal mouse IgG. (C) A western blot of a Co-IP performed using anti-MeCP2
antibody.
doi:10.1371/journal.pone.0021436.g002
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a suppressive effect. However, its repressive effects appear greater

when associated with hypermethylated CpG islands within

promoters relative to MeCP2 binding within promoters which

do not contain CpG islands (3.0-fold; P = 0.03; Figure 3C). Among

hypermethylated CpG island promoters, median gene expression

was 3.4-fold higher for those co-occupied by MYCN and MeCP2

relative to those promoters only bound by MeCP2 (P = 0.03;

Figure 3D), providing evidence that MYCN interaction can

Figure 3. Gene expression analysis of the kelly cell line. (A) A bar chart representing the median expression levels of genes whose promoter
regions are bound by MYCN. The dataset was subdivided into unique MYCN sites, hypermethylated MYCN sites and hypermethylated MYCN sites
associated with CpG Islands. (B – F) Similar analysis was performed for genes having promoters with different combinations of features (MYCN +/2;
MeCP2 +/2; methylation +/2 and/or CpG island +/2). Red arrows and green arrows denote the upper and lower quartiles of expression from the
overall gene expression microarray results. Genes with expression values which fall in the upper quartile are considered highly expressed while genes
which fall in the lower quartile are considered silent or expressed at low levels. Statistical analysis was performed using Mann-Whitney nonparametric
test.
doi:10.1371/journal.pone.0021436.g003

Table 1. CpG Island Occupancy.

Dataset No. of peaks No. of Methylated CpG Islands % of Peaks % of total Methylated CpGs P-value

MYCN MeDIP Peaks 102 9 8.82352941 0.835654596 0.0037*

MeCP2 MeDIP Peaks 312 49 15.7051282 4.549675023 0.0057*

MYCN MeCP2 MeDIP Peaks 313 35 11.1821086 3.249767874 ,0.0001*

Unbound MeDIP Peaks 3323 984 29.6117966 91.36490251 ,0.0001

Total MeDIP Peaks 4050 1077 26.5925926 n/a 0.00567

*Under-represented.
doi:10.1371/journal.pone.0021436.t001
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moderate the repressive effects of MeCP2. No other statistically

significant difference in median gene expression was detected

among the comparisons made (Figure 3 E and F). We conclude

that MeCP2 has an overall negative impact on gene expression,

while MYCN has a more positive influence. In addition,

interaction of MYCN with MeCP2 appears to mitigate the

negative effects of MeCP2 on gene expression, particularly at

promoter regions containing CpG islands.

Molecular Function of Downstream MYCN and MeCP2
Target Genes

In order to determine if there might be higher order functional

differences between genes with promoters uniquely bound by

MYCN or MeCP2 or jointly bound by both proteins, analysis of

these gene subsets was carried out using Ingenuity Pathway

Analysis (IPA) software. The top 5 enrichment categories for genes

uniquely bound by MYCN included cellular movement, cell

death, gene expression, cell cycle and cell signaling, all terms

which might be expected based on numerous prior studies of

MYCN (Figure 4A). Although these terms were most significantly

enriched for genes uniquely bound by MYCN, they were also

moderately enriched for genes uniquely bound by MeCP2 or co-

bound by MYCN/MeCP2 (p,0.05). For genes whose promoters

were uniquely bound by MeCP2, the top functional annotations

were lipid metabolism, small molecule biochemistry, vitamin and

mineral metabolism, cellular growth and cell signaling (Figure 4B).

Functional terms that were enriched for genes co-bound by

MYCN/MeCP2 considerably overlapped the functional terms

identified in the singly bound gene sets (Figure 4C).

