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Abstract

The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for
antimalarials due to this parasite’s dependence on glycolysis for energy production. Because the LDH enzymes found in P.
vivax, P. malariae and P. ovale (pLDH) all exhibit ,90% identity to PfLDH, it would be desirable to have new anti-pLDH
drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present
work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P.
falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor
to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH
active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to
NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P.
falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays
performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC50 values for each drug in
both tests were similar, were lowest for posaconazole (,5 mM) and were 40- and 100-fold less active than chloroquine. The
compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least
active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for
discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds
that require studies on human toxicology, since these compounds are already commercially available and thus approved for
human use.
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Introduction

Malaria is the most lethal parasitic disease in the world,

annually affecting approximately 500 million people and resulting

in 800,000 deaths, mostly in African sub-Saharan countries [1].

Brazil registered 306,000 cases of malaria in 2009, most of which

were in the Amazonian region, as diagnosed and treated by

Ministry of Health officers [2], [3]. Transmission occurs through

the bite of Anopheles mosquitoes infected with the parasite and five

different species may affect humans. Plasmodium falciparum is the

most pathogenic species and may cause severe malaria and death

in untreated nonimmune individuals, especially children under

five [4].

The antimalarial treatment recommended for P. falciparum

consists of drug combinations containing artemisinin derivatives

(ACT) with other antimalarials, including quinoline compounds,

such as amodiaquine and mefloquine. The quinolines act mainly

by inhibiting hematin polymerization, thus intoxicating the

parasite with the ferriprotoporphyrinic groups generated by

hemoglobin degradation [5]. Other antimalarials used in ACT,

for example, pyrimethamine and proguanil, inhibit the tetrahy-

drofolic acid cycle and thus eliminate an important cofactor for

DNA synthesis. Despite the arsenal of drugs available for malaria

treatment, the disease remains a worldwide public health problem.

P. falciparum quickly develops resistance under selective drug

pressure [5]. P. vivax, the most prevalent human parasite

worldwide, has been shown to be resistant to chloroquine,

including in Brazil [3]. Continuous efforts on the development

of new antimalarials are required, and our primary method has

been to use different approaches, such as testing natural products

and synthetic molecules, as reviewed [6], [7].

Drug-resistant malaria parasites are believed to emerge through

mutations in the active sites of drug targets [5] or from

biochemical changes in the drug receptors [8]. The continued

search for new molecular targets for drug design should broaden

the therapeutic arsenal and strategies to fight drug resistance in
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human malaria. The lactate dehydrogenase enzyme from P.

falciparum (PfLDH) has been considered as a potential molecular

drug target. Although the primary mechanism of action of

quinoline drugs is by inhibition of heme polymerization [9], other

molecular targets have been reported as being important for the

improvement of their biological effectiveness against P. falciparum.

Chloroquine interacts specifically with PfLDH in the NADH

binding pocket, occupying a position similar to that of the adenyl

ring cofactor and hence acting as a competitive inhibitor for this

critical glycolytic enzyme [9], [10], [11], [12].

The LDH enzyme catalyzes the interconversion of pyruvate to

lactate in the final step of glycolysis, which is required for energy

production in living cells. Ferriprotoporphyrin IX (hematin), one

of the products of hemoglobin degradation by malarial parasites,

intoxicates the parasite by competing with NADH for the active

site of PfLDH; parasite survival depends on polymerization of

hematin to hemozoin, which remains active in the food vacuole of

the parasite and causes parasite death [9]. The quinoline

derivatives are believed to form complexes with the dimeric

hematin, preventing the formation of hemozoin [11].

Analogs of NADH have been identified as new potential

inhibitors to PfLDH in DrugBank [13]. In previous docking

studies, Molegro Virtual Docker software (MVD)H yielded higher

docking accuracy than other docking programs; the accuracies

were: MVD, 87%; Glide, 82%; Surflex, 75%; and FlexX, 58%

[14]. A total of 50 compounds were selected based on their

interactions with an active site similar to that of NADH; the three

(itraconazole, atorvastatin and posaconazole) compounds that

presented the best theoretical results were tested in vitro against P.

falciparum blood parasites and against malaria in mice.

Results

Docking studies
The results of docking studies using the MolDock Scores

observed for NADH and the 50 compounds chosen from the

DrugBank [13] are summarized in Table 1. The superposition of

NADH, as observed in the cavity of the crystallographic structure

of PfLDH, and the best conformation obtained theoretically for

itraconazole are shown in Figure 1. This result suggests that the

software reproduced the appropriate conformation of NADH

inside its binding pocket in the PfLDH active site.

