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Abstract

Background: Apical membrane antigen 1 (AMA1) is one of the best-studied blood-stage malaria vaccine candidates. When
an AMA1 vaccine was tested in a malaria naı̈ve population, it induced functionally active antibodies judged by Growth
Inhibition Assay (GIA). However, the same vaccine failed to induce higher growth-inhibitory activity in adults living in a
malaria endemic area. Vaccination did induce functionally active antibodies in malaria-exposed children with less than 20%
inhibition in GIA at baseline, but not in children with more than that level of baseline inhibition.

Methods: Total IgGs were purified from plasmas collected from the pediatric trial before and after immunization and pools
of total IgGs were made. Another set of total IgGs was purified from U.S. adults immunized with AMA1 (US-total IgG). From
these total IgGs, AMA1-specific and non-AMA1 IgGs were affinity purified and the functional activity of these IgGs was
evaluated by GIA. Competition ELISA was performed with the U.S.-total IgG and non-AMA1 IgGs from malaria-exposed
children.

Results: AMA1-specific IgGs from malaria-exposed children and U.S. vaccinees showed similar growth-inhibitory activity at
the same concentrations. When mixed with U.S.-total IgG, non-AMA1 IgGs from children showed an interference effect in
GIA. Interestingly, the interference effect was higher with non-AMA1 IgGs from higher titer pools. The non-AMA1 IgGs did
not compete with anti-AMA1 antibody in U.S.-total IgG in the competition ELISA.

Conclusion: Children living in a malaria endemic area have a fraction of IgGs that interferes with the biological activity of
anti-AMA1 antibody as judged by GIA. While the mechanism of interference is not resolved in this study, these results
suggest it is not caused by direct competition between non-AMA1 IgG and AMA1 protein. This study indicates that anti-
malaria IgGs induced by natural exposure may interfere with the biological effect of antibody induced by an AMA1-based
vaccine in the target population.
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Introduction

WHO estimates there were 243 million malaria cases and 0.9

million deaths in 2008; the vast majority of deaths occurred in

African children less than 5-years old due to Plasmodium falciparum,

which is the most virulent species of human malaria [1]. While the

protective mechanisms remain to be elucidated, a passive transfer

study has shown the importance of gamma-globulin against blood-

stages of P. falciparum [2]. To control and eventually eradicate

malaria, an effective vaccine is considered to be needed, in

addition to the existing tools, such as drugs, insecticides, etc. [3].

Apical membrane antigen 1 (AMA1) is the one of the best-

studied blood-stage vaccine candidates and it is an essential

protein for parasite invasion of an erythrocyte [4]. The invasion

process is complicated (i.e., initial attachment, reorientation, tight

junction formation and internalization), and different studies have

suggested different roles for AMA1: binding to erythrocytes [5–7],

reorientation [8], or internalization [9]. In addition to erythrocyte

invasion, a recent study suggests that AMA1 is involved in

sporozoite invasion of hepatocytes [10]. These results indicate the

AMA1 protein may have multiple roles. Many studies have shown

that AMA1 vaccination can induce protective immunity in animal
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models (reviewed in [11]) and in an Aotus monkey challenge model

(the monkeys were challenged with P. falciparum). In the monkey

challenge model, anti-AMA1 antibody levels induced by a vaccine

before challenge have shown to correlate with protection [12,13].

In addition to the animal data, many, but not all, epidemiological

studies suggest a high level of AMA1 antibodies is associated with a

reduced risk of malaria [11]. Based on these findings, multiple

AMA1 Phase 1 trials [14–24] and a Phase 2 field trial [25] have

been conducted and published. However, to date no significant

protective effects have been shown in the target population of

African children.

An in vitro parasite Growth Inhibition Assay (GIA; also referred

to as the Invasion Inhibition Assay, IIA) is one of the few widely-

used biological assays that can measure the functional activity of

antibodies against blood-stage malaria. While it is still controver-

sial whether the activity measured by the GIA (IIA) reflects

protective immunity induced by a vaccine, the assay has been used

in preclinical and clinical studies as one of the immunological

readouts. Not only anti-AMA1 antibodies induced by malaria

infection [26,27], but also antibodies induced by AMA1

immunization in malaria naı̈ve individuals show growth-inhibitory

activity in the in vitro GIA [14,16,19,21–23].

