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Abstract

Background: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus
understanding how resistance impacts on the parasite’s fitness and pathogenicity may aid in malaria control strategy.

Methodology/Principal Findings: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an
inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for
proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling
the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of
drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%62.9, 7 dpi) relative to the wild-type (45.6%68.4),
translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by
light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation.

Conclusions/Significance: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug
pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA
resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that
unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical
stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer
therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of
pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be
pharmacologically modulated, the parasite’s apoptotic machinery may be exploited as a novel drug target in malaria and
other protozoan diseases of medical importance.
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Introduction

Malaria, caused by protozoan parasite of the genus Plasmodium is

the most widespread parasitic disease, with malaria endemic

regions encompassing approximately 40% of the global human

population. Traditionally, four Plasmodia species cause human

malaria, P. falciparum, P. vivax, P. ovale and P. malariae, but recently

the primate parasite P. knowlesi was established as the fifth

causative agent [1]. The global malaria situation is being

exacerbated by the fact that P. falciparum, which causes about

90% of all global malaria cases, has rendered most of the classical

antimalarials ineffective. More worrying are recent reports from

Southeast Asia region, specifically near the Thai-Cambodia

border indicating that resistance to the artemisinin-based combi-

nation therapies (ACTs), the only fully effective class of

antimalarial drugs against falciparum malaria, is imminent [2].

Whereas the rising incidence in malaria morbidity and mortality is

largely associated with drug failure following resistance, it is also

possible that resistance induces an alteration of the intrinsic

parasite traits that may influence parasite fitness (growth and

multiplication) and virulence (harm to the host following infection),

thus impacting on malaria mortality and morbidity [3,4]. Drug

pressure, the force that mainly drives antimalarial drug resistance

through a population is a function of antimalarial drug use [5,6].

While exposure of parasites to sub-curative drug doses facilitate

the evolution of ‘classical drug resistance’ (point mutations,

overexpression of target proteins), it can also engender genetical-

ly-encoded parasite traits that could influence parasite survival in a

drug environment [7].

There are very few reports on how development of resistance in

field populations of malaria parasites impacts on parasite fitness,

and indeed studies on the fitness of drug-resistance genes of
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malaria parasites are in their rudimentary stage [8]. Therefore,

parasite fitness and virulence owing to antimalarial drug resistance

should be investigated since understanding how resistance in the

field influences parasite fitness and pathogenicity can have a

bearing on development of effective malaria control strategies.

Unfortunately, this is extremely difficult to establish in the field

especially in malaria endemic regions due to various confounding

factors such as multiple clonal infections derived from separate

infective bites [9]. We thus used a rodent model of malaria to

generate resistance by exposing an isogenic strain of Plasmodium

berghei to sub-therapeutic levels of the antifolates pyrimethamine

(PYR) and 5-fluoroorotate (FOA) over several passages in mice.

PYR inhibits dihydrofolate reductase (DHFR), thus depriving the

parasite of essential folate cofactors. FOA is metabolized through

the action of orotate phosphoribosyltransferase into 5-fluoro-

orotidine 59-monophosphate (5F-OMP), which in turn is convert-

ed into 5-fluoro-uridylate (5F-UMP) aided by orotidylate decar-

boxylase. 5F-UMP is further activated into 5-fluoro-29-deoxyur-

idylate, known to be a potent inactivator of thymidylate synthase

(TS), the obligate source of dTTP for DNA synthesis in malaria

parasites since unlike the host cell, the parasite cell is unable to

salvage preformed pyrimidines. Orotic acid is the only preformed

pyrimidine that is utilized by malaria parasite, inspiring the belief

that analogues of this substrate such as FOA can be toxic to the

parasite [10,11]. Whereas TS and DHFR in bacteria and

metazoans occur as separate entities, that of malaria parasites

and other protozoans occur as a TS-DHFR bipeptide coded off a

single gene [12]. The bifunctional protein catalyzes formation of

deoxythymidylate (dTMP) from deoxyuridylate (dUMP) in the

thymidylate cycle using methelenetetrahydrofolate as a methylat-

ing agent. The dihydrofolate produced in this reaction is in turn

reduced through DHFR catalysis to tetrahydrofolate [13].

Inactivation of TS is thus thought to be the primary mechanism

through which FOA toxicity is mediated in malarial parasites. It

has also been reported that an additional mechanism of FOA’s

toxicity may involve incorporation of fluorinated antimetabolites

in form of 5-fluorouridine 59-triphosphate (5F-UTP) into the RNA

of malarial parasites [10].

In the present study, we observed that not only could a FOA-

resistance line be readily generated, but also this resistance is stable

and imposes a considerable loss of fitness to the resistant line.

During growth in absence of drug, the FOA-resistant parasite line,

but not the wild-type showed an apoptosis-like death. This

observation is interesting since to the best of our knowledge, it is

the first report where resistance to a chemical stimulus and not the

stimulus itself is shown to induce apoptosis in a protozoan parasite.