The compounds atorvastatin and posaconazole also fitted well

in the NADH pocket (data not shown), showing the best docking

energy values, that is, closest to NADH (which has a docking

energy of 2249.6 kcal?mol21). These three compounds were

selected for further in vitro tests because they are commercially

available for human use as well.

The active site residues that interact with NADH, itraconazole,

atorvastatin and posaconazole inside PfLDH are shown in Table 2,

and the H-bonds between each compound and the PfLDH active

site are shown in Figures 2 and 3. The H-bond energy values were

21.9 kcal?mol21, 25.0 kcal?mol21 and 26.5 kcal?mol21 for

atorvastatin, itraconazole and posaconazole, respectively, and

are all higher than that observed for NADH, which is able to make

more H-bonds in the binding pocket than the studied compounds.

Activity of itraconazole, atorvastatin and posaconazole
against P. falciparum

The in vitro tests against chloroquine-resistant P. falciparum clone

W2 showed that itraconazole, atorvastatin and posaconazole were

active. In two different immunoenzymatic assays (ELISA) with

monoclonals anti-PfLDH or anti-HRP2, the three compounds

inhibited parasite growth at low doses. Posaconazole was the most

Figure 1. Superposition of the best conformation of itracon-
azole (in yellow) and NADH (in red) in the active site pocket of
P. falciparum enzyme lactate dehydrogenase (Pf LDH).
doi:10.1371/journal.pone.0021237.g001

Table 1. MolDock Scores observed for NADH and the 50
compounds chosen from the DrugBank [13].

Drugs
MolDock Score
(kcal.mol21) Drugs

MolDock Score
(kcal.mol21)

NADH 2249.6 Cefotaxime 2143.2

Itraconazole 2218.5 Valaciclovin 2142.4

Atorvastatin 2209.3 AMP 2136.5

Posaconazole 2201.6 Cephapirin 2136.5

Rescinnamine 2201.0 Cefuroxime 2135.2

Cefpiramide 2195.0 Cefalotin 2132.9

Eprosartan 2177.0 Abacavir 2130.4

Cefditoren 2177.2 Entecavir 2130.4

Ergotamine 2175.0 Capecitabine 2129.1

Cefmenoxime 2173.3 Topotecan 2128.6

Dicloxacilin 2165.0 Tenoxican 2123.9

Novobiocin 2162.5 Genifloxacin 2120.6

Ceftriaxone 2157.4 Cefdinir 2117.2

Cefamandole 2154.9 Moxifloxacin 2116.4

Ceftazidine 2156.8 Clorafabine 2114.8

ATP 2155.2 Adenosine 2113.6

Cefamandole 2154.9 Zidovudine 2111.7

Dasatinib 2154.5 Nelarabine 2111.3

Droperidol 2152.3 Cladribine 2111.0

Cefixime 2151.0 Pentostanine 2110.7

S-Adenozylmetionine 2150.7 Vidarabine 2110.6

Paliperidol 2150.4 Trifluridine 2102.2

Rysperidone 2146.9 Zalcitabine 294.4

Cefmetazole 2146.9 Gemcitabine 292.1

Bethamidine 2144.3 Floxuridine 291.4

doi:10.1371/journal.pone.0021237.t001

Antimalarial Activity of Inhibitors for PfLDH
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active compound. Moreover, in one of the four experiments, the

IC50 was 2.6 mM in the ELISA anti-PfLDH; the average of IC50

from the experiments is shown in Table 3, corroborating our

computer analysis and docking calculations (Table 1).

Antimalarial tests in mice with malaria due to P. berghei
The compounds active in vitro were next tested in mice infected

with P. berghei. Due to limitations in the availability of the purified

compounds, they were first tested at doses of 20 mg/kg. All

compounds inhibited parasite growth, especially atorvastatin and

posaconazole, which reduced parasitemia by 41% and 46%,

respectively, compared to untreated group (Table 4). Further tests

confirmed the activity of atorvastatin (data not shown) and

posaconazole. For the latter, a commercially available oral

suspension of posaconazole, formulated for human use (NoxafilH)

was acquired at a pharmacy in the USA and tested at 50 and

100 mg/kg. It reduced parasitemia in the treated mice by 45%

and 71%, respectively, as compared to untreated controls

(Table 4).

However, itraconazole reduced parasitemia by only 30%

whereas, as expected, chloroquine cured the animals at 20 mg/

kg. By day 30, the last day of the trial, all chloroquine-treated mice

were still alive and had negative blood smears for malaria

parasites. Thus, this antimalarial is significantly more active than

the tested drugs.

Discussion

Although PfLDH is not a direct chloroquine target, experimental

data have shown that this enzyme binds to chloroquine [10], [12].

