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Abstract

Background: Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome
are often referred to as CpG islands. These islands are usually located in the 59 end of genes. Recently, several algorithms for
the prediction of CpG islands have been proposed.

Methodology/Principal Findings: We propose here a new method called CPSORL to predict CpG islands, which consists of
a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more
reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously.
However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus
these methods leave room for improvement.

Conclusions/Significance: Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher
correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster,
CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome
than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an
application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When
compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%)
region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter
(67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for
CpG islands in the entire human genome.
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Introduction

CpG islands are short sequences that preserve a high

concentration of the two nucleic acids Cytosine (C) and Guanine

(G). The letter ‘p’ in CpG represents the phosphodiester bonds

that appear between the nucleic acids C and G. CpG islands were

first identified by Tykocinski and Max as small regions that

contain the restriction enzyme HpaII in the genome and were thus

originally called HpaII Tiny Fragment (HTF) islands [1].

A definition of CpG islands was first offered by Gardiner-Garden

and Frommer (GGF) in 1987 [2]. The original description included

the length of the suspected region, which has to exceed 200 bp, the

GC content in that region, which has to be higher than 50%, and

the observed/expected (O/E) ratio, which has to surpass a value of

0.6. Since biological experiments have proven that there could be

two Alu sequences in a CpG island, Takai and Jones revised the

GGF criteria of CpG islands in 2002 [3]. Their modified definition

requires that the minimum length of the suspected region is 500 bp

and that the required GC content and O/E ratio are 55% and 0.65,

respectively. The Alu endonuclease is so-named because it was first

isolated from Arthrobacter luteus. Alu sequences are highly repetitive

short interspersed elements with an approximate consensus

sequence of about 280 bp. Some of these sequences have a relative

high GC content and O/E ratio [2,3]. Recently, various algorithms

have been adopted in the literature to predict CpG islands, e.g.,

CpGIS [3], CpGPlot [4], CpGProD [5] and CpGcluster [6], but

most of these tools use the sliding window technique with the GC

content, O/E ratio and length thresholds as the main parameters;

CpGcluster uses the distance between CpG dinculeotides.

PSO is a population-based stochastic optimization technique

developed by Kennedy and Eberhart [7]. The main advantage of

PSO is that it has the ability to converge fast. The individual

memory of the particles in PSO can be used to compare

information in a search process. To date, PSO has been
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successfully applied in many fields, including operon prediction [8]

and biomarker selection [9], amongst others.

In this study we propose a new prediction method called

CPSORL, which combines complementary particle swarm

optimization (CPSO) with the reinforcement learning (RL)

method to predict CpG islands in the human genome.

Reinforcement learning [10] is applied to extend the shorter

CpG islands or even combine neighboring CpG islands if

prescribed requirements are met (an example comparison of

CpG island predictions with and without a reinforcement learning

process is show in Figure S1).

The proposed CPSORL method adopts the GGF criteria (GC

content §50%, O/E ratio §0.6, length §200 bp) as guidelines

for the search for CpG islands. CPSORL is composed of two

major steps. First, the input sequence is cut apart into windows,

and then the PSO algorithm is used to search for DNA sequences

that are in accordance with the GGF criteria. The PSO

mechanism is updated iteratively to search for optimal results

and identifies the best performing particles in the swarm

population [11]. If the PSO particles fall into a local search

pattern, the complementary concept enables them to leave this

local region and participate in the global search again. In a second

step, the length of the predicted CpG island is extended by RL;

islands are combined with neighboring islands until the length

definition parameters are met [10,12]. Experimental results

indicate that CPSORL provides results of a higher sensitivity

and a higher correlation coefficient in all selected experimental

contigs than CpGIS, CpGcluster, CpGProd and CpGPlot.

Results

Parameter settings
In PSO, four different parameters need to be set: the population

size, the number of iterations, and the C1 and C2 constants of the

update function. The population size in our study was set to 300

[13], the number of iterations was set to 100, and C1 and C2 were

set to 2 [11]. The CpGIS parameters were: length set to 200 bp,

GC content set to 50%, O/E ratio set to 0.6, and the gap between

adjacent islands set to 100 bp (http://cpgislands.usc.edu/).

CpGcluster parameters used were: p-value threshold of 1E-5

and distance threshold (percentile) of 50. CpGProd and CpGplot

were used directly from the internet (http://pbil.univ-lyon1.fr/

software/cpgprod_query.html and http://www.ebi.ac.uk/Tools/

emboss/cpgplot/index.html).