For a long time, apoptosis has been thought to be a preserve of

metazoans, but mounting evidence within the last two decades

demonstrating that programmed cell death (PCD) is also a feature

of unicellular organisms is increasingly causing a paradigm shift on

traditional tenets of PCD [14]. In metazoans, apoptosis represents

a programmed form of cell death that plays a distinctive role in

tissue development and homeostasis in response to an internal

physiological disturbance [15]. However, apoptosis in unicellular

organisms is thought to represent an altruistic behavior where a

part of population which is less competent or non-viable is

eliminated for the successful survival and onward transmission of

the more competent organisms [16,17]. So far, PCD has been

described in diverse protozoan parasites including Leishmania [18],

Trypanasoma [19], Giardia [20], in the ciliated protozoan Tetrahymena

thermophila [21], Entamoeba histolytica [22], Blastocystis hominis [23]

and Plasmodia [24–26]. PCD has also been reported in bacteria

[27], in yeast [28], in the slime mould Dictyostelium discoideum [29],

the dinoflagellate Peridinium gatunense [30], and in the euglenoid

Euglena gracilis [31]. We report that irrespective of FOA-resistance

mechanisms, the net biochemical effect in the aberrant parasite

was depleted dTTP levels and its subsequent thymineless death

through apoptosis.

Materials and Methods

Drugs, parasites and hosts, and ethics
Respective concentrations of 5-fluoroorotic acid hydrate (FOA)

(SigmaH, USA) and pyrimethamine (PYR) (SigmaH, USA) were

constituted by first solubilizing the compounds in dimethyl

sulfoxide (final concentration ,0.2%) and then dissolving in

distilled water. The solutions were stored at 4uC until use.

Plasmodium berghei (strain NK65), a rodent malaria parasite was

used for all the studies. The parasite, maintained in a frozen state

(280uC) at the Parasite Bank of the Department of Infectious

Diseases, Hamamatsu University School of Medicine was

inoculated intraperitoneally (ip) into a male outbred ICR mouse,

the donor mouse to the experimental mice. The day of infection

was denoted as day 0 post-infection (pi), and all experiments were

done using this revived parasite to ensure isogenicity of the

parasite. Five days after parasite inoculation (at day 5 pi), its

parasitaemia was assessed microscopically (Olympus BX50F4,

Olympus Optical Co., LTD., Japan) at 10006 magnification by

examining Giemsa-stained thin tail-vein blood smears, and its

erythrocyte density was determined using a haemocytometer (F-

520, Sysmex Corporation, Japan). The mouse was later sedated,

bled via cardiac puncture and blood collected in heparinized

tubes. The parasitaemia was adjusted downwards using physio-

logical saline and each of the experimental male ICR mouse, 7-

week old weighing about 30 g (Japan SLC Inc., Hamamatsu,

Japan) was inoculated ip with approximately 16105 parasitisized

erythrocytes in volumes of 0.2 ml [32]. The inoculated mice were

randomized into appropriate groups, housed in cages and

maintained in the animal facility on a commercial diet and water,

ad libitum. This work was fully approved by the Institute of

Experimental Animals, Hamamatsu University School of Medi-

cine (Approval Number: 2007087), in which facility the rodent

models of this study were maintained and all animal experiments

conducted, in accordance to the Institute’s Guide for the Care and Use

of Laboratory Animals. All mice that were either cured or were

deemed to have completed their intended use were euthanased in

the course of experiments.

Exerting drug selection pressure to generate resistance
The ‘2% Relapse Technique’ (2% RT) of Peters and Robinson

[33] was employed to exert drug selection pressure against P.

berghei NK65 in mice, aiming to generate resistance. In this

technique, a single dose of the test drug is administered to a group

of mice immediately after infection, while a second group is

infected but not treated to serve as a control. The drug dose is pre-

determined such that it causes a delay time of between 5 and 7

days for the treated group to reach a 2% parasitaemia level,

relative to the untreated controls. This delay time is termed as the

‘2% delay time’ (2% DT). The progress of infection is monitored

daily and a new passage followed by immediate treatment is done

on reaching the 2% DT. The acquisition of resistance is assessed

by progressive reduction in 2% DT [33,34]. In our study, 15 mice

infected with P. berghei NK65 parasite (16105) were divided into

three equal groups. The first two groups received oral doses (po) of

40 mg/kg bw. FOA and 30 mg/kg bw. PYR immediately after

infection, while the third group served as the untreated control.

We had earlier experimentally determined that these drug doses

could cause a 2% DT of at least 5 days relative to the untreated
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controls. On attaining the 2% DT, the process of passaging and

treatment was iterated over several generations while monitoring

reduction in 2% DT.

In vivo antimalarial assays to confirm resistance and its
stability

Drug sensitivity studies can help determine the level of

resistance of a generated ‘resistant line’ [33,34]. To confirm

resistance, the drug-exposed and the wild-type parasites were serial

passaged in the absence of drug, and in vivo drug sensitivity studies

undertaken at selected passages. For serial passaging, 6 mice per

group were inoculated with respective parasites (16105) at day 0 pi

and the parasitaemias of mice determined at day 7 pi, with one

mouse per group serving as the parasite donor for subsequent

passaging. Drug sensitivity studies were done at passages 2, 5, 10

and 12, where mice (in groups of 5) infected with respective

parasites were treated po twice a day for three consecutive days

starting from day 4 pi with either 6.67 mg/kg body weight (bw)

FOA (40 mg/kg cumulative dose) or 5 mg/kg bw PYR (30 mg/kg

cumulative dose). For each drug, at least two independent

experiments were conducted. Drug efficacy was measured by

percentage (%) parasitaemia suppression on day 7 pi after

observation of Giemsa-stained thin blood smears under micro-

scope, relative to the untreated controls; mice survival rate (%) and

longevity relative to the untreated controls; and drug curative

effect to mice (%). Mice that showed parasites on day 4 pi, but

were aparasitaemic on subsequent days post-treatment up to day

60 pi were considered cured [35]. Percentage (%) parasitaemia

suppression for the drugs was calculated as: 1002[(mean

parasitaemia treated/mean parasitaemia control)6100] [36].