In contrast, while the same AMA1 vaccine increased the anti-

AMA1 antibody levels when it was administered to adults who

lived in a malaria endemic area, the vaccine did not change the

parasite growth-inhibitory activity [15]. In a previous study, we

purified total IgGs from sera collected in an epidemiological study

in Mali (majority of the sera were collected from adults) and

separated the IgGs by affinity chromatography into an AMA1-

binding fraction (AMA1-specific) or an IgG fraction that does not

bind to AMA1 (non-AMA1 IgG). Previously we have shown that

the non-AMA1 IgG, more specifically a fraction of the non-AMA1

IgG which can bind to malaria extract, reduced the functional

activity of the AMA1 antibodies from U.S. vaccinees [27].

Interference by the non-AMA1 IgG induced by malaria infections

likely explains the reason why the AMA1 vaccine did not induce

higher growth-inhibitory activity in the Malian adults in the

vaccine trial. Because limited volumes of sera were collected from

children in the epidemiological study, we could not investigate

whether there was such ‘‘interfering’’ IgG in the children, who are

the main target population of the blood-stage vaccine and who

have less previous exposure to malaria.

Our recent Phase 2 trial in Malian children showed that there

was a small, but significant, increase of growth-inhibitory activity

when data from all AMA1-immunized children was analyzed (the

GIA was performed with total IgGs in the study) [28]. The level of

increase in the activity was not different from the level observed in

U.S. adults who were immunized with the same vaccine

formulation [28]. In the U.S. vaccine trial, all of the volunteers

showed negligible levels of inhibition before vaccination, and after

immunization the growth-inhibitory activity of total IgG was a

function of anti-AMA1 titer. However, in the Malian children, the

increase of growth-inhibitory activity was observed only in AMA1-

immunized children who had less than 20% inhibition before

vaccination. None of the children who had more than 20%

inhibition before vaccination (14/89 children in the AMA1-

immunized group) showed more than a 20% increase, while

antibody levels measured by ELISA increased in most of the

children. On the other hand, out of the remaining 75 children with

less than 20% inhibition before vaccination, 25 (33%) children had

more than a 20% increase after vaccination. In the present study

we wished to investigate the effect of non-AMA1 IgGs in the

children to determine whether similar interference effects could be

identified. Therefore, we made multiple pools of total IgG,

separated them into AMA1-specific and non-AMA1 IgGs, and

tested them by GIA. The non-AMA1 IgGs showed an interference

effect on growth-inhibitory activity.

Materials and Methods

Clinical trials and blood collections
The details of the U.S. adult Phase 1 trial [16] and the Phase 2

trial in Malian children [25] have been supplied elsewhere

(NCT00344539 and NCT00341250). In brief, adults 18–45 years

of age were enrolled in the U.S. trial and they were immunized

on Days 0, 28 and 56 with 20 or 80 mg of AMA1-C1 (a mixture

of the recombinant AMA1-FVO and AMA1-3D7 proteins)

formulated on AlhydrogelH and mixed with CPG 7909. Plasma

samples from individuals with high levels of anti-AMA1 antibody

(as determined by ELISA) on Day 70 were collected 3 months

after the final vaccination. For the Mali trial, Malian children 2–3

years old were enrolled and immunized on Days 0 and 28 either

with 80 mg of AMA1-C1 on AlhydrogelH or a comparator

vaccine (HiberixH). Blood samples were collected on Days 0 and

42. Both trials were conducted under Investigational New Drug

Applications reviewed by the U.S. Food and Drug Administra-

tion. The U.S. Phase 1 trial was reviewed and approved by the

Institutional Review Boards (IRB) of the National Institute of

Allergy and Infectious Diseases (NIAID), National Institutes of

Health (NIH) and by the University of Rochester Research

Subjects Review Board. Written informed consent was obtained

from all volunteers. The Mali Phase 2 trial was reviewed and

approved by the IRB of NIAID at NIH and by the Ethics

Committee of the Faculty of Medicine, Pharmacy and Dentistry,

University of Bamako. Community consent was obtained at a

meeting with village leaders, heads of families, and other

community members prior to the start of the Phase 2 study.

Individual informed consent was then obtained after oral

translation of the consent form into the local language.

Understanding of the contents of the consent was confirmed by

means of a multiple choice questionnaire. Parents or guardians

unable to read placed an imprint of his/her finger in place of a

signature; an independent witness also signed all consent forms.