Performance measurement
We used five common criteria to determine the prediction

accuracy, namely the sensitivity (SN), specificity (SP), accuracy

(ACC), performance coefficient (PC) and correlation coefficient (CC)

[14]. The five criteria are defined in Eqs. (1–5). Through these five

evaluation criteria the superiority of an algorithm was determined.

The calculation processes are shown in detail in Figure S2.

SN~
TP

TPzFN
ð1Þ

SP~
TN

TNzFP
ð2Þ

ACC~
TPzTN

TPzFPzTNzFN
ð3Þ

PC~
TP

TPzFNzFP
ð4Þ

CC~
TP � TN{FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN) � (TPzFP) � (TNzFN) � (TNzFP)
p ð5Þ

where TP is a true positive, FN is a false negative, TN is a true

negative and FP is a false positive. We predicted CpG islands

under the GGF criteria. Subsequently, we used five evaluation

criteria to assess the CpG island prediction performance of all

methods.

In addition, the receiver operating characteristic (ROC) curve is

introduced to determine equivalence by plotting the fraction of

true positives out of the positives (TPR = true positive rate) vs. the

fraction of false positives out of the negatives (FPR = false positive

rate). Hanson has pointed out that the area under the ROC curve

can be used to predict the accuracy of a risk scale [15]. The ROC

curve plots the sensitivity against the specificity; the sensitivity and

specificity express the accuracy of the CpG island prediction

factors.

Experimental results
We propose an effective hybrid method of CPSO and RL called

CPSORL to identify CpG islands in the human genome. In

CPSORL, CPSO supplies the updating function to find potential

regions of CpG islands, and RL is used to extend and combine

CpG islands in order to improve the prediction quality. The

CPSO proposed in this study prevents the entrapment of particles

in a local optimum. Table 1 shows a comparison of the

performance of different methods from the literature for CpG

island prediction, such as SN, SP, ACC, PC, and CC. CPSORL

provides SN, PC and CC results that are higher than in other

methods it was compared to. We compared CPSORL with

various other methods in the literature. Table S1 shows the results

in the contig NT_113954.1 for different CpG island prediction

tools. Table 2 contains the number of CpG islands located in gene

regions identified with CPSORL. A comparison of the number of

CpG islands identified in the human genome with different

methods is shown in Table 3. Table 4 shows the number of

methylation sites identified with CPSORL in chromosomes 21 and

22 of the human genome, and also includes the chromosome

length, total length of a CpG island, the number of methylation

sites in entire genome, the number of methylation sites selected in

CPSORL, and the methylation density of the CpG islands.

CPSORL predicted CpG islands with an average methylation

density of 5.33% in the entire chromosome; the results are shown

in Table 5. Table 6 shows the prediction performance for the

entire human chromosome by the proposed method and the

methods from the literature.

Discussion

CpG island prediction performance in the contigs
We compared CPSORL with four other methods reported in

the literature, namely CpGIS [3], CpGplot [4], CpGProD [5],

CpGcluster [6] and PSO. Table 1 shows that the SN of the

proposed method was highest on the NT_113952.1 (84.88%),

NT_113955.2 (87.38%), NT_113958.2 (84.11%), NT_113953.1

(75.65%), NT_113954.1 (77.68%) and NT_028395.3 (77.02%)

datasets (sensitivity bar graphs in Figure S3). The proposed

method obtained better prediction results for CpG islands than the

PSO with RL for the Prediction of CpG Islands
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other methods tested. The accuracies (ACC) of CPSO and

CPSORL are higher than the accuracies of the other methods.

However, even though ACC of CPSORL is lower than ACC of

CpGPlot in contig NT_113954.1, the SN, PC and CC of CPSORL

are superior to CpGPlot. The reason for this is that CpGPlot does

not obtain the FP in the search process, but rather yields many

FNs. It therefore obtains high SP and ACC values and a lower SN.

In addition, the performance of CPSO is better than that of

CPSORL in the NT_113952.1 and NT_028395.3 contigs, the

reason for this being that RL yields higher FP and lower SP values

in the evaluation criteria. Hence, CPSO can obtain a high CC. As

shown in Table 1, SP of this study is lower than the SP of CpGPlot

in all contigs. CPSORL also showed the best PC and CC

prediction performance on the chromosomes 21 and 22 contigs

shown in Table 1, e.g., NT_113955.2 (87.89%), NT_113958.2

(79.31%), NT_113953.1 (73.10%) and NT_113954.1 (68.53%)

have the highest PC and CC values. The PC can be viewed as a

criterion to determine the method performance. The CC can be

viewed as a combination of sensitivity and specificity [15]. In

addition, we used the ROC curves for comparison in order to

prove that CPSORL is superior to the other methods. An ROC

curve is a plot of the false positive (FP) rate versus the true positive

(TP) rate [16]. Figure S4 shows the ROC curves for all methods.