Although there was broad overlap between the gene pathway

terms that were enriched in the three different gene sets, a more

detailed analysis of the functional classes listed under the terms was

informative. For example, genes involved with the cell cycle were

enriched for all three categories of promoters, however, genes

uniquely bound by MYCN were often involved in cell cycle

progression, such as CDC7, CDC23, CKS1B, NDC80 and NUF2

whereas those uniquely bound by MeCP2 were often involved

with cell cycle arrest or senescence. This observation is consistent

with our finding that genes uniquely bound by MYCN are

generally more over-expressed than genes uniquely bound by

MeCP2. Further analysis of the broad functional category of cell

death revealed that genes co-bound by MYCN/MeCP2 were

enriched for the subcategories of ‘‘apoptosis of neuroblastoma cell

lines’’ and ‘‘survival of neuroblastoma cell lines’’. These subcat-

egories included many genes known to be important in

neuroblastoma pathogenesis, including ALK, AURKA and BDNF

(Figure S5). As previously discussed, genes that are co-bound by

MYCN/MeCP2 generally have expression levels that are

intermediate between singly bound promoters. Within the cellular

movement category, several genes that were identified as bound by

MYCN had a functional role in cellular migration and invasion

including the non-receptor tyrosine kinase PTK2. PTK2 has been

implicated in NB and shown to be a direct target of MYCN [38],

with higher expression levels of this protein being positively

correlated with MYCN amplified cell lines [39]. Inhibition of this

survival factor has been shown to inhibit migration and invasion of

NB cell lines [40] and leads to a decrease in cell viability [41].

Motif Analysis Reveals Differences in E-box Frequencies
at Sites Bound by MYCN and MeCP2

Both c-MYC and MYCN are known to bind to the canonical

CACGTG E-box motif and a number of other non-canonical

motifs, although Murphy et al. [9] demonstrated that the

frequency of MYCN binding at CACGTG sites is substantially

lower than what was demonstrated for c-MYC by Zeller et al.

[8]. In contrast to c-MYC, MYCN appears to occupy sites

with a higher frequency of CATGTG and CACCTG [9].

Here, we have determined whether the frequency of E-box

usage by MYCN is dependent upon its interaction with

MeCP2 at regions with and without detectable levels of DNA

methylation.

Using supervised motif analysis of the promoter array results,

we examined the frequency of all combinations of CANNTG

E-box motifs across the various intersections of the MeCP2,

MYCN and MeDIP datasets, along with the frequency of each

motif in the background data set (all sequences contained on the

promoter array; Figure 5). For hypermethylated regions co-

occupied by MeCP2 and MYCN, a higher frequency of

CATGTG (2.3-fold above background; P,1.2e-04) and

CACCTG (2.2-fold above background; P,6.5e-06) occurs,

similar to our previous analysis based on MYCN binding alone

[9]. There was no significant enrichment for the MeCP2 A/T

rich consensus motif, as previously described by Klose et al [42].

Interestingly, the classic c-MYC binding motif CACGTG (4.3-

fold above background; P,9.9e-05) was highly enriched where

MeCP2 was bound to hypermethylated regions in the absence of

MYCN (Figure 5F). These sites were also enriched for the

CACCTG motif (2.3-fold; P,1.6e-06) and the MeCP2 A/T rich

consensus motif (1.4-fold; P,9.9e-07). Similar analysis of the

custom tiling array revealed that such a shift in E-box preference

is not observed in hypermethylated binding sites in intergenic

regions (Figure S6).

For unmethylated MYCN and MeCP2 genomic sites, there was

less enrichment for E-boxes in general (1.3-fold maximum

enrichment), with no clear preference for any particular E-box

variant. This was also the case for regions only occupied by

MeCP2 (1.2-fold).

Bioinformatic Prediction of DNA Binding Proteins
Associated with Sites Bound by MYCN and MeCP2

To investigate other potential transcription factors that might be

associated with MYCN/MeCP2 co-binding sites, we determined if

other transcription factor binding motifs were significantly over-

represented. We then cross referenced these significance values

with the mRNA expression for these genes to establish which

transcription factors were expressed in Kelly cells. The mRNA

expression for each transcription factor was plotted against the

significance of its motif enrichment [2log10 (P-value); Figure 6A &

B]. Transcription factors with mRNA expression greater than the

median and whose motifs were significantly enriched (p,0.05) in

all sites co-bound by MYCN and MeCP2 are represented in the

upper right quadrant of Figure 6A. A similar analysis was also

carried out for MYCN/MeCP2 binding at sites that were

hypermethylated (Figure 6B). By way of further external validation

of this model, we examined whether any known or predicted

interactions existed between these putatively co-associated tran-

scription factors. This is illustrated in Figure 6C and D as a

network in which the thickness of the lines connecting the nodes

represents the confidence of the given interaction (see methods).