Resistance cost of fitness
Growth and multiplication of a parasite can be used as a

measure of its fitness, and since the parasites of this study are all

isogenic (all were derived from the same wild-type) differing only

on their drug responses, their growth rates was used as a measure

of fitness [7,37,38]. Parasites growth rate between days 4 and 7 pi

in the course of serial passaging in the absence of drug was used to

assess the parasites proliferation rates for the FOA- and PYR-

exposed parasites relative to their wild-type counterpart, and thus

their fitness. The percentage loss of fitness of the mutant parasites

relative to the wild-type was expressed as: 1002[(mean parasit-

aemia mutant/mean parasitaemia wild-type)6100]. For compar-

ison of mean parasitaemias at different time points, parametric

tests (two-tailed Student’s t-test, one-way ANOVA) and non-

parametric tests (Mann-Whitney, Kruskal-Wallis) were done using

Microsoft ExcelH 2004 and SPSS Statistics 17.0, respectively, with

P,0.05 being considered significant.

Morphological assessment of apoptosis through light
and transmission electron microscopy

The morphologies of parasites previously subjected to selective

drug pressure in mice were compared with that of the wild-type

during their growth in the absence of drug through examination of

Giemsa-stained thin tail-vein blood smears made at days 4 and 7

pi under light microscope. Giemsa-stained images were captured

with a Live View Digital SLR Olympus E-620 camera (OlympusH
Imaging Corp., Japan). The methods of Totino et al. [39] and

Massimine et al. [40] were adapted for thin-section transmission

electron microscopy (TEM), albeit with minor variations. The

morphology of the FOA-resistant and the wild-type parasites were

compared during passaging in the absence of drug. At day 7 pi,

blood was collected in heparinized tubes as earlier described and

used immediately for TEM studies. Parasitized erythrocytes were

washed in phosphate buffered saline (PBS) and fixed with 2.0%

glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) for 1 h

at 4uC, washed three times in the same buffer and fixed with 1%

osmium tetroxide in 0.1 M cacodylate buffer for 1 h at room

temperature. The cells were then washed in buffer, dehydrated in

graded ethanol, and embedded in Epon. Ultrathin sections (50 to

60 nm thick) were cut using a Reichert ultramicrotome OmU3,

collected on copper grids, double-stained with 2% aqueous uranyl

acetate and lead citrate and observed in a JEM-1220 (JEOL Ltd.,

Japan) transmission electron microscope under 80 kV.

Extraction of genomic DNA for oligonucleosomal DNA
fragmentation analysis by polyacrylamide gel
electrophoresis

Genomic DNA was extracted using the methods described

previously [24,41], albeit with some variations. In brief, blood was

collected into heparinized tubes from mice infected with FOA-

resistant or wild-type parasites at day 7 pi. Onto centrifuge tubes

containing 4 ml Ficoll gradient solution (Ficoll-paqueTM PLUS),

2 ml of blood was gently layered at the top without mixing, and

centrifuged at 1500 rpm for 30 min to separate erythrocytes from

leukocytes, plasma and other constituents. The supernatant was

aspirated and the pellets containing the red blood cells (RBCs)

were washed with 16PBS and centrifuged at 1800 rpm for 5 min,

followed by aspiration of the supernatant. The pellets were

aliquoted into eppendorf tubes, and RBC lysis buffer (0.15 M

NH4Cl, 7 mM KHCO3, 1 mM EDTA) added in double volumes

of the RBCs, thoroughly mixed and left to stand at room

temperature for 10 min. The tubes were centrifuged at 8000 rpm

for 5 min, and the supernatant discarded. The process of RBC

lysis was repeated twice to ensure complete lysis. The pellets were

suspended in 200 ml of cell lysis buffer (50 mM Tris pH 8.0,

20 mM EDTA, 1% SDS, and 0.1 M NaCl) to lyse their

membranes, after which 20 ml of proteinase K (500 units/ml)

and 10 ml RNase A (1 mg/ml) were added followed by incubation

at 60uC in a thermomixer (at 300 rpm) for .1 h and cooled down

at room temperature. An equal volume of phenol (in TE:10 mM

Tris pH 8.0/1 mM EDTA, pH 8.0) was added to the tubes,

gently mixed for 30 min and centrifuged at 15000 rpm for

15 min. The supernatant (nucleic acids) was transferred into clean

eppendorf tubes and two new rounds of phenol protein extraction

undertaken. The supernatant was again put into new eppendorf

tubes and an equal volume of chloroform added, gently mixed for

5 min and centrifuged at 15000 rpm for 5 min. The supernatant

was transferred into new tubes, 1/10 volumes of 3 M sodium

acetate (pH 5.2) and 2.5 volumes of 99% ethanol were added to

precipitate the DNA, and centrifuged at 15000 rpm for 5 min and

ethanol aspirated. The DNA was washed with 70% ethanol,

centrifuged again at 15000 rpm for 5 min and ethanol aspirated.

The DNA was solubilized in 100 ml TE buffer and 2 ml RNase A

added, followed by incubation at 37uC for 1 h in a thermomixer.

The concentration of the DNA solution was determined by

measurement of its absorbance at 260 nm by spectrophotometer.