Based on these plots it can be stated that the performance of

Table 1. Comparison of different methods for CpG island prediction.

Contig. Performance Methods

CpGPlot CpGcluster CpGProD CpGIS PSO CPSO

without RL with RL without RL with RL

NT_113952.1
Length = 184355

SN (%) 56.43 50.46 58.07 83.98 69.22 75.58 77.43 84.88

SP (%) 100.0 99.95 99.50 99.05 99.61 99.02 99.58 99.05

ACC (%) 98.09 97.78 97.69 98.39 98.28 97.99 98.61 98.43

PC (%) 56.42 49.92 52.36 69.59 63.77 62.27 70.91 70.34

CC (%) 74.38 69.41 68.83 81.25 77.66 75.71 82.49 81.80

NT_113955.2
Length = 281920

SN (%) 47.19 67.15 68.51 85.12 54.47 59.63 77.80 87.38

SP (%) 100.0 99.72 99.63 99.30 99.96 99.88 99.50 99.61

ACC (%) 98.08 98.54 98.50 98.79 98.31 98.42 98.71 99.16

PC (%) 47.14 62.47 62.35 71.78 53.87 57.74 68.67 79.08

CC (%) 67.94 77.03 76.65 82.96 72.41 74.51 80.85 87.89

NT_113958.2
Length = 209483

SN (%) 51.29 27.16 46.41 82.13 79.27 81.65 81.08 84.11

SP (%) 99.99 99.94 98.93 98.26 98.13 97.90 98.17 98.34

ACC (%) 96.90 95.32 95.60 97.24 96.93 96.87 97.08 97.43

PC (%) 51.24 26.92 40.10 65.36 62.10 62.33 63.80 67.51

CC (%) 70.38 49.96 56.80 77.63 75.03 75.28 76.41 79.31

NT_113953.1
Length = 131056

SN (%) 22.80 57.32 29.79 74.05 60.20 64.80 70.53 75.65

SP (%) 100.0 99.74 99.56 98.83 99.27 99.23 99.22 99.13

ACC (%) 97.76 98.51 97.53 98.11 98.13 98.23 98.38 98.45

PC (%) 22.80 52.74 25.96 53.23 48.39 51.59 55.91 58.57

CC (%) 47.21 69.89 43.61 68.64 64.50 67.25 70.90 73.10

NT_113954.1
Length = 129889

SN (%) 31.24 29.86 52.01 76.31 56.92 63.58 70.54 77.68

SP (%) 100.0 99.46 98.72 97.62 98.40 98.13 98.34 98.23

ACC (%) 97.47 96.90 97.00 96.83 96.87 96.86 97.32 97.48

PC (%) 31.24 26.19 38.94 47.05 40.12 42.74 49.22 53.15

CC (%) 55.17 43.81 54.68 63.29 55.65 58.36 64.72 68.53

NT_028395.3
Length = 647850

SN (%) 27.11 44.89 54.18 76.68 68.97 72.79 72.52 77.02

SP (%) 100.0 99.47 99.45 98.93 99.27 98.99 9918 98.90

ACC (%) 97.98 97.53 98.19 98.14 98.19 98.06 98.24 98.12

PC (%) 27.10 39.26 45.36 59.36 57.49 57.17 59.36 59.25

CC (%) 51.51 57.21 62.26 73.57 72.21 71.75 73.61 73.48

RL: Reinforcement Learning. SN: Sensitivity. SP: Specificity. ACC: Accuracy. PC: Performance coefficient. CC: Correlation coefficient. Underlined value representing the
best results.
doi:10.1371/journal.pone.0021036.t001

PSO with RL for the Prediction of CpG Islands
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CPSORL is better than the performance of the other methods it

was compared to.

CpGIS, CpGplot and CpGProD all use the sliding window

technique to predict CpG islands. These methods use the GC

content, O/E ratio and length to predict CpG islands. These

techniques are similar to brute force searches and thus yield high

SP values. This causes the SP of some literature methods to be

slightly higher than CPSORL; however, the difference generally

lies below 1%. Sujuan et. al. [17] identified several disadvantages of

the CpGIS, CpGplot and CpGProD methods: (1) CpG islands

identified by these methods generally do not start and end with a

CpG dinucleotide [18]. (2) The number and length of the CpG

islands is obtained based on the window size and the step size. If

the window is large, several short and loosely distributed CpG

islands may merge into a larger one. (3) The run time for these

methods is relatively long. Hackenberg et. al [19] mentioned that

the window size has a profound effect on the quality of the CpG

island prediction. CpGcluster predicts CpG islands based on the

physical distance between CpG dinucleotides. Although CpGclus-

ter can identify some short CpG clusters that are functional, its

Table 2. Number of CpG islands located in gene regions identified with CPSORL.