Discussion

Using ChIP-chip methods we have identified a novel pattern of

high frequency co-localization of the MYCN transcription factor

and the MeCP2 methyl binding protein to genomic sites in

neuroblastoma Kelly cells. Through a co-immunoprecipitation

Association of MYCN and MeCP2 in Neuroblastoma
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experiment we also demonstrate that a protein-protein interaction

has occurred, but whether both, or only one protein, is binding to

DNA is uncertain. The interaction of MeCP2 with another

transcription factor, CREB1, has also been documented by

Chahrour et al. [34] using mass spectroscopy analysis of protein

immunoprecipitated from brain extracts of wild-type mouse with an

anti-MeCP2 antibody. Consistent with the findings of Chahrour

et al. [34], we detected a statistically significant enrichment for the

CREB1 DNA binding motif at sites that were positive for MYCN,

MeCP2 and methylation. Our own co-immunoprecipitation

reactions revealed that MeCP2 is capable of immunoprecipitating

MYCN; however MYCN was not detected in the analysis carried

out by Chahrour et al. [34]. This disparity is likely due to the low

expression levels of MYCN in the brains of adult mice, our co-

immunoprecipitations were carried out on nuclear extracts from a

MYCN amplified cell line expressing high levels of the protein.

Figure 4. Pathway analysis of target genes. Comparison analysis of the top significant biological functions for (A) genes whose promoters are
occupied by MYCN (B) genes whose promoters are occupied by MeCP2 (C) genes whose promoters are co-occupied by MYCN and MeCP2. Each panel
represents the top five biological functions of each group of genes, and compares the significance of each of the functions across datasets. The
significance scores for each biological function are represented as –log(P-value). The analysis was performed using the IPA software, significant
biological functions were identified as having a p-value of less than P,0.05 (represented by a red bar).
doi:10.1371/journal.pone.0021436.g004

Association of MYCN and MeCP2 in Neuroblastoma

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21436



Chahrour et al [34] also reported on gene expression analysis of

brain tissues from MeCP2-null mice and from transgenic mice which

over-express MeCP2. In contrast to the classical model, they noted

that gain of MeCP2 caused significantly more activation than

repression, while loss of MeCP2 caused an increase in repression

and a decrease in activation. Sequential ChIP analysis of chromatin

immunoprecipitated with CREB1 and MeCP2 followed by

luciferase reporter and gene expression assays confirmed that the

two factors associated with the promoter regions of specific genes

(including Sst and Mef2c) and activated transcription. Our own

analysis of gene expression indicates that many genes with MeCP2

bound promoters are transcriptionally active. However, our results

also reveal the influence of MYCN, which is expressed at high levels

in Kelly. As expected from a transcriptional activator, the group of

genes bound by MYCN but not MeCP2 had significantly higher

levels of expression (,2.8-fold, P,0.0001) than those bound by

MeCP2 alone. Groups of genes bound in combination with MYCN

and MeCP2 had median expression that was intermediate to those

bound by only MYCN or MeCP2. These results suggest that both

proteins can act as modulators of transcription.