Based on this information, we studied 50 commercially available

compounds as candidates to PfLDH inhibitors. The compounds

that presented the closest binding energy values to NADH, which

we considered to be the best results, were itraconazole, atorvastatin

and posaconazole. In our software simulation, these compounds

also interacted with the residues present in the PfLDH active site,

suggesting a competitive inhibition with NADH. The selected

compounds also presented strong stability inside the PfLDH active

site; thus, they could also dock in the NADH binding pocket of

PfLDH. This theoretical hypothesis proved correct in light of our

experimental data from in vitro assays performed with P. falciparum.

Indeed, the selected compounds, itraconazole, atorvastatin and

posaconazole, were all active in vitro. The results with two different

tests were similar: one used monoclonals specific to a P. falciparum

parasite protein (HRP2) and the other used monoclonals against the

PfLHD enzyme.

Posaconazole, an inhibitor of ergosterol biosynthesis [15], was

the most active compound against P. falciparum; it also was the most

effective compound against murine malaria caused by P. berghei.

Because posaconazole was the most promising compound in vitro

and in vivo in the present antimalarial study, we conducted a

second test using higher doses of the compound, this time in the

Table 2. Docking results for atorvastatin, posaconazole and itraconazole inside PfLDH.

Drugs
MolDock Score
(kcal.mol21)

Hbond Score
(kcal.mol21)

Number of
H-Bonds

Residues of the NADH binding
site interacting with the ligands

NADH 2249.6 229.3 22 Asn140, His195, Val138, Phe100, Gly99, Thr97,
Gly32, Ile31, Met30, Gly29, Asp53, Ile54, Tyr85

Atorvastatin 2209.3 21.9 6 Asp53, Thr97, Gly32, Ile31, Gly99

Itraconazole 2218.5 25.0 5 Asn140, Gly29, Tyr85

Posaconazole 2201.6 26.5 8 Gly99, Gly29, Met30, Ile31, Asn140, Ser 245, Glu122

doi:10.1371/journal.pone.0021237.t002

Figure 2. H-Bonds (in green) observed for NADH and atorvastatin (in yellow) with the active site residues of Pf LDH.
doi:10.1371/journal.pone.0021237.g002

Antimalarial Activity of Inhibitors for PfLDH
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form of a commercially available (USA) oral suspension for human

use and confirmed its activity in mice. We hope to use this drug in

subsequent human malaria trials. In other models, the in vivo

activity of posaconazole depends on the interleukins IFN-c and IL-

12, such as in the case of Trypanosoma cruzi infections in mice [16].

Posaconazole has been considered a candidate for clinical trials in

human Chagas disease caused by this hemoprotozoan parasite

[15].

Itraconazole, acquired in tablet form and purified for the tests

described herein, also caused a strong inhibition of P. falciparum

growth in vitro; however, it was only partially active against P.

berghei malaria in mice. The fact that the animals were not treated

with the same pharmaceutical form (pellets) available for human

use may explain its failure. Alternatively, it may have not been

absorbed, may have been inactivated in the animal digestive tract

or used in an insufficient dose. These possibilities should be further

explored.

Atorvastatin, despite being over 100-fold less active than

chloroquine in vitro, appears to be an attractive compound for

the development of new antimalarials because its mechanism of

action involves PfLDH. In a recent work, atorvastatin activity was

tested in combination with quinine and had a synergistic activity,

enhancing antimalarial effects [17]. In addition, as recently shown,

atorvastatin was able to reverse the binding of P. falciparum infected

human erythrocytes (cytoadherence) to endothelial cells in vitro

[18]. This drug is likely to become a good candidate for the

treatment of severe malaria, specially if used together with other

antimalarials. However, the ideal drug combinations and doses for

human use are yet to be defined, either for ACT or with another

antimalarial.

Itraconazole, like posaconazole and atorvastatin, does not

require further testing for human toxicology and bioavailability

because it is already approved and available for human use

worldwide. Itraconazole is used against fungal infections and

atorvastatin is the main component of the medicine LipitorH,

which is widely used to reduce cholesterol levels. Whether they can

be useful for malaria treatment will depend on their possible

synergisms with other antimalarials because only drug combina-

tion therapy is recommended for the control of malaria to avoid

further selection for drug resistance. It would be desirable to

perform further tests with the three compounds, applying them in

different treatment routes and in ACT.