Chr. Contig GC% (Average) CpG island length CpG island number Number of genes*

21 NT_113952.1 54.34 8,537 12 1(3)

21 NT_113955.2 53.04 10,023 15 2(3)

21 NT_113958.2 57.01 14,470 19 2(3)

21 NT_113953.1 50.92 3,998 8 1(1)

21 NT_113954.1 54.53 6,174 10 1(1)

22 NT_028395.3 55.40 24,649 38 10(15)

(*)True number of genes in the contig is given in parentheses.
doi:10.1371/journal.pone.0021036.t002

Table 3. Comparison of the number of CpG islands identified in the human genome with different methods. (NCBI.36).

Chromosome 21

CpGPlot CpGcluster CpGProD CpGIS PSORL CPSORL
CPSORL
(ALU)

Chromosome Length (bp) 46,944,329

Total length of CpG islands 347,334 639,161 1,072,192 1,280,505 1,564,596 1,607,472 926,178

Number of islands predicted 973 2,703 1,091 3,704 2,648 2,813 850

Island coverage (%)a 0.73 1.36 2.28 2.73 3.3 3.4 1.97

Island length (bp)

Average 357 237 983 346 591 571 1,089

Minimum 101 8 500 200 202 202 500

Maximum 3,047 3,028 6,732 1,948 4,020 4,035 4,035

GC-content 6 SD (%) 62.1760.07 65.4960.07 54.4960.06 57.9860.04 53.7360.05 53.7260.05 55.6060.05

CpG island O/E ratio 6SD 0.8460.1 0.8760.3 0.6360.1 0.6860.1 0.6460.08 0.6560.08 0.6560.09

Chromosome 22

CpGPlot CpGcluster CpGProD CpGIS PSORL CPSORL
CPSORL
(ALU)

Chromosome Length (bp) 49,691,432

Total length of CpG islands 679,803 522,748 2,067,653 2,842,255 2,802,675 2,907,983 1,795,617

Number of islands predicted 1,642 2,186 1,903 6,875 4,571 4,882 1,569

Island coverage (%) 1.36 1.05 4.16 5.71 5.64 5.85 3.6

Island length (bp)

Average 414 239 1,087 413 613 596 1,144

Minimum 200 8 500 200 198 202 500

Maximum 7,902 7,774 8,363 3,339 4,076 4,076 4,076

GC-content 6 SD (%) 63.7060.08 70.2360.08 55.8460.07 55.1260.06 54.5060.07 54.4660.07 56.5360.06

CpG island O/E ratio 6SD 0.8460.1 0.9560.3 0.6260.1 0.6860.1 0.6360.05 0.6360.05 0.6460.08

SD is the Standard Deviation.
aProportion (%) of the chromosome sequence covered by methods.
doi:10.1371/journal.pone.0021036.t003
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high false positive (FP) rate strongly limits its use in genome-wide

or chromosome-wide searches for promoter-associated CpG

clusters in vertebrate genomes [20].

In this study, the window sizes of CPSORL and the sliding window

technique are different since the traditional methods use fixed lengths

to search for CpG islands. However, the prediction results are

affected by the fixed window sizes. Hence, we used a random length

of 200 bp to 2000 bp based on the GGF criteria. This improved the

prediction quality. As shown in Table 1, CPSORL was the most

reliable and stable of the methods tested. It obtained the highest

performance amongst all methods compared due to the combination

of the improved evolutionary CPSO algorithm with RL.

Improved CpG island search with CPSORL
We base our discussion in this section on the contig

NT_113954.1 since this contig poses a challenge for most tools.