Previous ChIP-chip analysis of MeCP2 binding sites within the

neuroblastoma cell line SH-SY5Y by Yasui et al. revealed that the

majority of MeCP2 binding sites were unmethylated, occurred

outside of CpG islands, and that downstream genes were actively

expressed [33]. These results challenged the dominant model of

MeCP2 as a functional repressor of transcription, acting by

binding to methylated CpG dinucleotides, facilitating the recruit-

ment of corepressors and chromatin remodeling complexes

[29,30]. Our results from the promoter arrays also indicate that

MeCP2, as well as MYCN, bind to a relatively small proportion of

hypermethylated promoters [11.5% of MYCN sites, 12% of

MeCP2 sites]. Interestingly, similar analysis of the custom tilling

array, which contained a high proportion of inter/intragenic DNA

sequences, revealed a much higher association with regions of

hypermethylation for both MYCN and MeCP2. [74.9% of

MYCN sites, 77.6% of MeCP2 sites]. The higher frequency of

MYCN/MeCP2 co-localization at hypermethylated non-promot-

er regions is consistent with both proteins playing a role in the

maintenance of chromatin structure.

An intriguing possibility is that MYCN and MeCP2 can co-

operate to regulate gene expression by altering higher-order

chromatin structure. Several recent studies using chromosome

conformation capture (3C) techniques have shown that distally

located cis-regulatory elements can be brought into proximity to

the promoter of active genes, indicating that a chromatin loop

forms to allow the adjacent association of both elements. A study

of the imprinted Dlx5/Dlx6 locus using 3C combined ChIP with

an anti-MeCP2 antibody, demonstrated the MeCP2 was required

Figure 5. Assessment of motif enrichment at unique and commonly bound MYCN and MeCP2 sites from the promoter array data
set. Here we illustrate the frequency, relative to background, of the various classes of canonical E-boxes (CANNTG) in non-methylated sites bound by
MYCN alone (A), MeCP2 alone (C) and both MYCN and MeCP2 (B); and methylated sites bound by MYCN alone (D), MeCP2 alone (F) and both MYCN
and MeCP2(E). We also include the putative MeCP2 binding motif proposed by Klose et al. (37). Motifs with 1.5 fold change over background and
P,0.05 are highlighted. In non-methylated regions we see .1.5 fold-enrichment for CATCGT and CATGTG motifs. In methylated regions we see a
significant preference for the CATGTG motif at locations bound by MYCN. There is a significant preference for the classical CACGTG E-box motif at
methylated locations bound by MeCP2 alone.
doi:10.1371/journal.pone.0021436.g005
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for the formation of a silencing chromatin loop, and that Mecp2-

deficient mice had increased expression of Dlx5 and Dlx6 as a

result of aberrant loop formation. The influence of MeCP2 in the

formation of chromatin loops does not seem to be limited to

transcriptional silencing, however, as gene expression and ChIP-

chip analysis of several genes, including JUNB, within the NB cell

line SH-SY5Y, indicate that these genes are modulated by distal

and proximal MeCP2 binding sites [33]. Although the SH-SY5Y

cell line is not MYCN amplified, it does over-express MYCN,

suggesting that the MYCN and MeCP2 could co-operate to

modulate the expression of JUNB. Our own ChIP-chip analysis of

JUNB in the Kelly cell line reveals several putative overlapping

MYCN and MeCP2 binding sites around the promoter region of

JUNB which are similar to those previously described in SH-

SY5Y. The mechanism that modulates chromatin looping remains

poorly understood, but it is thought that changes in chromatin

flexibility are necessary to allow loop formation. It has been

suggested that chromatin flexibility is regulated by histone

Figure 6. Putative association of transcription factor binding motifs at commonly bound MYCN/MeCP2 sites. For (A) and (B), plots
show increasing expression of transcription factor mRNA on the X-axis and increasing enrichment for motifs on the Y-axis. For each plot, the upper
right quadrant represents greater than median expression for a transcription factor and significant over-representation of the respective binding
motif (P,0.05) for (A) all commonly bound MYCN/MeCP2 sites and (B) commonly bound MYCN/MeCP2 sites only at hypermethylated promoter
regions. (C) and (D) illustrate potential protein interactions for the transcription factors whose motifs were over-represented (from A and B,
respectively) based on available evidence from the String database. The thickness of the edges between the nodes represents the confidence of the
interaction. The MYCN/MeCP2 interaction identified in this report is shown as a dashed red line.
doi:10.1371/journal.pone.0021436.g006
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acetylation [43], as reconstituted acetylated chromatin has

increased flexibility following temperature change, and is more

accessible to DNase digestion [44]. MYC family members have

been shown regulate histone acetylation through the recruitment

of HATs such as TIP60 [45] and GCN5 [46] at a number of

genetic loci. Additionally, a study by Cotterman et al. revealed that

over 90% of the identified genomic euchromatic marks,

acetylation of histone H3K9 and trimethylation of H3K4, were

dependent upon MYCN expression [21].