Total, AMA1-specific and non-AMA1 IgG preparations
Total IgGs were purified from individual plasma samples from

the U.S. trial (n = 5) and normal U.S. sera (n = 2) using Protein G

columns as described previously [14]. Similarly, total IgG was

prepared from each plasma sample collected on Days 0 and 42

from the Mali Phase 2 trial. All of the total IgGs were dialyzed

against RPMI 1640 and concentrated to 40 mg/ml. Because the

volume of the total IgG from each individual Malian child was not

enough to perform AMA1-specific IgG purification, the total IgG

samples were ranked based on their anti-AMA1(3D7) antibody

level as judged by ELISA and were divided into 3 or 4 groups to

make pooled IgGs at each time point as follows: For Day 0 IgGs

(regardless of immunization groups), D0-1, D0-2, D0-3 and D0-4;

for Day 42 IgGs from HiberixH-vaccinated children, Hib-1, Hib-2

and Hib-3; for Day 42 IgGs from AMA1-vaccinated children,

AMA1-1, AMA1-2 and AMA1-3. The number of individual total

IgGs used to make each total IgG pool and the antibody level of

the pool is shown in Table 1. Although all of the anti-malarial

antibody in Day 0 IgGs and Day 42 IgGs from the Hiberix group

was induced by natural infection, it is possible that vaccination

with HiberixH and/or the timing of blood collection during the

malaria transmission season might alter the immune response.

Therefore, we made separate pooled IgGs from Day 0 IgGs and

Day 42 IgGs from HiberixH group in this study.

Child Non-AMA1 IgGs Interfere with GIA Activity
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From these U.S. total IgG and Mali total IgG pools, AMA1(3D7)

or AMA1(FVO)-specific IgGs and non-AMA1(3D7) or non-

AMA1(FVO) IgGs were prepared individually using AMA1(3D7)

or AMA1(FVO) protein immobilized on Sepharose 4 Fast Flow

columns as described previously [27]. During the affinity purifica-

tion process for each total IgG, the flow-through fraction was

reloaded to the same AMA1-immobilized column three times to

increase the efficacy of separation. Both AMA1-specific IgGs and

non-AMA1 IgGs were dialyzed against RPMI 1640 and concen-

trated to 150,300 ml (AMA1-specific IgGs) or 40 mg/ml (non-

AMA1 IgGs) of final product. Because of the limitations of volumes

available, AMA1(3D7)-specific/non-AMA1(3D7) IgGs were not

prepared from D0-2 or D0-3 total IgG pools.

ELISA
The standardized methodology for performing the ELISA has

been described previously [29]. The absorbance of each test

sample was converted into ELISA units using a standard curve

generated by serially diluting the standard in the same plate. The

ELISA units of each sample were then converted to mg/ml using a

conversion factor as described elsewhere [30]. The minimal

detection level of the AMA1 antibody in this study was 4 mg/ml,

and all responses below that limit of detection were assigned a

value of 2 mg/ml for the analysis.

For the competition ELISA, a fixed amount of total IgG from a

U.S. vaccinee (designated as US-total IgG), which gives approx-

imately an O.D. value of 3 (approximately 30–40 mg/ml of total

IgG in ELISA well), was mixed with 2-fold dilutions of non-

AMA1(3D7) IgGs from Malian children (ranging from 2 to

133 mg/ml in ELISA well). The mixtures were tested by ELISA

using an AMA1(3D7) or AMA1(FVO)-coated plate using the

standard ELISA procedure, and the direct O.D. value was used as

a final readout, instead of ELISA units.

GIA
The standard methodology for the GIA has been described

previously [14]. The assay was performed with purified IgGs at

indicated concentrations against the 3D7 or FVO strain of P.

falciparum parasites.

For the mixture GIA experiment, 4 mg/ml of non-AMA1(3D7)

or non-AMA1(FVO) IgGs were mixed with US-total IgG. The

concentration of US-total IgG was determined at which the IgG

was expected to give ,60% inhibition in the final mixture in the

standard GIA. The growth-inhibitory activity of mixtures was

determined using the standard GIA.

Statistical analysis
The correlation between the two data sets (e.g., anti-AMA1

antibody level and % inhibition in GIA, etc.) was tested by a

Spearman rank correlation test. Best-fit formulations of the GIA

data were calculated using logarithm-transformed antibody levels.

To evaluate interference effect of non-AMA1 IgG, delta %

inhibition was calculated as follows:

Delta % inhibition = (% inhibition of the US-total IgG alone) –

(% inhibition of a mixture of a non-AMA1 IgG and US-total IgG).

Data were analyzed using Prism 5 (GraphPad Software, Inc.,

CA, USA) and p values less than 0.05 were considered significant.