The Plasmodium lactate dehydrogenase (pLDH) enzymes found

in all four species of human malaria parasites have been cloned,

expressed and analyzed for structural and kinetic properties that

may be explored for drug development. The pLDH from the

species P. vivax, P. malariae and P. ovale exhibit 90–92% identity to

PfLDH. The catalytic residues and the cofactor sites are similar in

the pLDH from P. falciparum and P. malariae, and the pLDH from

P. vivax and P. ovale share one substitution. Homology modeling of

the pLDH from P. vivax, P. ovale and P. malariae using the crystal

structure of PfLDH as a template yielded similar structures [19].

Thus, it would be desirable to have new anti-pLDH drugs that

are effective against major species of human Plasmodium because

cases of chloroquine-resistant P. vivax have already been reported

[3], [20]. In addition, except for the catalytic residues (Arg171,

Arg109, and the dyad His195/Asp168), PfLDH has different

active sites and substrate specificity loop residues than the human

LDH isoforms (hLDH), reflecting a relative displacement of the

nicotinamide ring and a volume increase of the active site

compared with PfLDH; PfLDH displays kinetic differences with

hLDH, suggesting that PfLDH is a unique antimalarial target

[19].

Table 3. In vitro activity of atorvastatin, itraconazole,
posaconazole and chloroquine against P. falciparum as
evaluated through their 50% inhibitory concentration (IC50) in
immunoenzymatic assays (ELISA) performed with monoclonal
antibodies against a parasite protein (PfHRP2) or the enzyme
lactate dehydrogenase (PfLDH).

Drugs IC50 (mM) Mean ± SD in ELISA tests and CQ ratio*

Anti-Pf LDH
CQ activity
ratio** Anti-HRP2

CQ activity
ratio**

Atorvastatin 13.164.5 262 13.863.2 115

Itraconazole 9.360.8 186 9.261.6 77

Posaconazole 2.660.3 52 5.361.8 44

Chloroquine-CQ 0.0560 - 0.1260.09 -

*Average of 4 experiments.
**Ratio of chloroquine activity, significantly higher that of test compounds.
doi:10.1371/journal.pone.0021237.t003

Figure 3. H-bonds (in green) observed for Itraconazole and Posaconazole (in yellow) with the active site residues of Pf LDH.
doi:10.1371/journal.pone.0021237.g003

Antimalarial Activity of Inhibitors for PfLDH
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The study data suggest that the mechanism of parasite growth

inhibition by the different compounds results from drug

competition with NADH for the PfLDH and that different

methods used to measure drug activity against P. falciparum in vitro

were equally efficient. The activity of itraconazole, atorvastatin

and posaconazole, selected through docking studies and confirmed

in biological assays, indicates that docking is an appropriate

strategy for antimalarial discovery; furthermore, this technique is

likely to be less expensive that traditional screening methods,

especially because these compounds are commercially available

and approved for human use. The best association(s) between

these compounds and other antimalarials remains to be deter-

mined. Further improvements in the structures of the lead

compounds could include additional pharmacophoric groups that

can interact with more amino acids of the NADH pocket, leading

to new and more effective antimalarials. Dynamic studies of these

drugs binding with PfLDH using more accurate methods can be

used to evaluate the interactions between these drugs and the

enzyme.

Materials and Methods

Molecular docking
The 3D structures of the PfLDH complex with NADH and the

substrate oxamate were obtained from the Protein Data Bank

(PDB ID: 1LDG) [21]. For the docking studies, 50 compounds

from DrugBank [13], all structural analogs of NADH, were

selected using the search algorithm of the website and accessing

the NADH chart in DrugBank through the option ‘‘show similar

structures.’’ This option uses a locally developed simplified

molecular input line entry specification (SMILES) string compar-

ison method to identify related structures and perform structure

similarity searches. All structures are converted into SMILES

strings, and a substring-matching program (similar to BLAST) is

used to identify similar structures. The scoring scheme is based

simply on the number of character matches for the longest

matching substring [13]. The selected compounds were submitted

to docking studies using MVDH [14]. The candidates with the best

conformational and energetic results were selected for further

experimental tests. MVDH [14] was used to calculate the

interaction energies between ligands and macromolecular systems

from the 3D structures of the protein and ligands. The algorithm

used was the MolDock Score, an adaptation of the Differential

Evolution (DE) algorithm [14]; the MolDock Score energy, Escore,

is defined by Equation 1, where Einter is the ligand-protein

interaction energy and Eintra is the internal energy of the ligand.

Einter is calculated according to Equation 2.

Escore~EinterzEintra ð1Þ

Einter~
X

i~ligant

X

j~protein

½EPLP(rij)z332:0
qiqj

4r2
ij

� ð2Þ

The EPLP term is a ‘‘piecewise linear potential’’ [22] that uses

two different parameters, one for the approximation of the steric

term (van der Waals) between atoms and another for the potential

for hydrogen bonds; it describes the electrostatic interactions

between charged atoms [14]. Eintra is calculated according to

Equation 3.