The MYC family of transcription factors have been previously

associated with specific DNA binding sequence motifs known as E-

boxes. We have previously shown a preference of certain E-box

motifs (CATGTG, CATTTG, CATCTG and CAACTG) in the

MYCN amplified state. An E-box analysis of hypermethylated

regions which were MeCP2 positive and MYCN positive, revealed

enrichment for both CATGTG and CACCTG motifs. Interest-

ingly, the classic E-box motif CACGTG was highly enriched (4.3

fold) where MeCP2 was bound to hypermethylated regions in the

absence of MYCN. This is consistent with the report by Perini et

al [47] that MYCN does not bind to methylated CACGTG E-

boxes. In addition, the enrichment of the CACGTG motif at these

MeCP2 sites would suggest a potential interaction with a basic

helix-loop-helix protein such as c-MYC, a hypothesis that requires

further testing. Previously, Westermann et al. [48] reported an

anti-correlation between MYCN and c-MYC expression, although

both transcription factors had a redundant core set of direct

MYCN/c-MYC target genes in neuroblastoma cells.

In conclusion, our results indicate that MYCN and MeCP2

protein interact and co-localize to similar genomic sites at very

high frequency. Overall, genes with MYCN and MeCP2 bound

promoters have a median expression that is intermediate between

genes that are uniquely bound by either MYCN or MeCP2. Our

results also support the concept that MeCP2 has a repressive effect

on transcriptional activity, except when it is interacting with

MYCN and potentially other transcriptional activators. Currently,

it is not known if this interaction contributes towards neuroblas-

toma disease pathogenesis or represents an important and normal

process occurring in the development of the neural crest. Further

studies are warranted to address these questions, particularly since

the interaction of these two proteins occurs at the promoters of

several genes that are important for the development of

neuroblastoma, including ALK, AURKA, and BDNF.

Materials and Methods

Cell Culture
Kelly cells were obtained from the European Collection of

Animal Cell Cultures (Porton Down, United Kingdom) and were

cultured in RPMI-1640 supplemented with 2 mM glutamine, 10%

fetal bovine serum and penicillin/streptomycin. The Kelly

neuroblastic cell line, derived from the metastatic tissue of a female

neuroblastoma patient, contains an amplification of the MYCN

oncogene and expresses elevated levels of MYCN mRNA and

protein [49]. A detailed DNA copy number profile of this cell line

has been previously reported [50].In order to obtain sufficient

material for ChIP-chip, large scale cultures were grown using

hyperflask cell culture vessels (Corning Life Sciences, Corning, NY).

Small scale cultures were maintained in T-75 culture flasks for

qPCR, microarray expression analysis, co-immunoprecipitation

and Western blot experiments.

Chromatin Immunoprecipitation to Microarrays
ChiP-chip analysis was performed as previously described by

Murphy et al. [9]. Briefly, protein-DNA interactions were

preserved by cross-linking cells by incubation with a 1%

formaldehyde solution for 10 min at room temperature. After

nuclear isolation, the chromatin was sonicated to generate

fragments of approximately one kilobase in length. Chromatin

immunoprecipitations were performed using 10 mg of rabbit

polyclonal anti-MeCP2 antibody (Abcam, Cambridge, UK)