Results

Characteristics of AMA1-specific and non-AMA1 IgGs
from Malian children

We began with the affinity purification of AMA1-specific and

non-AMA1 IgGs in order to evaluate the growth-inhibitory

activity of the AMA1-specific fractions and to assess the possibility

of interfering antibodies in the non-AMA1 IgGs from the Malian

children. The antibody levels of each total IgG pool and non-

AMA1(3D7)/AMA1(FVO) IgG were measured by ELISA and the

results are shown in Table 1. The non-AMA1 IgGs had less than

10% of AMA1 antibody levels compared to the corresponding

original total IgG pools. These results showed that the AMA1-

specific purification method used in this study was efficient.

We then investigated the biological activity of the AMA1-

specific IgGs from U.S. vaccinees and Malian children by GIA

Table 1. Anti-AMA1 antibody level [mg/ml] in test IgGs (40 mg/ml).

AMA1-3D7b AMA1-FVOc

na Total IgG pool Non-AMA1 (3D7) IgG Total IgG pool Non-AMA1 (FVO) IgG

D0-1 93 2d 2d (NDg)f 2d 2d (NDg)

D0-2 38 6 N/Ae 8 2d (NDg)

D0-3 46 35 N/Ae 63 2d (NDg)

D0-4 27 439 13 (3) 675 19 3

Hib-1 47 2d 2d (NDg) 2d 2d (NDg)

Hib-2 33 10 2d (NDg) 16 2d (NDg)

Hib-3 35 246 7 (3) 334 8 (2)

AMA1-1 31 66 4 (6) 100 9 (9)

AMA1-2 41 260 16 (6) 354 17 (5)

AMA1-3 41 751 24 (3) 1,050 47 (4)

aNumber of individual IgGs to make total IgG pool.
bAntibody level [mg/ml] to AMA1(3D7) ELISA plate.
cAntibody level [mg/ml] to AMA1(FVO) ELISA plate.
dLess than the minimal detection level of antibody.
eN/A, No sample available.
fNumbers in parentheses, percent relative to the total IgG.
gND, Percent cannot be determined.
doi:10.1371/journal.pone.0020947.t001
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(Figure 1). As in our previous study [27], the AMA1-specific IgGs

from U.S. vaccinees showed a significant correlation between

antibody level and percent inhibition when they were tested

against the homologous strain of parasites (Spearman rank

correlation, p,0.001, rs = 0.96, 95% confidence interval (CI)

0.91–0.99 for 3D7; p,0.001, rs = 0.83, 95% CI 0.60–0.94, for

FVO) and the relationship followed a symmetrical sigmoid curve

when the antibody levels were log transformed (r2 = 0.93 for 3D7

and 0.82 for FVO). The AMA1-specific IgGs from Malian

children showed almost the same level of growth-inhibitory

activity at the same level of antibody in the GIA well, regardless

of which pools of total IgG were tested. When the data from all

AMA1-specific IgGs from Malian children were combined, there

were significant correlations between antibody levels by ELISA

and percent inhibition in GIA (for 3D7, p,0.001, rs = 0.97, 95%

CI 0.92–0.99; for FVO, p,0.001, rs = 0.94, 95% CI 0.86–0.98),

and each relationship followed a symmetrical sigmoid curve

(r2 = 0.99 for 3D7, 0.94 for FVO). These results indicate that there

was no obvious difference in biological activity of antibodies

among AMA1-specific IgGs induced by an AMA1 vaccination

(IgGs from U.S. vaccinees), by natural infection (IgGs from D0-1,

2, 3 & 4 and Hib-1, 2 & 3 pools) and by both natural infection and

vaccination (IgGs from AMA1-1, 2 & 3 pools).

We next evaluated the activity of non-AMA1 IgGs from Malian

children by GIA at two different concentrations in GIA well using

homologous strain of parasites (i.e., non-AMA1(3D7) IgGs were

tested against 3D7 strain of parasites and non-AMA1(FVO) IgG

with FVO parasites). The % inhibition of non-AMA1 IgG was

plotted against that of the original total IgG pool (Figure 2). The

slope of the best-fit line is 0.97 (95%CI: 0.81–1.14) for the 3D7

data set and 0.87 (95%CI: 0.64–1.10) for FVO. Since the slope

was not significantly different from 1, it showed that the depletion

of AMA1-specific IgGs from the total IgG did not materially

change growth-inhibitory activity, even though AMA1-specific

IgGs from the same total IgG pools also showed activity (Figure 1).

