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Abstract

The transcriptional corepressor SMRT controls neuronal responsiveness of several transcription factors and can regulate
neuroprotective and neurogenic pathways. SMRT is a multi-domain protein that complexes with HDAC3 as well as being
capable of interactions with HDACs 1, 4, 5 and 7. We previously showed that in rat cortical neurons, nuclear localisation of
SMRT requires histone deacetylase activity: Inhibition of class I/II HDACs by treatment with trichostatin A (TSA) causes
redistribution of SMRT to the cytoplasm, and potentiates the activation of SMRT-repressed nuclear receptors. Here we have
sought to identify the HDAC(s) and region(s) of SMRT responsible for anchoring it in the nucleus under normal
circumstances and for mediating nuclear export following HDAC inhibition. We show that in rat cortical neurons SMRT
export can be triggered by treatment with the class I-preferring HDAC inhibitor valproate and the HDAC2/3-selective
inhibitor apicidin, and by HDAC3 knockdown, implicating HDAC3 activity as being required to maintain SMRT in the
nucleus. HDAC3 interaction with SMRT’s deacetylation activation domain (DAD) is known to be important for activation of
HDAC3 deacetylase function. Consistent with a role for HDAC3 activity in promoting SMRT nuclear localization, we found
that inactivation of SMRT’s DAD by deletion or point mutation triggered partial redistribution of SMRT to the cytoplasm. We
also investigated whether other regions of SMRT were involved in mediating nuclear export following HDAC inhibition. TSA-
and valproate-induced SMRT export was strongly impaired by deletion of its repression domain-4 (RD4). Furthermore, over-
expression of a region of SMRT containing the RD4 region suppressed TSA-induced export of full-length SMRT. Collectively
these data support a model whereby SMRT’s RD4 region can recruit factors capable of mediating nuclear export of SMRT,
but whose function and/or recruitment is suppressed by HDAC3 activity. Furthermore, they underline the fact that HDAC
inhibitors can cause reorganization and redistribution of corepressor complexes.
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Introduction

The precise regulation of gene transcription in the nervous

system is an integral part of processes that regulate neuronal

differentiation, development, long-term plasticity and the preven-

tion of pathological processes. This regulation is achieved in part

through a balance between the activity of transcriptional

coactivators and corepressors which in turn control gene

transcription when recruited to promoter elements via DNA-

binding transcription factors.

A key corepressor is Silencing Mediator of Retinoic acid and

Thyroid hormone receptors, SMRT (and its close relative N-CoR)

[1,2,3]. SMRT is a large multi-domain protein which binds to and

mediates repression effected by a number of transcription factors

including nuclear hormone receptors, C promoter Binding Factor

1 (CBF1), CCAAT/Enhancer Binding Protein C/EBP) ß, Serum

Response Factor (SRF), Nuclear Factor Erythroid 2 like-2 (Nrf2)

and MADS box transcription Enhancer Factor (MEF) 2 [1,2,4,5].

SMRT exists in a core complex containing Transducin-Beta-Like

(TBL) 1, TBL1 Receptor 1, G protein Pathway Suppressor 2

(GPS2) and histone deacetylase (HDAC) 3 [3,6,7,8,9,10].

Furthermore, SMRT recruits additional HDACs including the

class I HDAC, HDAC1 and the class II HDACs HDAC4,

HDAC5 and HDAC7 [1,2,3,11,12]. HDAC3 is likely to be the

primary enzyme responsible for the deacetylase activity in SMRT

complexes [3,13,14] which interacts with SMRT through SMRT’s

repression domain 4 (RD4) in the C terminus and its deacetylase

activating domain (DAD), on the N terminus [14]. SMRT does

not only act as a platform for HDAC3 recruitment, the DAD

domain functions as a cofactor for HDAC3 and is necessary and

sufficient for HDAC3 enzymatic activation [14].