Total DNA (3 m) was mixed with 106BlueJuice gel loading buffer

and tracking dye and loaded onto 8% polyacrylamide gel and

electrophoresed in 16 TBE (Tris/Borate/EDTA) buffer for

between 1 and 1.5 h at constant voltage of 120 V (maximum

current 4 mA). The gel was then stained with ethidium bromide

(1 mg/ml in water) for 30 min, rinsed with water and illuminated

with ultraviolet light for examination and photography. Two

independent experiments were conducted for nucleosomal DNA

fragmentation analysis.
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Results

FOA-resistance is readily generated in 100 asexual cycles
Figure 1 shows 2% DT of parasites subjected to FOA (40 mg/

kg) and PYR (30 mg/kg) pressure in mice over successive serial

passages, expressed as a percentage of 2% DT for passage-1. In 15

serial passages that lasted 92 days in presence of FOA, the 2% DT

decreased by 50% from 8 days to 4, the time it took the wild-type

parasite to achieve 2% parasitaemia in the absence of drug. The

asexual blood stage cycle of P. berghei takes 22 to 24 h [42], and

therefore FOA-resistance was generated in 92–100 parasite

asexual cycles. However, parasites subjected to PYR over 12

serial passages (93 days, 93–101 asexual cycles) showed no change

in 2% DT, which remained constant at 8 days.

In vivo antimalarial assays confirmed that FOA-resistance
was acquired, and that FOA-resistance is stable

After subjecting parasites to selective drug pressure, another

round of serial passaging in mice was initiated this time in the

absence of the drug. FOA-exposed parasites were serially passaged

for 12 generations that lasted over 72 days (72–79 cycles), while

PYR-exposed and wild-type parasite lines were passaged for 10

generations. At passages 2, 5, 10 and 12, respective parasites lines

were subjected to in vivo drug sensitivity studies with cumulative

doses of 40 mg/kg FOA and 30 mg/kg PYR, administered po

over 3 days from day 4 pi. Figure 2 shows the drug sensitivity

patterns for FOA-exposed parasites at passages 2, 5, 10 and 12.

Most of the untreated control mice infected with FOA-exposed,

PYR-exposed and wild-type parasite lines died by day 10 pi with

increasing parasitaemias. However, PYR-treated mice infected

with either the PYR-exposed or wild-type parasites showed similar

parasitaemia patterns at passages 2, 5 and 10, where no parasites

could be observed under the microscope at days 7 and 10 pi, with

recrudescent parasites appearing at day 14 pi (data not shown).

The parasitaemia pattern for PYR-exposed parasite line mirrored

that of the wild-type parasite (Figure 2). The observation that

PYR-exposed line assumed the patterns of its wild-type counter-

part is congruent with its unaltered 2% DT, confirming lack of

resistance. On the other hand, mice infected with FOA-exposed

parasite line and treated with FOA showed similar parasitaemia

patterns (P.0.05) at passages 2, 5, 10 and 12, in which only a

slight non-significant (P.0.05) decline in parasitaemia at day 7 pi

was observed relative to day 4 pi, followed by gradual increase in

parasitaemia. Comparison of parasitaemias at days 4 (before start

of FOA treatment), 7, 10 and 14 pi across the four drug assays

showed no statistical difference (P.0.05). This data is consistent

with change in 2% DT for FOA-exposed parasite line and

confirms that FOA-resistance was acquired, and that the resistance

was stable. The stability of FOA resistance phenotype after a

period of dormancy was also investigated. FOA-resistant parasites

cryopreserved (280uC) immediately after generation of resistance

and stored for .1 year was revived in mice and assessed for

resistance stability using in vivo antimalarial assays as described

earlier. Parasitaemia patterns obtained after po treatment of mice

infected with 105 parasites with a cumulative dose of 40 mg/kg

FOA over three days assumed the parasiatemia patterns of FOA-

resistant line shown in Figure 2, indicating that resistance was not

lost with dormancy (data not shown).

FOA-resistance imposes a fitness cost to the parasite
Comparison of parasitaemias at days 4 and 7 pi among the

three parasites lines (FOA-resistant, PYR-exposed and wild-type)

grown in mice over 10–12 passages in the absence of drug

(Figure 3) revealed that altered intrinsic parasite properties influence its

Figure 1. Generation of resistance using ‘2%-Relapse Technique’ (2% RT). In 12 serial passages lasting a total of 93 days, pyrimethamine-
exposed parasite maintained a 2% DT of 8/9 days. In 15 serial passages, 5-Fluoroorotate parasite line (92 days) reduced its 2% DT from 8 days to 4,
equalling the 2% DT for the wild-type parasite.
doi:10.1371/journal.pone.0021251.g001
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biological fitness. Across the three parasites lines, there was no

difference in parasitaemias at day 4 pi for each passage (P.0.05).