Non-AMA1 IgGs interfere with AMA1 IgG activity in GIA
To assess interference effect in the non-AMA1 IgGs, non-

AMA1 IgGs were tested by GIA either by themselves or in the

presence of total IgG from a U.S. vaccinee (US-total IgG) against

homologous strain of parasites (i.e., non-AMA1(3D7) IgGs were

tested with or without US-total IgG using 3D7 strain of parasites

in GIA, and non-AMA1(FVO) IgGs were similarly tested using

FVO parasites). The US-total IgG was also tested alone as a

positive control (black bar in Figure 3). The non-AMA1 IgGs

showed less than 20 % inhibition at 4 mg/ml (Figure 3). The

mixtures of non-AMA1 IgGs and US-total IgG displayed lower

inhibition for both 3D7 and FVO parasites compared to the US-

total IgG alone. To evaluate the strength of the interference effect

of each non-AMA1 IgG, the difference between US-total IgG

alone and the mixture was calculated (delta % inhibition). As

shown in Figure 4, the non-AMA1 IgGs purified from total IgG

pools with higher AMA1 antibody levels showed greater

interference (larger delta % inhibition) than those from total IgG

pools with lower titer. When all of the data were combined, there

was a significant correlation between the AMA1 antibody level in

the original total IgG pool and the interference effect of non-

AMA1 IgG (Spearman rank correlation, p = 0.021, rs = 0.80 for

3D7; p = 0.003, rs = 0.82 for FVO).

To test whether the interfering effect of non-AMA1 IgGs was due

to the blocking of binding between AMA1 antigen and anti-AMA1

antibody, competition ELISA was performed. A fixed amount of

US-total IgG was mixed with serially diluted non-AMA1 IgGs which

showed a higher interference effect in Figure 3 (i.e., D0-4, Hib-3 and

AMA1-3). The mixtures were applied to AMA1(3D7) or

AMA1(FVO)-coated ELISA plates as primary antibodies and the

amount of antibodies which bound to AMA1 protein was measured.

The mixture with 14 mg/ml of non-AMA1(3D7) IgG in this ELISA

using AMA1(3D7)-coated plates had the same ratio of US-total IgG

and non-AMA1(3D7) IgG as tested in Figure 3 by GIA using 3D7

strain of parasites, and 11 mg/ml of non-AMA1(FVO) IgG for FVO.

As shown in Figure 5, none of the non-AMA1 IgGs tested blocked

binding of anti-AMA1 antibody in US-total IgG to the ELISA plates.

The same assay was conducted using total IgG from another U.S.

vaccinee and also showed no competition (data not shown). Thus it

does not appear that the interfering effect is due to direct inhibition

of the anti-AMA1 antibodies binding to the plate antigen.

Discussion

In the present study, we have shown that the non-AMA1 IgGs

from Malian children interfere with the growth-inhibitory activity

Figure 1. Strong correlation between anti-AMA1 antibody level and the growth-inhibitory activity in AMA1-specific IgGs. Anti-
AMA1(3D7) (A) or anti-AMA1(FVO) (B) antibody levels (mg/ml) in the GIA well (x-axis) are plotted against % inhibition (y-axis) of P. falciparum 3D7 (A)
or FVO (B) parasites. Each AMA1-specific IgG was tested at three (for U.S. IgGs) or two (for Mali IgGs) different concentrations. All responses below the
limit of detection in ELISA were assigned a value of 2 mg/ml for the analysis.
doi:10.1371/journal.pone.0020947.g001
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of anti-AMA1 antibodies obtained from malaria naı̈ve U.S.

volunteers vaccinated with AMA1 (US-total IgG). Interestingly,

the interference effect of non-AMA1 IgG from total IgG pools

with higher titers of AMA1 was higher than those from total IgG

pools with lower titers. However, while the non-AMA1 IgGs

showed this interference in GIA, they did not block binding of

anti-AMA1 antibodies in US-total IgG to AMA1 protein in a

competition ELISA.

In the case of viruses, such as hepatitis C virus (HCV) or human

immunodeficiency virus (HIV), there are studies showing either

monoclonal or polyclonal antibodies can interfere with the effects

of other monoclonal or polyclonal antibodies in a neutralizing

assay [31-35]. In these studies, the antibodies recognize different

epitopes on the same antigen and the mechanism of the

interference may be explained by steric blocking [36] and/or

conformational rearrangement induced by the non-neutralizing

antibody. A similar phenomenon has been reported with the P.