In the central nervous system SMRT plays a critical role in

forebrain development and maintenance of the neural stem cell

state [15]. SMRT also can influence neuronal survival: it

specifically antagonizes PPARc coactivator 1a (PGC-1a)-mediated

antioxidant effects in neurons [16]. Thus, regulation of SMRT

activity can potentially have physiological consequences in the

central nervous system. SMRT activity can be regulated in

multiple ways. Classically, it gets displaced from nuclear receptors

by the presence of the cognate hormone, which causes a

conformational change in the receptor, creating the ‘ligand-form’

that causes SMRT to dissociate and a CREB Binding Protein/
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p300-containing coactivator complex to associate [17]. Other

signal pathways can also affect interaction of SMRT with

transcription factors, for instance, phosphorylation of SMRT by

MAPK MEK1 and MEKK1 inhibits interaction of SMRT with

nuclear receptors [18], while SMRT phosphorylation by Casein

Kinase II stabilizes the interaction [19]. SMRT stability is also

subject to dynamic control. Recruitment of the ubiquitin

machinery by TBL and TBLR mediates degradation of SMRT

[20], while phosphorylation by Cyclin Dependent Kinase 2 creates

a Pin binding site which also targets SMRT for degradation [21].

Nuclear export is another way by which different stimuli can

modify the function of transcription factors and cofactors,

including SMRT. Under normal conditions SMRT exists in

subnuclear domains colocalized with HDACs [2,22,23] and this

can be disrupted by several signal pathways, leading to SMRT

export from the nucleus. Several kinases such as MEK1, MEKK1,

AKT or Ikka phosphorylate SMRT, promoting nuclear export

[2,18,24,25]. In neurons, we showed that synaptic activity induces

nuclear export of SMRT via a mechanism involving nuclear Ca2+-

dependent CaM kinase activity as well as the Ras-ERK1/2

pathway [26]. The exact region of SMRT responsible for

mediating signal-dependent export has remained elusive: deletion

and truncation analysis revealed that no one domain is responsible

[16].

HDAC inhibition is emerging as an attractive therapy for a

number of neurodegenerative diseases as well as acute disorders

such as stroke [27–28]. While HDAC inhibition leads to histone

hyperacetylation and altered gene transcription as result of this,

many transcription factors and cofactors are also substrates for

HDACs. Interestingly, the localization of SMRT is itself

dependent on HDAC activity. Inhibition of HDAC activity

disrupts its localization within subnuclear domains and in neurons

we found that this leads to nuclear export [23,26]. As such, HDAC

inhibition not only inhibits enzyme activity, but in doing so causes

the relocalization of this key repressor. Thus, there is a strong

interdependence between SMRT and HDACs: SMRT is an

essential activating cofactor for HDAC3, while HDAC activity is

crucial for both the repressive function of SMRT and for its

nuclear localization. Here we have further investigated the basis of

SMRT export following HDAC inhibition, both in terms of the

specific HDAC involved, as well as the region(s) of SMRT

responsible for mediating export. We provide evidence that

SMRT nuclear localization specifically requires Class I HDAC

activity, likely to be HDAC3. Furthermore we show that full

nuclear localization requires the HDAC3-activating DAD of

SMRT. We also demonstrate that export following HDAC

inhibition is mediated by SMRT’s repression domain 4 (RD4)

region and is therefore mechanistically different from export

induced by synaptic activity.

Materials and Methods

Neuronal cultures and stimulations
All animal tissue was obtained by schedule 1 methods in

accordance with the Animals (Scientific Procedures) Act 1986 and

with the agreement of the University of Edinburgh Ethical Review

Committee for which a specific project licence is not required.

Cortical neurons from E21 Sprague Dawley rats were cultured as

described [26], using growth medium comprised of Neurobasal A

medium + B27 (Invitrogen), 1% rat serum, 1 mM glutamine.

Experiments were performed after a culturing period of 9–10 days

during which cortical neurons develop a rich network of processes,

express functional NMDA-type and AMPA/kainate-type gluta-

mate receptors, and form synaptic contacts [29,30]. Stimulations

were performed after transferring neurons into defined medium

lacking trophic support ‘‘TMo’’ [31]: 10% MEM (Invitrogen),

90% Salt-Glucose-Glycine (SGG) medium ([32]; SGG: 114 mM

NaCl, 0.219% NaHCO3, 5.292 mM KCl, 1 mM MgCl2, 2 mM

CaCl2, 10 mM HEPES, 1 mM Glycine, 30 mM Glucose, 0.5 mM

sodium pyruvate, 0.1% Phenol Red; osmolarity 325 mosm/l,

hereafter TMo). Stimulations were initiated approximately 48 h

after transfection. HDAC inhibitors TSA (1 mM), Apicidin

(0.5 mM) and Valproate (5 mM) were added for 8 h.