When compared to the CpGIS tool, CPSORL provides equal or

better prediction. CPSORL obtained higher prediction correlation

coefficient (CC) than the other programs tested. The performance

of CpGPlot, CpGcluster and CpGProd in identifying CpG islands

is poorer than that of CpGIS, PSO and CPSO, as shown in Table

S1. The CpGPlot, CpGcluster, and CpGProd software found a

total of four, seven, and five CpG islands, respectively. However,

CpGcluster found four CpG islands that did not meet the GGF

criteria (two islands violated the O/E criterion, and two islands

violated the length criterion). Three islands found by CpGProD

were falsely identified because the O/E ratios did not meet the

GGF criteria. Even though the total CpG islands length of

CPSORL (6233 bp) is short than that of CpGIS (6647 bp), CpGIS

found 19 CpG islands, of which six were falsely identified in the

results. The 1st, 8th and 10th island had a GC content greater than

50%, and the 5th, 9th and 11th islands were longer than 200 bp, all

conditions that violate the GGF criteria.

In Table S1, PSORL and CPSORL use RL to extend the total

length from 4735 bp to 5835 bp and 5064 bp to 6233 bp,

respectively. The island length increase is 23.2% and 23.1% for

PSORL and CPSORL, respectively. In CPSORL for example RL

extend the 2nd and 6th and CpG island from 202 bp and 1196 bp

to 592 bp and 1356 bp, respectively. Furthermore, the comple-

Table 4. Number of methylation sites identified with CPSORL
in chromosomes 21 and 22 of the human genome. (NCBI. 36).

Chromosome number 21 22

Chromosome length (bp) 46,944,323 49,691,432

Total length of CpG island (bp) 1,607,472 2,907,983

Number of methylation sites in entire genome 841,554 1,120,517

Number of methylation sites using CPSORL 111,172 185,324

Methylation density of CpG islands (%) 6.91 6.37

doi:10.1371/journal.pone.0021036.t004

Table 5. Number of methylation sites identified with CPSORL in all chromosomes of the human genome. (NCBI.36).

Chr. Length Total length of CpG island
Number of all
methylation sites

Number of predicted
methylation sites

Methylation Density
(%)

1 247,249,719 9,819,708 5,006,940 523,354 5.33

2 242,951,149 7,822,751 5,023,026 431,279 5.51

3 199,501,827 5,561,406 3,965,121 310,656 5.58

4 191,273,063 5,331,470 3,577,143 275,413 4.95

5 180,857,866 5,780,736 3,563,532 318,252 5.51

6 170,899,992 5,858,975 3,465,347 318,445 5.44

7 158,821,424 6,784,935 3,450,658 392,566 5.79

8 146,274,826 4,841,004 3,015,121 267,302 5.52

9 140,273,252 5,384,493 2,574,014 282,008 5.23

10 135,374,737 5,245,458 3,013,632 292,186 5.57

11 134,452,384 5,228,058 2,872,470 282,971 5.41

12 132,349,534 5,512,364 2,957,221 195,079 3.54

13 114,142,980 3,049,962 1,946,147 180,554 5.92

14 106,368,585 3,536,154 1,935,241 191,968 5.43

15 100,338,915 3,676,992 1,858,038 186,212 5.06

16 88,827,254 5,414,278 2,222,494 320,771 5.92

17 78,774,742 6,551,708 2,306,666 252,464 3.85

18 76,117,153 2,528,076 1,605,879 180,108 7.12

19 63,811,651 7,604,015 1,939,151 461,782 6.07

20 62,435,964 3,106,557 1,551,541 180,108 5.80

21 46,944,323 1,607,472 841,554 111,172 6.91

22 49,691,432 2,907,983 1,120,517 185,324 6.37

X 154,913,754 4,831,155 2,279,012 190,792 3.95

Y 57,772,954 1,001,532 214,434 15,945 1.59

Avg. 128,350,812 4,957,802 2,596,037 264,446 5.33

doi:10.1371/journal.pone.0021036.t005

PSO with RL for the Prediction of CpG Islands
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mentary logic of CPSO increased the search capability of particles

in the solution space, and thus the total length of the CpG islands

increased by 1061 bp as compared to PSO. Since CpG islands are

considered gene markers, the number of CpG islands should be

close to the number of genes in the genome. At least half of the

genes are overlapping with CpG islands in CPSORL. Associations

of CpG islands with genes are shown in Table 2.

CpG island prediction performance in chromosomes 21
and 22

Chromosomes 21 and 22 of the human genome are widely used

in the literature, so we used the available data for these

chromosomes to verify our results. Table 3 shows information

pertaining to all the investigated methods for chromosomes 21 and

22, including the chromosome length, the number of islands

predicted, the total length of the CpG islands, the island length

(average, minimum, and maximum), the GC content, CpG island

O/E ratio values and the coverage (%). The distribution of CpG

islands (Figure S5) shows that most CpG islands lie in the region of

50–70% GC content and an O/E ratio of between 0.6 and 1.0,

and thus the CpG islands conform to the GGF criteria. In

addition, the CpG islands predicted in the entire human genome

are shown in Figure S6.