falciparum Merozoite Surface Protein 1 (MSP1), another blood-

stage vaccine candidate. In the case of MSP1, a proportion of anti-

MSP1 antibodies called ‘‘blocking’’ antibodies, which are found in

people living in malaria endemic areas, competes with an anti-

MSP1 monoclonal antibody capable of inhibiting merozoite

invasion of erythrocytes in vitro, as judged by a competition

ELISA and by an MSP1 processing assay [37–39]. However, it is

not clear whether such ‘‘blocking’’ antibodies interfere with the

activity of anti-MSP1 antibody, especially the activity of polyclonal

antibodies, in a biological assay, such as GIA. It has been reported

that human ‘‘blocking’’ antibodies interfere with the invasion-

inhibitory activity of mouse anti-MSP1 monoclonal antibody

(mAb) 12.8, but the same human antibodies did not block the

biological activity of another inhibitory mAb 12.10 [37]. To our

knowledge, non-AMA1 IgG is the only reported antibodies which

have been shown to interfere with the growth-inhibitory activity

induced by human antigen-specific polyclonal antibodies. How-

ever, it is conceivable that similar functional interference effect

exists in antibodies against other malarial antigens, including

MSP1.

In contrast to the cases of HCV, HIV or MSP1, the non-AMA1

IgGs tested in this study showed negligible level of binding to the

AMA1 protein as judged by ELISA (Table 1). In addition, the

non-AMA1 IgGs did not compete with US-total IgG in a

competition ELISA (Figure 5). We tested up to ,10 times greater

Figure 2. Non-AMA1 IgGs show comparable levels of growth-inhibitory activity as the original total IgG pools. Non-AMA1(3D7) (A) or
non-AMA1(FVO) IgGs were tested against P. falciparum 3D7 (A) or FVO (B) parasites at 10 or 20 mg/ml in GIA well. Percent inhibition of non-AMA1
IgG (y-axis) is plotted against the % inhibition of the original total IgG pool (x-axis). The dotted line represents y = x line.
doi:10.1371/journal.pone.0020947.g002

Figure 3. Non-AMA1 IgGs from Malian children reduce the
growth-inhibitory activity of US-total IgG. (A) Four mg/ml of non-
AMA1(3D7) IgGs were tested either by themselves (left side) or with US-
total IgG (right side) using P. falciparum 3D7 parasites. The US-total IgG
was tested alone as a positive control (black bar) (B). Similar study was
performed using non-AMA(FVO) IgGs and P. falciparum FVO parasites.
NS: % inhibition was in the range of 65%. *: no non-AMA1 IgG was
made in this study.
doi:10.1371/journal.pone.0020947.g003
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ratio of non-AMA1 IgG to US-total IgG compared with the ratio

tested in GIA (Figure 3) where non-AMA1 IgG showed this

interference effect, but still there was no competition observed.

Since the non-AMA1 IgGs had some residual anti-AMA1

antibodies in the final preparation, one may consider the

possibility that the residual antibody in the non-AMA1 IgGs

masked the competition effect. However, we think this is not the

case. When non-AMA1 IgGs were tested at 11–14 mg/ml (which

gave the same ratio of non-AMA1 IgG and US-total IgG as tested

in Figure 3), the amount of anti-AMA1 antibody coming from the

non-AMA1 IgG was less than 5% compared to the one from US-

total IgG. Even at the highest concentration of non-AMA1 IgG

tested (i.e., 133 mg/ml), anti-AMA1 antibody from non-AMA1

IgG was less than 30% compared to the one from US-total IgG.

Therefore, we concluded the competition effect of non-AMA1 was

not obvious if any. These results suggest that either binding

between AMA1 protein and non-AMA1 IgGs was too weak to

detect by conventional ELISA and/or the mechanism of

interference by non-AMA1 IgG is an indirect effect. Not only

the function of AMA1 during the invasion process, but also the

mechanism of invasion inhibition by anti-AMA1 antibodies is still

controversial. Some studies show that a rabbit polyclonal growth-

inhibitory anti-AMA1 antibody disrupts proteolytic processing of

AMA1 [40,41] and other studies with inhibitory mAb or peptide

show that they block complex formation of AMA1 and rhoptry

neck proteins RON2, RON4 and RON5 [42,43]. In our previous

study [27], we have shown that the interfering activity was due to

the malaria-specific IgGs in the non-AMA1 IgGs population.