Plasmids
GFP-SMRTa full length (GFP-SMRTFL) was a gift from

Martin Privalsky (UC Davis; [18]). Plasmids GFP-SMRT1–1523,

GFP-SMRTD(1018–1523), and myc-SMRT1025–1526 have been

described [16]. For the construction of GFP-SMRTD(1523–1854) a

MluI restriction site was inserted in GFP-SMRTFL at position

1523 by site-directed mutagenesis and this construct was cut with

MluI and BsrU36I blunt ended and re-ligated. The GFP-SMRT

lacking the deacetylase activating domain (DAD) (GFP-

SMRTD(305–547)) was made amplifying the whole GFP-SMRTFL

plasmid with the following primers: 59-ata cgc gtc tgg tca tag cgc

tgg ca -39 and 59-taa cgc gtg aca ctt ctg gcg agg aca ac-39 which

have a MluI restriction site, cut with MluI and re-ligate (adding to

the sequence two extra amino acids, Thr and Arg). To clone myc-

SMRT1025–1861 and myc-SMRT1517–1861 those regions were

amplified using the following primers: myc-SMRT1025–1861

forward 59-acg aat tca tgc cag tgc ctc ctg ccg aga aag ag-39,

reverse 59-cgc tct aga tca cag atc ttc ttc aga aat aag ttt ttg ttc cgg

gct gat ggg ctc cac ccc atc-39, myc-SMRT1517-1861 forward 5-acg

aat tca tgg acc acg ggg cac cct tca cca gt-39, reverse 59-cgc tct aga

tca cag atc ttc ttc aga aat aag ttt ttg ttc cga aga ggt gga ggt gga cct-

39. PCR products were cloned in EcoRI/XbaI sites of pEF1/V5-

His A expression vector (Invitrogen). Site-directed mutations were

performed with the QuikChange II XL site-directed mutagenesis

kit (Stratagene), following the manufacturer’s instructions. Phe-

nylalanine 451 within the DAD domain of SMRT was mutated to

Alanine (SMRTF451A) using the following oligonucleotide and its

reverse-complement: 59-cac cct aag aac gcc ggc ctg att gcc-39. An

in silico NES search [33] revealed a single rodent/human

conserved potential site IQELELRSL; aminoacids 1985 to

19993) in the C-terminus which contains the common LxxLxL

motif (where L is L/I/V/F/M). Leucines 1988 and 1990 were

mutated to Alanines (GFP-SMRTDLeu) with oligonucleotide 59-ctt

ttc cat cca gga agc gga agc ccg ttc tct ggg tta cc-39 and its reverse-

complement.

Transfections and immunofluorescence
Neurons were transfected using Lipofectamine 2000 (Promega)

following the manufacturers instructions. Transfections were

performed in TMo medium (see above) and carried out on

primary neurons plated in 24 well plates. For each well, 2.67 ml of

lipofectamine and 0.65 mg of plasmid DNA was used. siRNA

directed against HDAC3 (Santa Cruz sc-270161) or control

siRNA (Dharmacon’s control non-targeting siRNA #2 siRNA)

was used at 100 nM. Experiments were performed 48 h after

transfection (72 h for experiments involving siRNA). Immunoflu-

orescence was performed as described [34]. Anti-GFP antibody

(1:700; Invitrogen), anti-myc (1:1000; Santa Cruz) and anti-

HDAC3 (1:300, Genetex) were used and visualized using

biotinylated secondary antibody/cy2-conjugated streptavidin.

Nuclei were counter-stained with DAPI. Pictures of GFP-

SMRT-transfected neurons were taken on a Leica AF6000 LX

imaging system, with a DFC350 FX digital camera. The DFC350

FX digital camera is a monochrome camera, and so coloured
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images essentially involve taking a black and white image (using

the appropriate filter set) and applying a colour to the image after

capture. Subcellular distribution of SMRT was scored as being

either nuclear or having significant cytoplasmic localization

(cytoplasmic distribution in the cell body of a equal or greater

intensity than the nucleus). For each treatment, approximately

150–200 cells were analysed within 3–5 independent experiments.

Statistical analysis
Statistical testing involved a 2-tailed paired student T-test. For

any multiple comparisons within data sets we used a one-way

ANOVA followed by Fisher’s LSD post-hoc test.