Eintra~
X

i~ligant

X

j~protein

½EPLP(rij)�z

X

flexible bonds

A½1{cos(mh{ho)�zEclash

ð3Þ

The first term in Equation 3 calculates all the energies involving

pairs of atoms of the ligand, except those connected by two bonds.

The second term represents the torsional energy, where h is the

torsional angle of the bond. The average of the torsional energy

bond contributions is used if several torsions can be determined.

The last term, Eclash, assigns a penalty of 1,000 kcal?mol21 if the

distance between two heavy atoms (more than two bonds apart) is

smaller than 2.0 Å, ignoring infeasible ligand conformations [14].

Drug samples for pharmacological tests
Itraconazole [(2R,4S)-rel-1-(butan-2-yl)-4-{4-[4-(4-{[(2R,4S)-2-

(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-lmethyl)-1,3-dioxolan-

4-yl]methoxy}phenyl)piperazin-1-yl]phenyl}-4,5-dihydro-1H-1,

2,4-triazol-5-one], which is commercially available as a generic

>compound (SporanoxH, Janssen-Cilag) and is produced by

Brainfarma, was purified into the crystallized form as previously

described [23]. Atorvastatin [(3R,5R)-7-[2-(4-fluorophenyl)-3-

phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-pyrrol-1-yl]-3,

5-dihydroxyheptanoic acid] was provided by Farmanguinhos-

FIOCRUZ as a purified compound. Posaconazole [4-(4-(4-(4-

(((3r,5r)-5-(2,4-difluorophenyl)-5-(1,2,4-triazol-1-ylmethyl)oxolan-3-

yl)methoxy)phenyl)piperazin-1-yl)phenyl)-2-((2s,3s)-2-hydroxypentan-

3-yl)-1,2,4-triazol-3-one] was a kind gift from the Laboratory of

Molecular Parasitology-FIOCRUZ, Belo Horizonte/MG, Brazil,

where the compound has been studied against T. cruzi [16]. A second

sample was later acquired in a drug store in USA to repeat the tests as

Posaconazole oral suspension (NoxafilH) 200 mg/5 mL, Lot #
001R5H (Schering-Plough Research Institute, Kenilwort, New

Jersey, USA).

All test drugs were assayed against P. falciparum diluted in

dimethyl sulfoxide (DMSO 0.02% v/v) (Sigma-Aldrich, St. Louis,

MO, EUA) from a 10 mg/mL stock solution and further diluted

with RPMI 1640 (Sigma-Aldrich) supplemented with Hepes

Table 4. Inhibition of P. berghei growth in mice infected with
blood parasites that were then treated orally with
atorvastatin, itraconazole, posaconazole or and chloroquine
for three consecutive days in two independent experiments.

Drugs Dose (mg/kg) % Parasitemia Reduction*
Activity

Exp. 1 Exp.2**

Atorvastatin 20 41 40 Yes

Itraconazole 20 30 ND Partial

Posaconazole 20 46 ND Yes

50 ND 45 Yes

100 ND 71 Yes

Chloroquine 20 100 100 Yes

ND = not done.
*Reduction of parasitemia at day five of the experiment in relation to untreated
controls (n = 4 to 6 mice per group).
**In the second experiment, posaconazole was diluted from a commercial oral
suspension (NoxafilH).
Only the chloroquine-treated mice survived to day 30 post-inoculation; all the
other mice died, despite the suppression of parasitemia in relation to the
control mice.
doi:10.1371/journal.pone.0021237.t004

Antimalarial Activity of Inhibitors for PfLDH
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25 mM (Sigma-Aldrich), sodium bicarbonate 21 mM (Sigma-

Aldrich), glucose 11 mM (Sigma-Aldrich), glutamine 2% (Sigma-

Aldrich) and gentamicin 40 mg/mL (Schering-Plough, Kenilworth,

New Jersey, EUA). For each test well, the controls consisted of the

parasite in culture without drug addition or with chloroquine at

various concentrations.

Continuous cultures of P. falciparum
The chloroquine-resistant and mefloquine-sensitive P. falciparum

W2 clone [24] was maintained in continuous culture at 37uC in

human erythrocytes (A+) in Petri dishes (Corning, Santa Clara,

CA, USA) using the candle jar method [25] and grown in

complete medium (RPMI 1640 supplemented with 10% human

sera blood group A+), with daily medium changes. Parasite

samples were also stored frozen in liquid nitrogen.