However, because the growth-inhibitory activity of non-AMA1

IgGs in the previous study was high (the IgGs were collected

mainly from Malian adults), we couldn’t measure the strength of

the interference effect. In this study with IgGs from Malian

children, we could not perform malaria-extract-specific IgG

purification from the non-AMA1 IgGs because of the limited

quantity of blood samples available. On the other hand, as the

intrinsic growth-inhibitory activity of non-AMA1 IgGs from

Figure 4. The correlation between anti-AMA1 antibody levels in the original total IgG pool and the interference effect of the
corresponding non-AMA1 IgG. Anti-AMA1(3D7) (A) or anti-AMA1(FVO) (B) antibody levels (mg/ml) in the original total IgG pools (x-axis) are
plotted against delta % inhibition of non-AMA1 IgGs (y-axis) tested with P. falciparum 3D7 (A) or FVO (B) parasites. Delta % inhibition of each non-
AMA1 IgG was calculated using the data presented in Figure 3 as follows: delta % inhibition = (% inhibition of the US-total IgG alone (black bar in
Figure 3)) - (% inhibition of a mixture of the non-AMA1 IgG and US-total IgG).
doi:10.1371/journal.pone.0020947.g004

Figure 5. Competition ELISA with US-total IgG and non-AMA1 IgGs. (A) A fixed amount of US-total IgG, which gives approximately O.D.
value of 3, was mixed with 3-fold dilutions of non-AMA1(3D7) IgGs from Malian children. The mixtures were tested by ELISA using an AMA1(3D7)-
coated plate and the O.D. values are shown. (B) Similar study was performed using non-AMA(FVO) IgGs and an AMA1(FVO)-coated ELISA plate.
doi:10.1371/journal.pone.0020947.g005
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Malian children is relatively low, we can measure the strength of

the interference effect. We found that the interference effect of

non-AMA1 IgG from total IgG pools with higher AMA1 titers was

greater than that from total IgG pools with lower AMA1 titers. We

believe the higher AMA1 titer reflects more malaria exposure,

because the Malian children with higher AMA1 titer also display

higher titers against other malaria antigens such as MSP1 (our

unpublished observation). Therefore, the correlation between anti-

AMA1 antibody levels in the original total IgG pool and the

strength of interference effect in non-AMA1 IgG suggests that the

interference effect is due to antibody against a malaria antigen

other than AMA1. If the interference mechanism of the non-

AMA1 IgGs is indirect, as the ELISA and competition ELISA

results suggest, it is possible that the non-AMA1 IgGs may bind to

RON2, RON4 and/or RON5 first and then may block the ability

of the anti-AMA1 growth-inhibitory antibody to bind to the

critical site of complex formation. Further studies are required to

reveal the mechanism of the interference IgGs, and such studies

may enhance our understanding of the invasion-inhibition

mechanism by human anti-AMA1 polyclonal antibodies.

In the mixture experiment (Figure 3), we used non-AMA1 IgGs

at 4 mg/ml, while the physiological concentration of IgG in

human serum is 10–20 mg/ml. In the previous study where we

prepared non-AMA1 IgGs from Malian adults, 4 and 0.4 mg/ml

of non-AMA1 IgGs were tested. However, 0.4 mg/ml of non-

AMA1 IgGs did not show a clear interference effect [27]. The

result suggests that a certain level of non-AMA1 IgGs is needed to

detect interference effect in this assay. On the other hand, if we use

non-AMA1 IgGs at 10 or 20 mg/ml, several of them show .20%

inhibition by themselves (Figure 2), so that it is difficult to calculate

the interference effect, as the mixture cannot show lower inhibition

than non-AMA1 IgG alone. Therefore, we decided to use the

same 4 mg/ml concentration as the previous study [27]. The

concentration of AMA1-specific IgG in the US-total IgG used for

the mixture experiment was at 133 (for 3D7 parasites) or 202 (for

FVO) mg/ml, and median level of AMA1-specific antibody in

Malian children after immunization was 111.6 mg/ml [28].

Therefore, it is reasonable to assume than non-AMA1 IgGs

interfere with growth-inhibitory activity of AMA1-specific IgG at

physiological ratio (i.e., mix 10–20 mg/ml of non-AMA1 IgGs

with 100 mg/ml AMA1-specific IgG).

This study clearly shows that there are interference IgGs in the

2–3 year old children who are the main targets of a blood-stage

vaccine. From a vaccine development point of view, one of the

other concerns is whether the AMA1 vaccination by itself induces

such interfering IgGs. In our previous study, we did not detect any

interference effect of non-AMA1 IgG from U.S. vaccinees [27].

That study suggests that the AMA1 vaccination per se is unlikely

to induce the interference IgG at least in a malaria naı̈ve

population. In this study, the volume of plasma from each Malian

child was too small to make sufficient amounts of AMA1-specific

and/or non-AMA1 IgGs for experiments. Even if we collected a

larger amount of plasma from each individual child, it is

practically impossible to differentiate AMA1-specific and/or

non-AMA1 IgG induced by the vaccination from those induced

by a natural infection in children living in a malaria endemic area.