Results

Inhibition of class I HDAC activity, likely HDAC3, is
sufficient to promote SMRT export

We previously reported that HDAC inhibition achieved by

treatment with TSA promotes nuclear export of SMRT [26],

prompting us to further investigate the mechanism and basis for

this export. We confirmed our previous observation that treatment

of cortical neurons with TSA caused the export of full length GFP-

SMRTa (GFP-SMRTFL, Fig. 1a). Many proteins are exported via

a CRM1-dependent association with a leucine-rich nuclear export

site (NES), although many are not [35]. Search for a classical

leucine-rich nuclear export site [33] revealed only one potential

site at position 1985 (QELELRSL), which when mutated to

QEAEARSL (GFP-SMRTDLeu), had no effect on TSA-induced

export (Fig. 1a), or indeed, export by synaptic activity (data not

shown). Moreover, TSA-induced SMRT export was found to be

insensitive to leptomycin B (Fig. 1a), and thus joins a lengthening

list of proteins (that include many nuclear hormone receptors)

whose export is independent of the CRM1/leucine-rich NES

pathway.

SMRT has been reported to interact with the class I HDACs

HDAC1 and HDAC3, and the class II HDACs HDAC4, HDAC5

and HDAC7 [1,2,3,6,11,12]. Since TSA inhibits both Class I and

II HDACs, we investigated whether TSA-induced export is due to

Class I or Class II HDAC inhibition. We transfected neurons with

a vector encoding GFP-SMRTFL and after 48 h treated them with

sodium valproate (VPA), a Class I-specific HDAC inhibitor [36].

VPA treatment was sufficient to induce GFP-SMRT export

(Fig. 1b,c). We also found that treatment of neurons with apicidin,

a HDAC inhibitor selective for Class I HDAC members HDAC2

and HDAC3 [36], was sufficient to promote GFP-SMRT export

(Fig. 1b,c). Since HDAC3, but not HDAC2, interacts with SMRT

and is a central part of SMRT and N-CoR corepressor complexes

[3,37], these pharmacological inhibition experiments suggest that

a key mediator of TSA-induced SMRT export is the inhibition of

HDAC3 activity. To test this directly we knocked down HDAC3

expression using siRNA (Fig. 1d). HDAC3 knockdown caused

significant redistribution of SMRT to the cytoplasm, compared to

a control siRNA (Fig. 1e). Taken together, these data indicate a

role for HDAC3 activity in maintaining SMRT nuclear

localization.

Deletion or mutation of SMRT’s DAD partly mimics the
effect of HDAC inhibition

HDAC3 forms a core complex with SMRT and is absolutely

required for its function as a corepressor [6,37]. HDAC3 has been

reported to interact with SMRT at least two different regions,

including the RD4 region [2] and also a region in the N-terminus

referred to as the deacetylase activation domain (DAD).

Interaction of HDAC3 with the DAD is both necessary and

sufficient to activate the deacetylase activity of HDAC3, which is

otherwise inactive [14]. As such, HDAC3 activity is restricted to

complexes with SMRT or its close relative N-CoR. We therefore

predicted that deletion of a portion of SMRT containing the DAD

could, by inactivating HDAC3, mimic the effect of TSA treatment

in promoting SMRT export. We deleted amino acids 305–547

within the context of full length 2472 amino-acid SMRT (GFP-

SMRTD(305–547)), a schematic illustration of this and all SMRT

constructs used in this study is shown in Fig. 2a. GFP-SMRTD(305–547)

exhibited increased cytoplasmic localization compared to GFP-

SMRTFL (Fig. 2b). The effect of DAD deletion in causing cytoplasmic

redistribution was non-additive to the effect of TSA: TSA treatment of

GFP-SMRTD(305–547)-expressing neurons caused a small additional

export, but the total level of cytoplasmic SMRT was the same in TSA-

treated neurons expressing GFP-SMRTFL as GFP-SMRTD(305–547).