Antimalarial tests in vitro against blood stages of P.
falciparum

The effect of the test drugs against P. falciparum was determined

from curves of inhibition of parasite growth in vitro as described

previously [26] with some modifications [27]. Before the tests, the

ring-stage parasites were concentrated in sorbitol-synchronized

blood [28] and the suspension of infected red blood cells (iRBC)

was adjusted for parasitemia and hematocrit following the

specifications for each test; parasites were then distributed

(180 mL/well) into a 96-well microtiter plate (Corning, Santa

Clara, CA, EUA). All compounds were tested in triplicate for each

dose in parallel with chloroquine, the standard antimalarial. The

antiplasmodial activity was then measured using: (i) an ELISA

anti-HRP2 test as previously described [29] and (ii) an ELISA

anti-PfLDH (double-site enzyme-linked lactate dehydrogenase assay) [30].

The effect of antimalarial drugs is initially characterized by the

inhibition of parasite growth in drug-exposed cultures in

comparison to a drug-free control culture. When performed using

serial drug dilutions, sigmoid dose-response curves are generated

and enable the determination of the 50% inhibitory concentration

(IC50).

ELISA anti-HRP2
The production of HRP2, a histidine- and alanine-rich protein,

by P. falciparum parasites was tested in vitro as described previously

[29]. Briefly, a suspension of iRBC with sorbitol-synchronized

parasites, was adjusted to 0.05% parasitemia and 1.5% hemato-

crit, placed in 96-well plates containing the test and control drugs

at various concentrations and incubated for 72 h under the culture

conditions described above. After 24 h, the contents of the six

control wells (parasites in drug-free medium) were harvested in

microtubes and frozen for later use to further exclude the

background value (i.e., the production of HRP2 during the first

24 h of incubation) by subtracting the average value obtained from

these wells from the wells with the test and control drugs. After

72 h of incubation, the plates were frozen and thawed twice to lyse

the erythrocytes.

To perform the test, a clean plate (Maxysorp, Nunc, Denmark)

was first coated with 100 mL of the primary antibody anti-HRP2

(MPFM ICLLAB-55AH, USA) at 1.0 mg/mL. Following overnight

incubation at 4uC, the monoclonal was discarded and replaced

with 200 mL/well of the blocking solution PBS-BSA 2%

(Phosphate Buffered Saline and Bovine Serum Albumin) (Sigma-

Aldrich). Following a new incubation at room temperature for 2 h,

the plate was washed three times with PBS/Tween20 at 0.05%

(PBS-T). Then, each pretreated well received 100 mL of P.

falciparum parasite culture (as described above), which was

prehemolyzed by freeze-thawing at 270uC. In each test, two

hemolyzed control sets of six wells each were used; one containing

the 24 h cultures (background), the other with the 72 h parasite

cultures. After incubation for 1 h at room temperature, the plate

was again washed three times with PBS-T, incubated with

100 mL/well of the secondary antibody (MPFG55P ICLLABH,

USA), diluted 1:5,000 times, and again incubated for 1 h at room

temperature. After three more washes with PBS-T, each well

received 100 mL of 3,39,5,59-Tetramethylbenzidine (TMB) chro-

mogen (KPL, Gaithersburg, MD, EUA) and was incubated for

10 min at room temperature in the dark; the reaction was stopped

with 50 mL/L of 1 M sulfuric acid and the absorbance was

immediately read at 450 nm in a spectrophotometer (Spectra-

Max340PC384, Molecular Devices).

ELISA anti-PfLDH
The anti-PfLDH test was performed as described previously

[30]. Briefly, cultures of P. falciparum were adjusted to 0.5%

parasitemia and 2% hematocrit, placed in 96-well plates with the

test drugs or control antimalarial drugs at different concentrations.

The plates were then incubated under the same culture conditions

as described above for 48 h, frozen and thawed thrice to lyse

erythrocytes.

To perform the anti-PfLDH test, a clean plate was first coated

with 100 mL/well of the primary antibody anti-PfLDH (17E4

Vista Diagnostics International LLCH, USA) at 1.0 mg/mL.

Following overnight incubation at 4uC, the monoclonal was then

discarded and replaced with 300 mL/well of the blocking solution

(PBS-BSA 1%); the plate was then incubated at room temperature

for 4 h and washed four times with PBS-T. The precoated plate

received 100 mL of the P. falciparum parasite cultures in each well

(as above), which was prehemolyzed by freeze-thawing and diluted

1:100 times in PBS/BSA 1%. For each test, two hemolyzed

control sets of six wells each were used, one containing the parasite

in cultures without drug addition and the other with uninfected

red blood cells (RBCs).