complexed with M-280 Sheep anti-Rabbit Dynabeads and a

DynaMagTM magnetic particle concentrator (Invitrogen, Carls-

bad, CA). Purified ChIP and input DNA was differentially labeled

with Cy5 and Cy3 random primers, respectively (TriLink

BioTechnologies, San Diego, CA) and co-hybridized to the

HG18 two-Array Promoter set and a custom designed array

manufactured by Roche NimbleGen. The promoter arrays

included an average coverage of 4.7 kb around promoters, with

a median probe spacing of 102 bp for all RefSeq genes, UCSC

known genes and the Mammalian Gene Collection. The custom

array was designed to include tiled sequence of 50-kb 59 and 20-kb

39 of 528 miRNAs. Scanning was performed using the Axon

4000B microarray scanner with GenePix 6.0 (Molecular Devices,

Sunnyvale, CA). Image analysis and peak detection was performed

using the Nimblescan Version 2.4 software and visualized using

Signalmap Version 1.9. Enriched sites were identified using the

normalized log2 ratios and the NimbleScan peak finding function.

An in-built peak analysis algorithm detected significantly enriched

regions that had at least 4 probes above a threshold value of log

2.0. These enriched regions were then identified as ‘‘peaks’’ and a

false discovery rate (FDR) score was assigned. Enriched sites with a

false discovery rate (FDR) of less than 0.1, which were shared

across duplicate ChIP reactions were filtered using an in-house

Java application and selected for further analysis. Raw log2 ratio

data for array experiments are available at www.ebi.ac.uk/

arrayexpress (Accession E-MTAB-621).

Methylated DNA Immunoprecipitation to Microarrays
The protocol used was as previously described by Weber et al.

[51] with adaptations [23]. Briefly, 5 mg of isolated DNA was

sonicated to 400–800 bp in length. The sonicated DNA (4 mg) was

incubated overnight with 10 mg of anti-59 methyl-cytidine

antibody (Eurogentec, Seraing, Belgium) to immunoprecipitate

methylated sequences. SYBR green qPCR analysis was performed

prior to microarray hybridization in order to confirm enrichment

of methylated sequences (Figure S7). The methylated H19 locus

was used as the control and fold enrichment of this locus was

determined relative to the unmethylated H3B locus [52]. Input

control and MeDIP DNA samples were labeled using Cy3 and

Cy5 random primers, (TriLink BioTechnologies, San Diego, CA)

respectively, and co-hybridized to a custom miRNA array and to

the HG18 two-Array promoter set from Roche NimbleGen.

Arrays were scanned using the GenePix 4000B scanner and

analyzed using the Nimblescan software Version 2.4. Normalized

log2 ratio data was calculated and a one-sided Kolmogorov-

Smirnov (KS) test using a sliding window of 750 bp was used to

determine whether the probes were drawn from a significantly

more positive distribution of intensity log-ratios than those on the

rest of the microarray. Each probe was assigned a –log10 p-value

from the windowed KS test and hypermethylated sites of

enrichment were detected by searching for at least two probes

with a minimum –log10 p-value of two. Peaks within 500 bp of

each other were merged and SignalMap version 1.9 was used to

visual the resulting data files.

Gene Expression
Total RNA was extracted from Kelly cells using the RNeasy

Mini Kit (Qiagen, Valencia, CA) and the complete removal of
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DNA was ensured via an on-column digestion of DNA using the

RNase-free DNase set (Qiagen, Valencia, CA). The integrity of the

RNA was confirmed using the Experion RNA StdSens Analysis

Kit (Bio-Rad, Hercules, CA). Using the Superscript Double-

Stranded cDNA Synthesis Kit from Invitrogen (Invitrogen,
Carlsbad, CA), 10 mg of total RNA was used to synthesize

double-stranded cDNA. The Cy3 fluorophore (Amersham Biosci-

ences, Amersham, UK) was used to label the cDNA and 4 mg of

this labeled cDNA was hybridized to the homo sapiens 4672 K

Gene Expression Array (Roche NimbleGen, Madison, WI). Arrays

were scanned using GenePix 6.0 software on the Axon 4000B

microarray scanner. Data analysis was performed using the

expression robust multi-array module of Nimblescan Version

2.4. The raw data from the gene expression array experi-

ments are available at www.ebi.ac.uk/arrayexpress (Accession

E-MEXP-3121).