Given that deletion of DAD blocks SMRT-associated HDAC3

activity [14], this indicates that TSA is acting (at least in part) by

blocking SMRT-associated HDAC3 activity. Since point mutation of

the DAD at several locations can also inhibit DAD function and

SMRT-associated HDAC3 activity [14], we created a DAD-

inactivating mutant (GFP-SMRTF451A, [14]). As with GFP-

SMRTD(305–547), GFP-SMRTF451A exhibited increased cytoplasmic

localization compared to GFP-SMRTFL (Fig. 2c), further evidence

that DAD-induced HDAC3 activity is important for SMRT nuclear

localization. Note though that deletion of the DAD, or its mutation

did not completely mimic the effect of TSA treatment, potentially

indicating that HDAC activity other than HDAC3 activated by the

DAD may contribute to SMRT nuclear localization. Alternatively,

since SMRT can homodimerize [38], dimerization between

SMRTD(305–547) or SMRTF451A and endogenous SMRT could result

in recruitment of active HDAC3 to the dimer.

The RD4 region is necessary to mediate SMRT export
following HDAC inhibition

We next sought to identify the region of SMRT responsible for

mediating nuclear export following HDAC inhibition. We found

that truncating the C-terminus of SMRT from position 1524

onwards (GFP-SMRT1–1523) had no effect on basal nuclear

localization of SMRT but completely abolished export following

treatment with TSA, or VPA (Fig. 3a–c). Furthermore, the

deletion of SMRT’s RD4 region achieved by removing amino

acids 1523–1854 (GFP-SMRTD(1523–1854)) also largely abolished

export following treatment with TSA or VPA, without affecting

basal nuclear localization (Fig. 3a–c). This indicated that the RD4

region may recruit factor(s) responsible for mediating CRM1-

independent SMRT export upon HDAC inhibition.

If this were indeed the case, we predicted that over-expression of

the RD4 region within the nucleus would compete with SMRT for

these hypothetical factors and inhibit TSA-induced export of GFP-

SMRTFL. We first expressed a portion of SMRT containing the

RD4 region (SMRT1517–1861) but found it to be exclusively

cytoplasmic (data not shown), consistent with our recent

observations that sequences N-terminal of position 1523 are

required for nuclear localization of SMRT [16]. We therefore

expressed a larger portion of SMRT (SMRT1025–1861), still

including the RD4 region but with additional N-terminal sequence

within the RD3 region which, upon expression, revealed nuclear

localization (Fig. 4a lower). We therefore investigated the effect of

expressing SMRT1025–1861 on TSA-induced export of GFP-

SMRTFL. We found that co-expression of SMRT1025–1861

inhibited TSA-induced export of GFP-SMRTFL (Fig. 4a, upper).

To determine whether this effect could be attributed directly to the

RD4 region (SMRT1523–1861), we investigated the effect of

expressing SMRT1025–1523, the region N-terminal of the RD4

Investigating SMRT Export by HDAC Inhibition
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region (containing RD3) that we added in order to confer nuclear

localization. Expression of SMRT1025–1523, which is localized to

the nucleus ([16] and Fig. 4a lower), failed to inhibit TSA-induced

export of SMRTFL (Fig. 4a, upper), strongly indicating that the

inhibitory effect of SMRT1025–1861 is due to the presence of the

RD4 region and not the RD3 region. Thus, over-expression of

RD4 region interferes with TSA-induced SMRTFL export,

consistent with the deletion studies and further implicating this

domain as being required for interaction with the SMRT export

machinery.

Given that deletion of a region of SMRT containing the DAD

(SMRTD(305–547)) results in partial redistribution of SMRT to the

cytoplasm, we reasoned that co-expression of SMRT1025–1861, by

interfering with the export process, might reduce the cytoplasmic

localization of SMRTD(305–547). This was indeed found to be the

case: the proportion of neurons with cytoplasmic SMRTD(305–547)

was substantially reduced by co-expression of SMRT1025–1861

(Fig. 4b). In contrast expression of SMRT1025–1523 had no effect

(data not shown). Thus, over-expressing the SMRT RD4 region

partially reversed the effect of deleting the DAD with respect to

SMRT nuclear localization.

Discussion

Here we have presented data which suggests that class I HDAC

activity is necessary for nuclear retention of the corepressor SMRT

in neurons. HDAC3, a known component of the core SMRT

complex, is likely to be an important HDAC responsible for

SMRT nuclear retention as suggested by the fact that the specific

HDAC2/3 inhibitor Apicidin promotes SMRT nuclear export, as

does HDAC3 knock-down, as well as deletion and mutation of the

HDAC3-activating DAD region. Additionally, deletion and over-

expression studies implicate the RD4 region as a key mediator of

HDAC inhibitor-induced SMRT export.