However, at day 7 pi, there were clear and distinct patterns for

each parasite line. The FOA-resistant line showed significantly low

(P,0.05) growth rates over the 12 passages (mean parasitaemia

15.5%62.9) relative to the wild-type parasite (45.6%68.4). These

differences in parasitaemias translate into a three-fold faster

growth rate for the wild-type parasite, and an overall resistance

cost of fitness of 66.0% for the FOA-resistant line. Interestingly, for

the first three serial passages, the PYR-exposed parasite line had

significantly higher parasitaemias than the wild-type parasite

(P,0.05). Its mean parasitaemia of 59.7%66.5 at passage-2 was

approximately double that of the wild type (32.867.0%),

indicating a two-fold faster growth rate than the latter. At passage

4 (after 26 days, 26 asexual cycles) the parasitaemia descended to

the levels of the wild type, and maintained a similar (P.0.05)

growth pattern for the subsequent passages. This implies that

although a PYR-resistant phenotype could not be realized, the

sustained PYR pressure had either altered the parasite genotyp-

ically or the parasite had acquired other intrinsic traits so as to

cope with the new environment of drug pressure. Longevity of

survival can also be used as an indicator of the harm a given

parasite line imposes on the host. It was observed that mouse

infected with the FOA-resistant parasite had slightly longer

survival (12.063.5 days) which was statistically significant relative

to the wild-type (P, 0.001) and PYR-exposed lines (P, 0.005) with

survival of 8.960.7 and 9.360.8 days, respectively.

Light and transmission electron microscopy reveals
that resistance induces an apoptosis-like death in
FOA-resistant parasite

The morphologies of FOA-resistant and the wild-type parasites

grown in the absence of drug in the course of serial passaging in

mice were compared by light microscopic observation of thin

blood smears. The FOA-resistant line showed abnormal parasites,

the ‘crisis forms’ with decreased cytoplasmic volume and cell

shrinkage, assumed to be parasites committed to death process.

Other forms appeared as condensed bodies with darkly stained

chromatin dots, assumed to be due to chromatin condensation, the

classical morphological hallmark of apoptosis. As depicted in

Figure 4 (A and B), the aberrant FOA-resistant parasite forms were

observed in both the early and late phases of serial passaging. In

contrast, the wild-type parasites showed normal ellipsoidal

morphologies with normal chromatin dots and full cytoplasm

(Figure 4C). To further confirm the apoptosis-like phenomenon

observed in light microscopy, we conducted an ultrastructural

Figure 2. Parasitaemia patterns of mice infected with FOA-resistant parasite and orally treated with FOA. The mice were treated twice
daily for 3 days with FOA (40 mg/kg cumulative dose) at passages 2, 5, 10 and 12. Note that the patterns mirror each other, confirming that the
acquired FOA-resistance is stable. The discontinuous curve indicates that following FOA administration to mice infected with the wild-type parasite,
no parasites could be observed under the microscope until day 14 p.i when recrudescent parasites were observed.
doi:10.1371/journal.pone.0021251.g002
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examination of the wild-type and FOA-resistant parasite lines

through TEM. During the early stage of parasite development (the

ring forms and early trophozoites), there were no overt

morphological differences between the wild-type and the FOA-

resistant parasites that could set them apart. However, from

mature to late trophozoites leading to schizonts, the FOA-resistant

parasites showed pronounced structural differences from the wild-

type line (Figure 5, A & B). The wild-type parasite retained its

ultrastructural integrity with the nucleus, mitochondrion, digestive

food vacuole and intraparasitic vacuoles showing well-defined

morphologies. Furthermore, various membranes including the

nuclear membrane and the parasitophorous vacuolar membrane

fused with parasite plasma membrane appeared intact (Figure 5B).

Figure 5A shows a markedly electron-lucent FOA-resistant

parasite at late schizont stage, with electron-dense segmenters

which appear to be non-viable. This TEM observation is

consistent with the light microscopy (Figure 4A) where trophozo-

ites and schizonts appear to be condensed.

Resistance to FOA induces internucleosomal DNA
fragmentation

DNA fragmentation was investigated using the genomic DNA

extracted from FOA-resistant and wild-type parasites grown in the

absence of drug. The DNA was subjected to polyacrylamide gel

electrophoresis, which gives higher resolution for small molecules.

In two independent experiments (Figure 6, A & B), we observed

laddering patterns with the FOA-resistant but not the wild-type

parasite, serving as clear evidence that apoptosis was a feature of

FOA-resistant parasites since internucleosomal degradation of

DNA is the biochemical hallmark of apoptosis. The sharpest DNA

band was observed at <200 bp.

Discussion

The impact of resistance on parasite fitness and disease severity

(virulence) is a poorly understood phenomenon, much less the

drug-specificity of these effects and thus warrants empirical

investigations. To further knowledge on these aspects, we

subjected a rodent malaria parasite to selective drug pressure

using FOA and PYR, two antimetabolites that have specific targets

and well-defined biochemical sequelae resulting from inhibition of

their target enzymes. FOA-resistance was not only readily

generated in <100 asexual cycles of exposure to FOA, but also

it was stable (maintained over sequential blood-stage passages) as

revealed by drug sensitivity studies (Figure 1 and 2). The stability

was further confirmed by the observation that long periods of

dormancy exceeding one year did not result in loss of resistance

(data not shown). FOA is reported to be metabolized to toxic 5-

fluoro-29-deoxyuridylate which is a strong inhibitor of TS, an

essential enzyme for the de novo synthesis of thymidylate and

subsequently DNA synthesis. Since TS is the rate-limiting enzyme

in the de novo pyrimidine biosynthesis, it serves as an excellent drug

target [43]. FOA was previously reported to have potent in vitro

antiplasmodial activity against P. falciparum, and to be curative in in

vivo rodent models of malaria [44,45].