The plate containing the parasite lysate and the monoclonal was

again incubated for 1 h at room temperature, washed four times

with PBS-T and then incubated with 100 mL/well of the

secondary antibody (19g7, Vista Diagnostics International LLCH,

USA) diluted 1:5,000 times. After 1 h of incubation at room

temperature and four washes with PBS-T, each well received

100 mL of streptavidin-HRP conjugate (Sigma-Aldrich) diluted

1:1,000 and incubated for 30 min at room temperature. The plate

was washed four times with PBS-T and incubated with 100 ml/

well of TMB chromogen followed by 10 min of incubation at

room temperature in the dark. The reaction was stopped with

50 mL/L of 1 M sulfuric acid and the absorbance was immediately

read at 450 nm in a spectrophotometer (SpectraMax340PC384,

Molecular Devices).

Ethical committee approval for animal use
Methodological issues involving the use of laboratory animals in

this study were approved by the Ethics Committee for Animal

Use, the Oswaldo Cruz Foundation - Fiocruz (CEUA L-0046/08).

Antimalarial tests in mice infected with P. berghei
The antimalarial chemotherapy suppressive tests were per-

formed as previously described [31], with modifications [32]. The

P. berghei NK65 strain, a chloroquine-sensitive parasite, was stored

at 270uC and also maintained by weekly blood passages in

outbred Swiss mice. For the chemotherapy experiments, adult

female mice weighing 2062 g were inoculated intraperitoneally

with 16105 iRBC and kept together in a cage. Twenty-four hours
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after parasite inoculation, the mice were randomly distributed, six

mice per cage, and then orally treated with the test and control

compounds daily for three consecutive days. The drugs were

freshly diluted with water, DMSO 3% or RPMI and given orally

(200 mL per animal) at doses of 20–100 mg/kg. Posaconazole was

used at a dose of 20 mg/kg body weight in the first experiment

and at 50 and 100 mg/kg in the second experiment. Chloroquine-

treated and untreated control groups were included in each test.

Thin blood smears were taken starting at day five after parasite

inoculation, Giemsa stained and examined microscopically. Drug

activity was determined on the basis of the average parasitemia per

group of mice. The percent inhibition of parasite multiplication in

the treated groups was compared to the untreated controls and the

parasite inhibition growth was calculated based on the percent

parasitemia in the groups according to equation 4 [32].

Percent parasitemia~
PC{PTG

PC
x100 ð4Þ

Where: PC is the parasitemia in the control group and PTG is

the parasitemia in the test group. Drugs that reduced parasitemia

by 29–40% were considered partially active; a reduction of .40%

was considered active. Overall mortality was monitored daily until

day 30 post-infection in all groups.
Supplementary Material. A table with the energy values of

the main HBond interactions between residues of NADH binding

site and NADH, atorvastatin, itraconazole and posaconazole is

available as Table S1.
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Available at: http://portal.saude.gov.br/portal/saude/profissional/area.cfm?i-

d_area = 1526 Accessed: march/2011.
3. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, et al. (2010)

Malaria in Brazil: an overview. Malar J 9: 115.

4. W.H.O. (2009) Guidelines for the treatment of malaria, second edition. Available
at: http://whqlibdoc.who.int/publications/2010/9789241547925_eng.pdf

Accessed: november/2010.
5. Vennerstrom J, Nuzum E, Miller R, Dorn A, Gerena L, et al. (1999) 8-

Aminoquinolines active against blood stage Plasmodium falciparum in vitro

inhibit hematin polymerization. Antimicrob Agents Chemother 43: 598–602.
6. Krettli A (2009) Development of new antimalarials from medicinal Brazilian

plants extracts, synthetic molecules and drug combinations. Expert Opin Drug
Discov 4(2): 95–108.

7. Krettli AU, Adebayo JO, Krettli LG (2009) Testing of natural products and
synthetic molecules aiming at new antimalarials. Curr Drug Targets 10:

261–270.

8. Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and
resistance and prospects for new agents. Pharmacol Ther 79: 55–87.

9. Egan T, Ncokazi K (2005) Quinoline antimalarials decrease the rate of beta-
hematin formation. J Inorg Biochem 99: 1532–1539.

10. Read J, Wilkinson K, Tranter R, Sessions R, Brady R (1999) Chloroquine binds

in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase.
J Biol Chem 274: 10213–10218.