Lysine acetylation controls protein interactions and
subcellular localisation

In recent years lysine acetylation of non-histone proteins has

emerged as an important post-translational protein modification

regulating function in different ways including protein interactions

and subcellular localization [39]. Global acetylome analysis in

three different human cell lines identified 3600 lysine acetylation

sites on 1750 proteins, 17 of those proteins have a function in

Figure 1. Inhibition of class I HDAC and knockdown of HDAC3 is sufficient to promote SMRT export. A) GFP-SMRTFL export is insensitive
to Leptomycin B and to mutation of a leucine-rich potential nuclear export sequence. Neurons were transfected with plasmids encoding GFP-SMRTFL

or GFP-SMRTDLeu and treated, where indicated with Leptomycin B (20 ng/ml) for 1 h prior to treatment with TSA. Note that although redistribution
was observed after 1–2 h treatment with TSA and other HDAC inhibitors, the effect observed was greater after 6–8 h and so all data presented in this
manuscript relates to treatment with the indicated drugs for this time. *p,0.05 (n = 4). B) Neurons were transfected with plasmids encoding GFP-
SMRTFL and 48 h after transfection the neurons were treated with TSA, VPA or Apicidin and the cellular localization of GFP-SMRTFL was analyzed.
*p,0.05 (n = 3). C) Examples of the cellular localization of GFP-SMRTFL after treatments with the indicated HDAC inhibitors. Scale bar is 20 mm here
and throughout the manuscript. D) Example pictures to demonstrate the efficacy of HDAC3-directed siRNA in knocking down endogenous HDAC3
expression in rat cortical neurons. Neurons were transfected with the siRNAs as indicated, plus peGFP to identify transfected cells. After 72 h, cells
were fixed and HDAC3 expression analysed by immunofluorescence. White arrows point to transfected neurons. E) HDAC3 siRNA causes
redistribution of SMRT to the cytoplasm. Neurons were transfected with plasmids encoding GFP-SMRTFL plus siRNA as indicated. SMRT localization
was studied 72 h post-transfection. *p,0.05 (n = 5).
doi:10.1371/journal.pone.0021056.g001
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Figure 2. Deletion of SMRT’s HDAC3-activating domain partly mimics and occludes the effect of HDAC inhibition. A) Schematic
illustrating the SMRT deletion constructs generated and used in this paper. B) Analysis of the cellular localization of GFP-SMRTFL or GFP-SMRTD(305–547)

in transfected neurons untreated or treated with TSA. *p,0.05 (n = 4). #p,0.05 comparing control and TSA-treated conditions for each SMRT
construct. C) Analysis of the cellular location of GFP-SMRTFL compared to the basal localization of GFP-SMRTF451A. *p,0.05 (n = 5).
doi:10.1371/journal.pone.0021056.g002

Figure 3. The RD4 region is necessary to mediate SMRT export following HDAC inhibition. Analysis of the cellular localization of the
indicated GFP-SMRT fusions, transfected into neurons and treated with TSA (A) or VPA (B). *p,0.05 (n = 3). #p,0.05 comparing control and drug-
treated conditions for each SMRT construct. C) Example pictures from (A). Scale bar 20 mm.
doi:10.1371/journal.pone.0021056.g003
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nuclear transport, suggesting that this process is sensitive to the

cells acetylase-deacetylase balance [40]. Furthermore, many

transcription factors have been shown to move between the

cytoplasm and nucleus in a manner dependent on their direct

acetylation.

For example, p53 acetylation by p300 mediates its nuclear export

[41], while SIRT1/2-mediated deacetylation promotes FOXO1’s

nuclear localization [42,43]. Acetylation of Poly(A)-polymerase

disrupts its interaction with Importin-a/b complex resulting in

cytosolic accumulation [44]. Several transcription factors involved

in development exhibit acetylation-sensitive subcellular localization.

In embryonic stem cells, acetylation of Sox2, a factor important for

maintenance of pluripotency, induces its nuclear export [45].

Acetylation of SRY, (crucial for testis organogenesis) by p300

augments its nuclear import, while its deacetylation by HDAC3

induces a partial cytoplasmic distribution [46].

Of note, SMRT is also involved in development, particularly

neurogenesis where it is needed to provide fidelity to both Notch-

and retinoic acid-dependent aspects of forebrain development

and neurogenesis [15]. Despite our investigations into the role of

acetylation in SMRT export, it remains unclear whether SMRT

redistribution is due to direct changes in its own acetylation.