Figure 3. Comparison of growth patterns in the absence of drug for wild-type, FOA-resistant and PYR-exposed parasites. The
parasiatemias were assessed at days 4 and 7 post infection (pi) in the course of serial passaging the respective parasite lines in mice for up to 12 serial
passages in the absence of drug. The mean parasiatemias for the three parasite lines were not different (P.0.05) at day 4 p.i. At day 7 p.i, the wild-
type parasite had 3 times faster growth rate than the FOA-resistant parasite. The PYR-exposed line showed .1.5-fold faster growth rates for the first
three generations than the wild-type (P,0.05, day 7 p.i). However, at passage 4 (26 asexual cycles) the parasitaemia descended, and maintained a
similar (P.0.05) growth pattern as that of the wild-type. Note that passage-2 is the first represented passage in the chart since the first passage
(passage-1) is excluded since it served as a revival passage of the parasite in the donor mice.
doi:10.1371/journal.pone.0021251.g003
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Possible mechanisms via which FOA-resistance could be

mediated include qualitative and/or quantitative aspects of the

drug target through mutation, deletion or amplification. Other

factors that limit the quantitative or temporal aspects of interaction

between the drug and its target such as limitation of intracellular

accumulation of the drug may also play a role in resistance [46]. In

the absence of drugs or substrates, the TS of the mammalian cells

binds to specific regions of its cognate mRNA prompting a direct

feedback inhibition of TS mRNA translation [47]. It has been

reported that similar translational control mechanism occurs in

Plasmodia where TS-DHFR specifically blocks its own synthesis by

binding to TS-DHFR mRNA [48]. It can therefore be expected

that an aberrant TS is unable to bind to its cognate mRNA leading

to overexpression of the TS enzyme, thus conferring resistance. If

that were the case in FOA resistance, it would be expected that

resistance due to overexpression of the TS domain of the TS-

DHFR would also result in cross-resistance to antifolate drugs that

target DHFR such as PYR, since DHFR domain would be

overexpressed too. However in our study, the FOA-resistant

parasite was equally susceptible to PYR (30 mg/kg) as the wild-

type parasite (data not shown), and therefore resistance due to

amplification of the ts-dhfr gene was ruled out. This is consistent

with the fact that gene amplification of ts-dhfr gene has not been

demonstrated in field isolates, and appears to play no role in

clinical resistance [49–52]. In one-step in vitro selection protocol,

Rathod et al. [53] were able to rapidly generate strong and

genetically stable FOA-resistance (in 25 days) of up to 400-fold

against P. falciparum. Also congruent with our study is the

observation that FOA-resistance did not result in cross-resistance

to the antifolate PYR. Events occurring upstream of TS like

altered activation of FOA to 5-fluoro-orotidylate or altered means

of transport of the drug may also contribute to FOA resistance.

However, transport of FOA into the parasite cell is via

tubovesicular membrane (TVM), which also transports a broad

range of amino acid and nucleosides [54–56]. Thus, resistance

through altered TVM would severely deprive the parasite of

essential nutrients, thus hindering it growth and ability to complete

normal cycle, a situation not observed in our study. In the light of

the fact that FOA’s primary target is the parasites TS [10], and

that resistance to ‘single target’ antimalarial drugs such as PYR

and atovaquone has consistently been shown to be mediated via

point mutations on the genes of their target proteins

[49,50,52,57,58], FOA resistance conferred by mutations is

therefore plausible. Unlike FOA, PYR pressure over a similar

period of time (<100 asexual cycles) did not yield PYR resistance,

as confirmed by drug sensitivity studies. This reinforces the already

known fact that the rate of drug resistance, even for drugs with

similar mode of action (both FOA and PYR are single-target

drugs) is drug-specific.

When both FOA- and PYR-exposed parasite lines were

subjected to several serial passages in the absence of the drug, it

was observed that the effect of drug-exposure impacted their

growth and multiplication capacities differently (Figure 3). The

wild-type parasites showed a 3-fold faster growth rates than the

FOA-resistant line over 12 serial passages, which translated to

about 66% resistance cost of fitness. Interestingly, although the

PYR-exposed line did not acquire the resistance phenotype, it

showed a two-fold faster growth rate than the wild-type parasite

during the first three serial passages, later assuming the latter’s

growth pattern which it retained for the subsequent serial passages.

This implies that although the PYR-exposed line did not acquire

the resistance phenotype and remained susceptible to PYR, either

it was genotypically altered through mutations or had acquired

other traits to enable it surmount the effects of drug pressure [7].

Resistance to antifolates is due to consecutive accumulation of

point mutations on their target enzymes, mutations which act

synergistically leading to drug failure [49]. In the case of PYR, the

ser108asn mutation is established as the first step to PYR

resistance, and initial mutations may not lead to quantifiable

resistance. It is thus possible that due to PYR pressure, the PYR-

exposed parasite acquired only the initial point mutations in its

journey to become resistant.

Studies from a variety of pathogens including different species of

bacteria, Toxoplasma gondii, and viruses indicate that mutations

associated with drug resistance confer a fitness cost, and there

seems to exist a general consensus that mutant forms of an

organism are likely to be less fit than their wild-type strains in the

absence of selection [59–68]. Whether or not drug-resistant

mutants will survive in the absence of the drug is of clinical

relevance because if the parasites harboring resistance genes are

less fit than their wild-type counterparts, they would be expected

to diminish in numbers relative to the sensitive forms in the

absence of drug pressure. In such a scenario, the drug that

generated the resistance could later be reintroduced for clinical

use. Both field and laboratory reports regarding fitness costs of

resistance in malaria parasites are controversial and ambivalent,

although available data are largely skewed towards loss of fitness of

the resistant mutants relative to the wild-type forms [69–84]. It has

been reported that following CQ withdrawal in Malawi in 1993

after pervasive failure rate of up to 80%, prevalence of CQ-

resistant pfcrt genotypes decreased from 85% (1992) to 13% (2000)