SYBR Green Q-PCR Analysis
Regions of enrichment identified from duplicate ChIP-chip

experiments were validated by SYBR green Q-PCR analysis.

Designed PCR primers mapping to the enriched regions were

manufactured by MWG (Table S2). Negative control primers

mapping to un-enriched genomic regions were also designed. Q-

PCR analysis was performed in duplicate on enriched DNA from

anti-MeCP2 immunoprecipitations and un-enriched DNA from

immunoprecipitations performed using normal rabbit IgG. The

comparative Ct method was used to determine the relative level of

enrichment (RQ) for each of the target regions.

RT-PCR Validation (Taqman Probes)
Taqman gene expression assays for CDC7 (Hs00177487_m1),

CDC25A (Hs00947994_m1), MeCP2 (Hs00172845_m1), MYCN

(Hs00232074_m1), c-MYC (Hs00153408_m1), TP53 (Hs99999

147_a1), TERT (Hs99999022_m1) and b-Actin (HS99999903_m1)

were obtained from Applied Biosystems and were used to validate

the gene expression array results. Analysis was performed using

the 7900HT Fast Realtime System (Applied Biosystems, Foster

City, CA). The results of the gene expression array were correlated

with the Ct values of gene expression probes using Spearman’s

rank correlation coefficient.

Co-Immunnoprecipitation Analysis
Co-immunoprecipitations were performed using a modified

version of the Universal Magnetic Co-IP Kit protocol (Active-

Motif, Carlsbad CA). Briefly, 56106 Kelly cells were harvested

from a T75 cell culture flask and nuclei were isolated by re-

suspending the cells in a complete hypotonic buffer for 15 min on

ice. After the addition of detergent, the cells were centrifuged at

14,000 x g in a pre-chilled microcentrifuge and the nuclear fraction

was retained. The nuclei were enzymatically sheared by

incubation at 37uC for 10 min after re-suspension in complete

digestion buffer containing an enzymatic shearing cocktail. The

reactions were stopped with the addition of 0.5 M EDTA and,

after centrifugation, the supernatant containing the digested nuclei

was retained. The nuclear extract (500 mg) was incubated with

5 mg of rabbit polyclonal MeCP2 antibody (Abcam, Cambridge,

UK) or 5 mg of normal rabbit IgG (Santa Cruz Biotechnology,

Santa Cruz, CA) on a rotating platform for 4 h at 4uC. Protein G

magnetic beads were added to the reactions and the incubation

was continued using the same conditions for a further hour. After

incubation, the protein beads were precipitated using a magnet

and after washing, the protein complexes were eluted by re-

suspending the beads in 20 ml of Laemmli buffer and incubating

the samples at 100u for three minutes. Each sample (10 ml) was

loaded onto a 10% SDS-PAGE gel and resolved by electrophor-

esis.The protein was transferred to a nitrocellulose membrane

which was then blocked overnight at 4uC with a 5% solution of

BSA. Blots were probed with a 1 in 500 dilution of B8.4.B (Santa

Cruz Biotechnology, Santa Cruz, CA) antibody, followed by a 1 in

500 dilution of Clean-Blot IP Detection Reagent (HRP) (Thermo

Scientific, Waltham, MA).

Ingenuity Pathway Analysis
Lists of genes which were identified as bound uniquely by, or in

combination with, MYCN and MeCP2 using an in-house Java

based software program. These lists were then imported into

Ingenuity Pathway Analysis (IPA) version 8.8 (http://www.

ingenuity.com). To identify the top functions of lists bound by

MYCN and MeCP2, the biological functional analysis was

performed on all datasets separately. The results of this analysis

were compared across datasets, using Fisher’s Exact test, biological

functions were deemed to be significant if P,0.05.