11. Ncokazi KK, Egan TJ (2005) A colorimetric high-throughput beta-hematin
inhibition screening assay for use in the search for antimalarial compounds. Anal

Biochem 338: 306–319.
12. Menting J, Tilley L, Deady L, Ng K, Simpson R, et al. (1997) The antimalarial

drug, chloroquine, interacts with lactate dehydrogenase from Plasmodium

falciparum. Mol Biochem Parasitol 88: 215–224.
13. Wishart D, Knox C, Guo A, Cheng D, Shrivastava S, et al. (2008) DrugBank: a

knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:
D901–906.

14. Thomsen R, Christensen M (2006) MolDock: a new technique for high-accuracy

molecular docking. J Med Chem 49: 3315–3321.
15. Urbina J (2009) Ergosterol biosynthesis and drug development for Chagas

disease. Mem Inst Oswaldo Cruz 104 Suppl 1: 311–318.
16. Ferraz M, Gazzinelli R, Alves R, Urbina J, Romanha A (2009) Absence of

CD4+ T lymphocytes, CD8+ T lymphocytes, or B lymphocytes has different
effects on the efficacy of posaconazole and benznidazole in treatment of

experimental acute Trypanosoma cruzi infection. Antimicrob Agents Che-

mother 53: 174–179.

17. Parquet V, Henry M, Wurtz N, Dormoi J, Briolant S, et al. (2010) Atorvastatin
as a potential anti-malarial drug: in vitro synergy in combinational therapy with

quinine against Plasmodium falciparum. Malar J 9: 139.

18. Taoufiq Z, Pino P, N’dilimabaka N, Arrouss I, Assi S, et al. (2011) Atorvastatin
prevents Plasmodium falciparum cytoadherence and endothelial damage.

Malar J 10: 52.
19. Brown WM, Yowell CA, Hoard A, Vander Jagt TA, Hunsaker LA, et al. (2004)

Comparative structural analysis and kinetic properties of lactate dehydrogenases

from the four species of human malarial parasites. Biochemistry 43: 6219–6229.
20. Yohannes AM, Teklehaimanot A, Bergqvist Y, Ringwald P (2011) Confirmed

vivax resistance to chloroquine and effectiveness of artemether-lumefantrine for
the treatment of vivax malaria in ethiopia. Am J Trop Med Hyg 84: 137–140.

21. Berman H, Battistuz T, Bhat T, Bluhm W, Bourne P, et al. (2002) The Protein

Data Bank. Acta Crystallogr D Biol Crystallogr 58: 899–907.
22. Yang J, Chen C (2004) GEMDOCK: a generic evolutionary method for

molecular docking. Proteins 55: 288–304.
23. Al Badr AA, El Subbagh HI (2009) Profiles of Drug Substances, Excipients and

Related Methodology. Chapter 5 Itraconazole: Comprehensive Profile. Elsevier
34: 193–264.

24. de Andrade-Neto V, Goulart M, da Silva Filho J, da Silva M, Pinto MC, et al.

(2004) Antimalarial activity of phenazines from lapachol, beta-lapachone and its
derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in

vivo. Bioorg Med Chem Lett 14: 1145–1149.
25. Trager W, Jensen J (1976) Human malaria parasites in continuous culture.

Science 193: 673–675.

26. Rieckmann K, Campbell G, Sax L, Mrema J (1978) Drug sensitivity of
plasmodium falciparum. An in-vitro microtechnique. Lancet 1: 22–23.

27. Carvalho L, Krettli A (1991) Antimalarial chemotherapy with natural products
and chemically defined molecules. Mem Inst Oswaldo Cruz 86 Suppl 2:

181–184.
28. Lambros C, Vanderberg J (1979) Synchronization of Plasmodium falciparum

erythrocytic stages in culture. J Parasitol 65: 418–420.

29. Noedl H, Wongsrichanalai C, Miller R, Myint K, Looareesuwan S, et al. (2002)
Plasmodium falciparum: effect of anti-malarial drugs on the production and

secretion characteristics of histidine-rich protein II. Exp Parasitol 102: 157–163.
30. Druilhe P, Moreno A, Blanc C, Brasseur P, Jacquier P (2001) A colorimetric in

vitro drug sensitivity assay for Plasmodium falciparum based on a highly

sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked
immunosorbent assay. Am J Trop Med Hyg 64: 233–241.

31. Peters W (1965) Drug resistance in Plasmodium berghei Vincke and Lips, 1948.
I. Chloroquine resistance. Exp Parasitol 17: 80–89.

32. Carvalho L, Brandão M, Santos-Filho D, Lopes J, Krettli A (1991) Antimalarial
activity of crude extracts from Brazilian plants studied in vivo in Plasmodium

berghei-infected mice and in vitro against Plasmodium falciparum in culture.

Braz J Med Biol Res 24: 1113–1123.

Antimalarial Activity of Inhibitors for PfLDH

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21237