[71]. These findings were corroborated by Mita et al. [72] who

later established that this was due to expansion of the wild-type

pfcrt allele in P. falciparum populations in absence of CQ pressure,

rather than a back mutation of K76T to K76 [73]. Similar results

have been reported from some areas of Southeast Asia including

Hainan region of China, Thailand, and Vietnam following

cessation of use CQ or SP [74–76,79–81]. Hayward et al. [70]

Figure 4. The photomicrographs of FOA-resistant and wild-type parasites during serial passaging in the absence of drug. A and B
show FOA-resistant parasite at passages 2 and 12 respectively, with dark/condensed chromatin dot & cell shrinkage characterized by small and more
dense cytosol (red arrowheads), confirming that the death phenomenon was a persistent feature of the FOA-resistant parasite line. The wild-type
parasite (C) shows the typical ellipsoidal morphology and full cytoplasm.
doi:10.1371/journal.pone.0021251.g004
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reported that in the absence of selective drug pressure, mutant P.

falciparum strains harboring CQ-resistance pfmdr1 alleles incurred a

25% fitness cost during the intraerythrocytic stage of growth.

Light microscopic examination of FOA-resistant and the wild-

type parasites during serial passaging in the absence of drug

revealed that the former had shrinking parasites with cytoplasm

appearing condensed (more dense) (Figure 4, A and B) while the

latter retained full ellipsoidal shape and normal cytoplasm

(Figure 4C). It is noteworthy that FOA-resistant parasites

consistently showed this morphology through the 12 serial

passages undertaken. This observation was rendered further

credence through TEM, where ultrastructures of both the wild-

type and the FOA-resistant parasites were overtly different

(Figure 5, A and B). The FOA-resistant parasite showed electron

dense segmenters and merozoites possibly due to condensation of

cytoplasm and compaction of nuclear chromatin, but within an

intact plasmalemma (Figure 5A). In contrast, the wild-type parasite

showed normal intracytoplasmic structures with well-defined

membranes (Figure 5B). These observations are consistent with

morphological characteristics of apoptosis. The hallmark bio-

chemical feature of apoptosis is endonuclease-mediated DNA

fragmentation, where DNA is initially cleaved into 300 kbp

fragments and/or 50 kbp fragments [85,86]. This is commonly

(but not always) followed by further cleavage of DNA into

Figure 5. Electron micrographs of FOA-resistant and wild-type parasites grown in mice in the absence of drug. In (B), the trophozoite
of the wild-type parasite shows normal ultrastructural morphology with various compartments and organelles well defined by membranes that have
retained their integrity. In (A), late schizont of FOA-resistant parasite is seen with intact plasmalemma housing non-viable segmenters/merozoites
that appear as electron dense bodies probably due to compaction of nuclear chromatin and condensation of cytoplasm. (C) is an immuno-gold
electron micrograph adapted from Bhowmick et al. [114] showing a similar ‘syncytial’ cell from P. falciparum with viable merozoites. Note the distinct
nucleus of segmenters. Abbreviations: CN, condensed segmenter; E, erythrocyte; FV, food vacuole; IPV, intraparasitic vacuole; M, mitochodria; N,
nucleus; NM, nuclear membrane; PM, plasma membrane; PV, parasitophorous vacuole; PVM, parasitophorous vacuolar membrane; VL, vacuolization.
doi:10.1371/journal.pone.0021251.g005
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oligonucleosomal-sized fragments due to double stranded cleavage

of DNA at linker regions between nucleosomes, forming fragments

of 180–200 bp and multimers thereof [15,87]. In two different

experiments, we observed cleaved DNA with a characteristic sharp

band at <200 bp (Figure 6, A and B). Morphologic characteristics

of cells undergoing apoptosis include cytoplasmic condensation,

cell-shrinkage, nuclear condensation, DNA fragmentation and

vacuolization, and preserved plasma membrane integrity with

decreasing permeability [88,14,23]. In the late stages of apoptotic

process, the dying cells fragment into smaller pieces known as

apoptotic bodies, which are rapidly phagocytosed before mem-

brane alterations can occur, and are subsequently degraded within

lysosomes [15,89].

How is apoptosis mediated in the FOA-resistant parasite cell?

TS has been exploited in cancer chemotherapy, and is a target of

fluoropyrimidines, as well as folate-based inhibitors including

TomudexH, PemetrexedH and NolatrexedH (Thymitaq) [44,90–

92]. The inhibition of TS results directly in depletion of dTMP

and thus dTTP, an essential precursor for DNA leading to an

accumulation of dUMP and thus dUTP. The dearth of dTTP in

the cell leads to misincorporation of dUTP into DNA during DNA

replication, prompting a DNA repair process involving dUTP

excision by uracil-DNA glycosylase that leads to DNA damage

and cell death, a phenomenon termed as thymineless cell death

[44,93,94]. Thus, the imbalance in dTTP/dUTP and DNA

damage can result in induction of downstream events leading to

apoptosis [90,95]. It is therefore plausible that a defective TS in

FOA resistant mutants elicits similar sequelae to ones caused by

chemical inhibition of the TS, leading to parasite death via

apoptosis.