Transcription Factor Binding Site Analysis
DNA sequence data for the processed ChIP regions for each

cell line were retrieved from the UCSC database. Phylogeneti-

cally conserved sequence between Human (HG18) and Mouse

was selected for motif analysis. The occurrence of DNA binding

motifs was assessed in relation to their background frequencies

within the sequence tiled on the promoter array. Significance for

over- or under-representation was assessed using P-values based

on Chi-square test. Transcription factor motif enrichment was

assessed by examining occurrence of 482 transcription factor

binding motifs (from 358 transcription factors), represented by

their position-weight-matrices (PWM), in the conserved DNA

sequences from the various peak datasets. We then calculated

over-representation of each motif compared to our promoter

array background and generated a significance value from the

Chi-squared test. The String database was used to retrieve

information on known and predicted proteins interactions

(http://string-db.org) [53]. This information is based on several

types of evidence retrieved from areas such as direct experimental

and text mining.

Supporting Information

Figure S1 Pair-wise comparisons of log2 ratios from replicate

ChIP-chip experiments from the Kelly cell line hybridised to the

promoter two-array set (A & B) and the custom tiled array (C).

Correlation scores above R = 0.85 were observed between

replicate experiments confirming that the experiments reproduc-

ibly detected MeCP2 binding sites. (D) SYBR Green qPCR

validation of positive MeCP2 binding sites. Fold enrichment of

positive MeCP2 target sites is displayed. Experiments were carried

out in duplicate using the standard delta delta Ct method. Results

are plotted relative to a region negative to MeCP2 Binding (H3B)

which is set to 1.

(TIF)

Figure S2 Identification of MeCP2 binding within the promoter

regions of previously published target genes (A) SST, (B) GPRIN1,

(C) MEF2C (D) SGK (E) SNRPN and (F) BDNF. The base pair

position of the promoters is indicated by the scale across the top of

the panels. The fluorescent intensity of the probes across replicates

is expressed as log2 ratios and is represented as the tracks with

green bars. Statistically significant MeCP2 binding sites are

represented as red bars. The position of the genes and the tiled

region on the array are indicated by the two lower tracks.

(TIF)
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Figure S3 Pie charts representing the percentage of MeCP2 sites

which are unique to the MeCP2 dataset and which overlap sites

enriched for MYCN binding and regions of hypermethylation.

(TIF)

Figure S4 Gene expression validation of nimblegens 4-plex 72K

arrays. Taqman gene expression probes were selected for CDC7,

CDC25A, MeCP2, MYCN, MYC, P53, TERT and b-Actin. The Ct

values for these probes were correlated with the expression values

obtained for each of these genes on the array platform using

Spearman’s Rank Correlation Test. (Spearman’s r = 0.95,

p = 0.0011)

(TIF)

Figure S5 Co-localization of MYCN and MeCP2 at the

promoters of neuroblastoma relevant genes. (A) promoter region

of ALK (B) promoter region of BDNF (C) promoter region of

AURKA. Data from replicate MYCN and MeCP2 ChIP-chip

experiments is presented. Red bars represented regions with

statistically significant over-representation of the respective

proteins.

(TIF)

Figure S6 Assessment of motif enrichment at unique and

commonly bound MYCN and MeCP2 sites in intergenic regions

identified from the miRNA custom tiling array data set. Here we

illustrate the frequency, relative to background, of the various

classes of canonical E-boxes (CANNTG) in non-methylated

intergenic sites bound by MYCN alone (a), MeCP2 alone (c)

and both MYCN and MeCP2 (b); and methylated intergenic sites

bound by MYCN alone (d), MeCP2 alone (f) and both MYCN and

MeCP2(e). We also include the putative MeCP2 binding motif

proposed by Klose et al (37). Motifs with 1.5-fold change over

background and P,0.05 are highlighted.

(TIF)

Figure S7 qPCR showing enrichment of the imprinted H19

gene promoter relative to the non-methylated H3B promoter

following MeDIP from Kelly cells.

(TIF)

Table S1 Comparison of MeCP2 ChIP-chip results with Yasuai

et al 2008.

(XLSX)

Table S2 PCR Primers.

(XLSX)
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