Table 3 indicates that the number of CpG islands predicted by

CpGIS is the highest for chromosomes 21 and 22. However, the

total number of CpG islands does not represent a better prediction

ability of this method since the average length of CpG islands

predicted by CpGIS (346 bp and 413 bp for chromosome 21 and

22, respectively) is shorter than in our method (571 bp and 596 bp

for chromosomes 21 and 22, respectively). CpGcluster predicted

CpG islands with a minimum length as short as 8 bp. The total

length of the CpG islands predicted in chromosomes 21 and 22 by

CpGIS is shorter than in CPSORL. In addition, the high coverage

means that the overlap region between the predicted CpG islands

and the experimentally identified CpG islands is considerable and

that the predicted CpG islands conform to the GGF criteria.

When compared to the methods from the literature, the islands

predicted by CPSORL covered a larger region (3.4% and 5.85%)

in chromosomes 21 and 22, respectively.

RL is an intelligent system, which improves performance by

receiving a feedback in the form of a scalar reward (or penalty)

commensurate with the appropriateness of the response through

the interactions of repeated tests and searches. If a known CpG

island is separated into several predicted CpG island fragments,

the prediction results are unreliable. In Table 1, the prediction

performance of PSORL is generally lower than that of CpGIS.

However, the performance of PSORL is higher than that of

CpGIS (Table 3) in the chromosome 21. The reason may be that

the RL system improves the prediction quality. The average of the

GC content, O/E ratio and length values of CpG islands predicted

by CPSORL and PSORL conform to the GGF criteria. Thus, the

SN ratio of our method was higher than the SN ratio of the other

methods.

DNA cytosine methylation plays an important role in biological

processes, especially genome in mutation [21], embryonic

development [22] and human diseases [23]. DNA methylation

at CpG dinucleotides is a common feature in genomes. Generally,

DNA methylation occurs in dinucleotide rich regions of the CpG

islands. In general, around 80% of all CpG dinucleotides are

methylated in mammalian genomes [24]. The lack of methylation

is thus a very good indicator of the function of a CpG island [25].

We compared the methylation distribution on chromosomes 21

and 22 to the literature [26]. In this study, the methylation

numbers in the CpG islands are 111,172 and 185,324 on

chromosomes 21 and 22, respectively. The methylation densities

in the CpG islands are shown in Table 4. The methylation

densities of the CpG islands in this study are 6.9% and 6.37% on

chromosomes 21 and 22, respectively. These results confirm the

higher CpG island methylation densities predicted by the

proposed method. Higher methylation densities exist in CpG

islands of tumors [27] and cancer cells [28]. In this study,

CPSORL was used to verify that the average methylation density

was 5.33% for the CpG islands in entire human genome. The

methylation number in the entire human genome and methylation

calculated densities are shown in Table 5 and Figure S7. Results

obtained by CPSORL imply that the methylation is present in

CpG islands.

CpG island prediction performance in all chromosomes
We compare the prediction performance of CpGIS, CpGclus-

ter, CPSORL and CPSORL (Alu) in Table 6, which shows

statistical values for the human genomes. The numbers for

CPSORL are markedly larger than those for of CpGIS and

CpGcluster. There are 208,536 islands predicted by CPSORL, 5.5

times the number of CpGIS (37,729) and 1.05 times the number of

CpGcluster (198,702) [20]. The CpG island average length as

determined by CPSORL is much longer than the average length

given by CpGIS and CpGcluster. The average length determined

by CPSORL is 572 bp where as CpGcluster yielded an average

length of 273 bp. If the Alu sequences are considered in CPSORL,

the CPSORL (Alu) length is 1100 bp, slightly longer than that of

CpGIS 1090 bp. Both CPSORL and CPSORL (Alu) use RL to

Table 6. Comparison of different methods on the number of CpG islands identified in the entire human genomes.