Human SMRT was reported to have least three acetylatable

lysine residues at positions 959, 1794 and 2036 [40]. Given the

sensitivity of SMRT localization to HDAC inhibition we mutated

these residues to non acetylatable arginine residues. However,

mutation of these sites alone or in triple combination did not

prevent the TSA-mediated SMRT export (data not shown).

Thus, it remains unclear whether HDAC inhibition-mediated

SMRT export is a consequence of a direct modification in the

acetylation status of SMRT or a modification in its associated

proteins in the SMRT complex, or indeed in proteins involved in

SMRT export.

HDAC3 is important for full nuclear localization of SMRT
Although other HDACs may contribute, data presented in this

study indicates that HDAC3 is likely to be an important

deacetylase responsible for retaining SMRT in the nucleus.

HDAC3 absolutely requires SMRT’s DAD domain for HDAC

activity and thus acts as a coenzyme of HDAC3 [14]. In our study,

SMRT mutants either lacking the DAD domain (GFP-

SMRTD(305–547)), or with a DAD-inactivating mutation (GFP-

SMRTF451A), partially mimicked the effect of HDAC inhibitors in

promoting cytoplasmic localization, as did HDAC3 knockdown.

Nonetheless, this GFP-SMRTD(305–547) was further exported in

presence of HDAC inhibitors which suggest that HDACs other

than HDAC3 may contribute to SMRT nuclear localisation.

Alternatively, since SMRT can homodimerize [38], dimerization

between SMRT lacking the DAD with wild-type SMRT may

recruit active HDAC3 to the complex, thus explaining the partial

effect of DAD deletion. As stated earlier, disruption to the DAD of

SMRT or N-CoR essentially abolished both HDAC3 activity and

corepressor function [14,47]. The fact that this also causes some

cytoplasmic redistribution of SMRT (this study) raises the

possibility that elimination of repressor function could be due in

part to SMRT relocalization to the cytoplasm. While this is a

possibility, the effect of DAD disruption on SMRT corepressor

function is more dramatic than its effect on nuclear localization

([14] and this study), indicating that even nuclear-localized SMRT

is inactive if it lacks a functional DAD. Thus the conclusions of the

earlier studies by Lazar and coworkers are not in question.

A model to explain histone deacetylase-dependent SMRT
localization

In contrast to deletion/mutation of the DAD, which caused

basal cytoplasmic redistribution, deletion of the RD4 region had

Figure 4. Over-expression of the RD4 region of SMRT inhibits HDAC inhibition-mediated SMRT export. A) Upper: Over-expression of
RD4 inhibits TSA-mediated nuclear export of SMRT. Neurons were transfected with GFP-SMRTFL plus an expression vector encoding the amino-acids
1025–1526 (RD3) or 1025–1861 (RD3–4) of SMRT or a control plasmid (encoding ß-globin). After 48 h neurons were treated with TSA and the
subcellular localization of GFP-SMRTFL was analyzed. *p,0.05 (n = 4). Lower: Example pictures to illustrate the nuclear localization of SMRT1025–1526

and SMRT1025–1861. Neurons were transfected with plasmids encoding myc-tagged SMRT1025–1526 or SMRT1025–1861. After 48 h the localization of these
portions of SMRT was analysed by immunofluorescence using an anti-myc antibody. Arrows point to a transfected cell in each case. B) Over-
expression of the RD4 region partially reverses the cytoplasmic redistribution of SMRT caused by deletion of the DAD. Neurons were co-transfected
with GFP-SMRTFL or SMRTD(305–547) with an expression vector encoding the amino acids 1025–1861 of SMRT or a control plasmid (encoding ß-globin)
as indicated. After 48 h the cellular localization of SMRT and SMRTD(305–547) was analyzed. *p,0.05 (n = 3).
doi:10.1371/journal.pone.0021056.g004
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no effect on basal localization but strongly reduced export

triggered by HDAC inhibition. Thus the HDAC3-suppressed

export process acts on SMRT in a manner that requires the RD4

region. This could be explained by two potential models. Export

machinery could be recruited to the RD4 region of SMRT but in

a manner that requires acetylation within this region, an event that

is ordinarily suppressed by HDAC3. As a variation on this, the

export machinery recruited to the RD4 region of SMRT could

itself be directly or indirectly inhibited by HDAC3 activity.