HL-60 cells represent an accepted classical model for apoptosis

and thus using HL-60 as a standard [89,96], it was estimated that

the level of apoptosis observed in FOA-resistant parasites to be

,10%, apparently a low level of parasite death to adequately

account for observed huge fitness cost of 66%. However, the early

cellular events in apoptosis are accomplished quickly, with only a

few minutes elapsing between onset of the process and the

formation of a cluster of apoptotic bodies. The subsequent

digestion of the phagocytosed apoptotic bodies is also rapid and

completed in less than an hour that even when there is a large-

scale PCD, only few dead cells can be observed [85,97–99]. Thus,

it has been argued that due to rapidity of apoptotic events in vivo,

relatively small fraction of apoptotic cells observed represents a

considerable cumulative cell death [15,100,101]. Moreover, the

development of blood stages of P. berghei in rodent models is

asynchronous, and since nucleic acids syntheses in malaria parasite

largely occurs at the trophozoite stage, it can only be expected that

parasite cells will show varying degree of apoptosis depending on

their phase of growth [11,102–106]. Finally, it is possible that since

the asexual stage parasite largely resides in the erythrocyte with

which it has close interactions (eg. through TVM networks), the

death of a ‘housed’ parasite could spawn rapid eryptosis [107–109]

thus making it difficult to quantify apoptosis in blood stage

parasites.

To date, not more than three studies have demonstrated that

asexual stages of P. falciparum cultures undergo chemically induced

apoptosis. Picot et al. [24] were the first to demonstrate plasmodial

apoptosis after observing oligonucleosomal DNA fragmentation in

CQ-sensitive (3D7) P. falciparum cultures exposed to CQ. This was

corroborated by Deponte and Becker [110], and later by Meslin

and co-workers [25] who reported that P. falciparum cultures

exposed to various chemicals had typical features of apoptosis

including internucleosomal fragmentation and disruption of

mitochondrial membrane potential. It has also been reported that

sexual stages of malaria parasite also undergo apoptosis during

sporogonic development in the mosquito vector as a means of

regulating parasite density. Al-Olayan et al. [26] observed that

during development in the Anopheles stephansi midgut, P. berghei

exhibited features of typical apoptosis found in metazoans

including chromatin condensation, DNA fragmentation and

externalization of phosphotidylserine to the outer lamellae of the

cell membrane. Interestingly, all the apoptotic features were

replicated in vitro, an indication that apoptosis plays a pivotal role

in controlling sporogony [26]. In the present study, we

demonstrate for the first time that in vivo, blood stage asexual

forms of malaria parasites can undergo drug resistance-induced

Figure 6. Resistance induces internucleosomal DNA fragmentation in FOA-resistant parasite grown in mice without drug.
Polyacrylamide gel electrophoretic fraction of DNA was done in two independent experiments, A and B. In A, lanes 1 represent DNA extracted from
the wild-type parasite that shows no cleavage, while lanes 2 represent cleaved DNA of FOA-resistant parasite, with the main band at <200 bp. Similar
results are represented in B, where the wild-type shows no cleaved DNA (lanes 1), while FOA-resistant parasite shows cleaved DNA and a clear band
at <200 bp (lanes 2). Lane M is the molecular size marker (pSG5/Hinf I and wX174/HincII for A, and pSG5/Hinf I for B).
doi:10.1371/journal.pone.0021251.g006
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apoptosis. Although unicellular eukaryotes lack caspases—the

executioners of apoptosis in metazoans—there is now mounting

evidence that members of cysteine peptidases clan CD may be

functionally homologous to metazoan caspases and could be

involved in a less regulated form of apoptosis in single-celled

eukaryotes [111]. Genes encoding two cysteine proteases, the

metacaspase-like proteins, PF14_0363 and PF13_0289 were

identified from the Plasmodium genome database although their

function in mediating apoptosis remains to be characterized

[25,112].

It is apparent that protozoan parasites have evolved effectors

and regulators of PCD different from that of multicellular

organisms, suggesting that the process of cell suicide in unicellular

organisms may be harnessed as a therapeutic strategy to selectively

activate PCD in the parasites [16]. Apoptotic machinery can be

stimulated or inhibited using either internal or external stimuli

including drugs. Therefore, a greater understanding of the effector

and regulatory mechanisms of PCD in malaria and other

protozoan parasites should be pursued to aid in rational design

and development of novel selective therapeutics targeted to the

specific biomolecules of the parasite. Encouragingly, this has a

precedent in cancer therapy, since anticancer agents are known to

mediate their activity through apoptosis [113]. To the best of our

knowledge, this is the first in vivo report to show that resistance to a

chemical (drug) other than the drug itself can induce apoptosis in

malaria parasite. Today, there is no reliable system to reproducibly

study PCD in malaria. We thus offer FOA-resistant parasite as a

biological tool to help validate and understand the molecular basis

underlying apoptosis not only in malaria parasites, but also in

other protozoan parasites of medical importance. Several

anticancer agents target TS and mechanism of resistance to TS

antimetabolites as well as the subsequent biochemical sequelae

may be similar to that of FOA-resistant malaria parasites. If this

can be demonstrated to be true, then our findings have potential to

be exploited in cancer therapy where apoptosis of TS inhibitor-

resistant tumour cells can be optimized by chemotherapeutically

targeting pyrimidine salvage enzymes such as thymidine kinase,

thus providing a synergistic impact. We conclude that since

apoptosis is a process that can be pharmacologically regulated, the

malaria parasite’s apoptotic machinery may itself be exploited as a

novel drug target and/or could aid in identifying new targets for

therapeutic intervention.
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