Methods CpGcluster CpGIS CPSORL CPSORL(Alu)

Genome length 2.86E+09

Number of predicted islands 198,702 37,729 208,536 54,483

Coverage (%) 1.90 1.44 4.1 2.1

Island length

Average 2736246 1,0906717 5726469 11006541

GC content 6SD 63.7867.50 60.6165.06 53.9065.25 56.2666.45

O/E ratio 6SD 0.85560.265 0.71760.082 0.64960.087 0.66560.10

TSSs 21,741 (10.9%) 15,106 (40.0%) 25,477 (12.2%) 22,057 (40.5%)

Promoter regions 29,156 (14.7%) 13,196 (35.0%) 54,356 (26.1%) 37,038 (67.8%)

doi:10.1371/journal.pone.0021036.t006
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extend the length. Hence, on the O/E ratio and GC content

average value are lower than for CpGIS and CpGcluster. This is

due to the fact that CpGIS, CpGcluster and CPSORL use the

length size difference. The minimum length of CpGcluster is 8 bp,

the minimum length of CpGIS is 500 bp and for CPSORL it is

200,2 Kbp. We compared the length distribution of CpGIS,

CpGcluster, CPSORL and CPSORL (Alu) in the human genome.

CPSORL determined most CpG islands to be in a range of

50,500 bp long (66.34%). The length distribution of the CpG

islands is shown in Figure S8.

In the study, we examined the promoter and transcription start

site (TSS) overlap in CpG island region. A promoter region was

defined as 21,500 bp to +500 bp bp around the TSS. In the

human genome (Table 6), the CPSORL TSS number is higher

(below 1.3%) than the TSS number of CpGcluster; the promoter

region numbers are also higher (below 11.4%). If the Alu sequences

are considered, the CPSORL (Alu) numbers are also higher than

the TSS and promoter region numbers of CpGIS TSS and

promoter regions. CPSORL (Alu) obtained 22,057 TSS and

37,038 promoter regions, whereas CpGIS obtained 15,106 TSS

and 13,196 promoter regions. CpGcluster identified some short

functional CpG clusters, but its high false positive rate strongly

limits its use in genome-wide searches for promoter-associated

CpG clusters in vertebrate genomes [20]. The CpG island values

predicted by CPSORL(Alu) conform to the TJ criteria

(length§500 bp, GC content§55% and O/E ratio§0.65) [3].

Materials and Methods

Data Sets
From all available contigs we randomly selected contigs

NT_113953.1, NT_113954.1, NT_113955.2, NT_113958.2 and

NT_113952.1 in chromosome 21 and NT_028395.3 in chromo-

some 22. The contigs include the start and stop sites, transcription

orientation and the evidence code as an example to illustrate the

method. However, calculations were carried out for all the contigs

in the human genome, which were extracted from NCBI (http://

www.ncbi.nlm.nih.gov). The data of experimentally verified CpG

islands was also extracted from NCBI.

Particle Swarm Optimization (PSO)
PSO is a population-based stochastic optimization algorithm,

which was developed by simulating the social behavior of

organisms [11]. In PSO, each particle in the search space can

be considered ‘‘an individual bird of a flock’’; it moves its position

based on its own knowledge and that of its neighbors. In other

words, each particle uses its own memory and the knowledge of

neighbors to find the best position (solution). In PSO, pbest is the

best position of a particle amongst its own past iterations, as

expressed by the highest fitness value. The best fitness value

amongst all individual pbest values is called the global best (gbest). At

each generation, the position and velocity of every particle is

updated according to its own pbest and gbest. The update equations

are shown below:

vnew
id ~w|vold

id zc1|r1|(pbestid{xold
id )zc2|r2|(gbest{xold

id ) ð6Þ

xnew
id ~ xold

id z vnew
id ð7Þ

where r1 and r2 are random numbers between (0, 1), and C1 and C2

are acceleration constants set to 2. Velocities vnew and vold denote

the velocities of the new and old particles, respectively. The

positions xnew and xold are the updated particle position and the

current particle position, respectively.

An inertia weight w is used to control the balance between the

global and local search. This weight is updated by the following

equation:

w~ wmax{wminð Þ| movemax{movei

movemax

zwmin ð8Þ

where wmax and wmin are set to 0.9 and 0.4, respectively. movei and

movemax represent the current iteration number and the total

number of iterations [11], respectively.

Complementary Particle Swarm Optimization (CPSO)
CPSO is an improved PSO algorithm, which uses a

complementary concept to increase the performance of PSO.

The aim is to improve the search ability of particles in the solution

space, and to avoid particle entrapment in a locally optimal

solution. When the distance of a particle to gbest is small, the

particle proceeds with a local search. If gbest does not leave the

local optimum after repeated iterations, a particle is considered

trapped in a local optimum. Hence, we randomly select half of the

optimal particle positions, and use the positions of the selected

particles to generate complementary particles. The created

complementary particles can escape the locally optimal solution

and thereby increase the size of the search space. The following

equation is used to create the complementary particles:

x
complement
id ~(XmaxzXmin){xselected

id ð9Þ

Where xselected are the positions of randomly selected particles, and

xcomplement are the positions of the complementary particles. Xmax and

Xmin denote the maximum and minimum limit of the solution

space, respectively. A diagram of the CPSO implementation is

show in Figure 1. The entire process can be divided into four

categories:

(a) When the gbest value is unchanged after five iterations, the

program randomly regenerates half of the particles. In Fig. 1

(a), S and G represent the selected particles and gbest,

respectively.