Distinguishing between these models forms part of ongoing

investigations. Regardless of this, it is clear that SMRT export

triggered by HDAC inhibition is mechanistically distinct from

another form of signal-induced SMRT export-that induced by

synaptic activity [16,26]. In contrast to results presented here,

deletion of the RD4 region has no effect on SMRT export

triggered by synaptic activity [16].

Inhibition of HDACs as a neuroprotective strategy
In recent years the use of HDAC inhibitors has emerged as a

potential therapy against cancer and neurodegenerative disorders,

including Parkinson’s, Alzheimer’s, Huntington’s diseases and

amyotrophic lateral sclerosis. Beneficial effects of HDAC inhibi-

tion have been found in models of the above diseases, as well as in

acute trauma such as stroke [27–28]. Given the growing number

of non-histone HDAC targets been discovered, old assumptions

based on mechanisms solely surrounding histone acetylation status

are being challenged [48]. Moreover, the pleiotropic effects of

HDAC inhibition and neurotoxicity of sustained strong inhibition

raise the question as to their suitability for treating chronic

neurodegenerative disease [49], particularly given the documented

adverse side-effects of HDAC inhibitors after short-term therapy

in cancer patients [50]. In order to find more selective and

tolerable inhibitors of HDAC effects, future strategies may be to

use peptides or molecules designed to disrupt interactions between

HDACs and key targets relevant to neuroprotection. We recently

demonstrated a neuroprotective consequence of promoting

SMRT export, since when nuclear it is able to antagonize the

neuroprotective, antioxidant effects of the transcriptional coacti-

vator PGC-1a [16]. Further investigation into the mechanism of

SMRT export may point to strategies aimed at controlling

SMRT-mediated repression.
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39. Spange S, Wagner T, Heinzel T, Krämer OH (2009) Acetylation of non-histone
proteins modulates cellular signalling at multiple levels. The International

Journal of Biochemistry & Cell Biology 41: 185–198.
40. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, et al. (2009) Lysine

acetylation targets protein complexes and co-regulates major cellular functions.

Science 325: 834–840.

41. Kawaguchi Y, Ito A, Appella E, Yao TP (2006) Charge modification at multiple

C-terminal lysine residues regulates p53 oligomerization and its nucleus-
cytoplasm trafficking. J Biol Chem 281: 1394–1400.

42. Jing E, Gesta S, Kahn CR (2007) SIRT2 Regulates Adipocyte Differentiation

through FoxO1 Acetylation/Deacetylation. Cell Metabolism 6: 105–114.
43. van der Horst A, Burgering BMT (2007) Stressing the role of FoxO proteins in

lifespan and disease. Nat Rev Mol Cell Biol 8: 440–450.
44. Shimazu T, Horinouchi S, Yoshida M (2007) Multiple histone deacetylases and

the CREB-binding protein regulate pre-mRNA 39-end processing. J Biol Chem

282: 4470–4478.
45. Baltus GA, Kowalski MP, Zhai H, Tutter AV, Quinn D, et al. (2009) Acetylation

of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27:
2175–2184.

46. Thevenet L, Mejean C, Moniot B, Bonneaud N, Galeotti N, et al. (2004)
Regulation of human SRY subcellular distribution by its acetylation/deacetyla-

tion. EMBO J 23: 3336–3345.

47. Ishizuka T, Lazar MA (2005) The nuclear receptor corepressor deacetylase
activating domain is essential for repression by thyroid hormone receptor. Mol

Endocrinol 19: 1443–1451.
48. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors:

molecular mechanisms of action. Oncogene 26: 5541–5552.

49. Langley B, D’Annibale MA, Suh K, Ayoub I, Tolhurst A, et al. (2008) Pulse
inhibition of histone deacetylases induces complete resistance to oxidative death

in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/
cip1) in cell cycle-independent neuroprotection. J Neurosci 28: 163–176.

50. Bruserud O, Stapnes C, Ersvaer E, Gjertsen BT, Ryningen A (2007) Histone
deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and

the modulation of gene expression in cancer cell. Curr Pharm Biotechnol 8:

388–400.

Investigating SMRT Export by HDAC Inhibition

PLoS ONE | www.plosone.org 8 June 2011 | Volume 6 | Issue 6 | e21056