(b) The randomly selected particles S are replaced by the

complementary particles, i.e., the C particles in the new

search region, whereas not selected particles remain in the

local search process.

(c) Since the location of the global optimum in a given area is

unknown, the complementary particles are used to increase

the search space based on the movement of gbest. However, if

there are too many complementary particles, the search

efficiency in the original search area is reduced. We

therefore used 50% of the particles to achieve a balanced

search. In addition, any complementary particles are also

affected by the original gbest particle. Thus, CPSO tends to

find a better position than the current gbest in the search

process.

(d) Complementary particles have a fairly good chance of

finding the globally optimal solution. The pseudo-codes for

PSO and CPSO are shown in the Text S1.

Reinforcement learning
Reinforcement learning (RL) constitutes an intelligence control

system. It is characterized by effective, reactive, situational and

PSO with RL for the Prediction of CpG Islands
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adaptive properties and is robust under incomplete and uncertain

knowledge of the domain. It is also perceptually feasible and based

on mathematical foundations [10]. RL uses internal predictive

models to improve the learning rate and tries out various output

states to search for the best result. The result is evaluated

repeatedly until a predefined criterion is reached. A RL system can

be viewed as a machine whose unique target is to maximize the

positive (correctness) and minimize the negative (errors). CpG

islands that conform to the GGF criteria are predicted by PSO.

However, the length of a predicted CpG island sequence is often

shorter than the experimentally determined CpG island sequence.

Hence, this study uses RL to extend the length of the predicted

CpG islands. If the distance between adjacent CpG islands is

smaller than 200 bp, the two CpG islands are combined. All

predicted CpG islands are thus extended until the defined criterion

is met. Examples for CpG islands with RL and CpG islands

without RL are shown in Figure S1. The RL pseudo-code is also

shown in the supplementary data section.

Initialization
Since chromosome sequences are rather long, an input

sequence is divided into window sections that continually predict

CpG islands. The particle encoding is given by:

Pi~(Fs,Fe,Fl)

i is the particle number, Fs is the predicted start position of a CpG

island, Fe is the predicted end position of a CpG island, and Fl is

the predicted length of a CpG island.

Fitness Evaluation
This study uses the GGF criteria (GC content§50%, O/E

ratio§0.6, length §200 bp) to predict CpG islands in the human

genome. The fitness functions of the length, the GC content and

the O/E ratio are defined in Eqs. (10–12), respectively. In

addition, Eq. (13) is used to calculate the fitness value of each

particle.

CpGlength(Pi)~

CpGlength{CpGlength minð Þ
CpGlength maxð Þ{CpGlength minð Þ

, if CpGlengthw200

and CpGlengthv200

0, otherwise

8>>><
>>>:

ð10Þ

Figure 1. CPSO implementation diagram.
doi:10.1371/journal.pone.0021036.g001
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CpGlength maxð Þ~2000,CpGlength minð Þ~200

GC Pið Þ~
#Cz#G

#Az#Tz#Cz#G
ð11Þ

ObsCpG

�
ExpCpG Pið Þ~

#CpG

CpGlength

#C

CpGlength

|
#G

CpGlength

ð12Þ

Fitness Pið Þ~GC Pið ÞzObsCpG

�
ExpCpG Pið ÞzCpGlength Pið Þ ð13Þ

Where the #A: number of A (Adenine), #T: number of T

(Thymine), #C: number of C (Cytosine) and #G: number of G

(Guanine) nucleotides in the CpG islands represented byparticle

Pi. #CpG: number of CpG islands. CpGlength: length of CpG island.

A fitness function is used to evaluate the performance of

CPSORL. A high fitness value means that CpG islands are

predicted with high correlation coefficient and sensitivity. In

general, the length of CpG islands is 200 bp–2000 bp. However,

in order to reduce the fitness value of the CpG island length, a

normalization function was used to adjust the fitness function. The

length value is adjusted to a range of 0 to 1. A step-by-step

description of the calculations performed by the algorithm is

shown in Figure S9.
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(DOC)

Figure S4 ROC curves plotted for all methods to evaluate the
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Figure S5 Distribution of CpG islands in the entire human
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