For that reason, it is difficult to exclude the possibility that AMA1

vaccination induces interfering IgGs in the target population.

However, as shown in Figure 4, non-AMA1 IgGs from children

immunized with the AMA1 vaccine showed the same (AMA1-3)

or less (AMA1-1 and AMA1-2) interference than those from

children without AMA1 vaccination with the same AMA1 levels in

the original total IgG pools. Therefore, there is no evidence to

suggest that AMA1 vaccination induced more interfering IgGs in

this study, rather the data from AMA1-1 and AMA1-2 indicates

that the interference antibody may be induced by natural

infection, not by the AMA1 vaccination.

AMA1 is a highly polymorphic protein [44,45] and it is obvious

that polymorphism is one of the major obstacles to make a broadly

effective vaccine [11]. Indeed, when AMA1 vaccines are

administered in malaria naı̈ve individuals, the anti-AMA1

antibodies induced by vaccination show growth-inhibitory activity

against the homologous strain of parasites, but weaker or no

activity against heterologous strains of parasites, regardless of

adjuvant used [16,19,22]. In this study, we investigated both 3D7

and FVO strains of parasites and the results demonstrate that the

interference effect occurs in both allelic forms of AMA1. However,

we did not test the heterologous combination, e.g., a mixture of

non-AMA1 (3D7) IgGs and US-total IgG tested against FVO

strain of parasites. Because the non-AMA1(3D7) IgGs still had

anti-AMA1(FVO)-allele-specific antibody in the preparation,

which was confirmed by ELISA and GIA (data not shown), it is

very difficult to interpret the result of mixture experiments with

FVO parasites. We tested a tandem purification method (i.e., total

IgGs were applied onto an AMA1(3D7) purification column and

an AMA1(FVO) column sequentially) using rabbit anti-AMA1

antibodies, but there were technical problems with completely

depleting anti-AMA1(3D7) and anti-AMA1(FVO)-allele-specific

antibodies from the total IgGs (data not shown). Further studies

could be conducted to test the cross-reactivity of the interfering

antibodies if enough volume of starting blood materials is

available.

One of the major questions in malaria vaccine development is

what assay can serve as a surrogate for clinical protection. At this

stage, there is no immunological assay proven to be correlated

with clinical protection. As noted above, anti-AMA1 antibodies

induced both by a malaria infection [26,27] and by an AMA1

immunization in malaria naı̈ve individuals [14,16,19,21–23] show

growth-inhibitory activity, and a recent clinical challenge trial with

AMA1 vaccine in a malaria naı̈ve population has shown that there

is a significant correlation between in vivo parasite multiplication-

rate and growth-inhibitory activity measured by in vitro GIA in

vaccine recipients (our unpublished observation). In addition,

some epidemiological studies have shown that the total growth-

inhibitory activity (or invasion-inhibition activity) before the

malaria transmission season is significantly associated with a

subsequent malaria risk [46,47]. However, other epidemiological

studies have not shown such associations [48,49]. Therefore, one

may dispute the usage of this assay for vaccine development. These

epidemiological studies did not test the specificity of antibodies. In

addition, interpretation of growth-inhibitory activity of samples

from epidemiological studies for a specific antigen is not

straightforward. As shown in Figure 1, when anti-AMA1-specific

IgGs were separated from total IgG pools of Malian children, they

showed similar activity as anti-AMA1 IgG from U.S. vaccinees.

However, the AMA1-depleted IgG, i.e., non-AMA1 IgG,

displayed the same level of inhibition as the original total IgG

pool (Figure 2). We also observed the same phenomenon in our

previous study [27] where we separated non-AMA1 IgG from

Malian adults’ total IgGs. In addition, another of our studies [28]

showed that pre-incubation of Malian children’s total IgGs with

AMA1 protein did not reduce growth-inhibitory activity induced

by natural infection (even though the total IgGs had higher level of

AMA1 titer), while the pre-incubation did diminish vaccine-

induced activity almost completely. All of the data indicate that the

overall growth-inhibitory activity induced by a natural infection is

not simply the sum of growth-inhibitory activity of individual

antibodies. Our preliminary study shows that there is no additive
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effect of growth-inhibitory activity between rabbit anti-AMA1

antibody and anti-MSP1 antibody (our unpublished observation).

Furthermore, it is possible that malaria infection induces not only

growth-inhibitory antibodies, but also interfering antibodies in

humans, at least in the case of AMA1, as shown in this study.

While it is difficult to prove whether such non-additive (and/or

interference) effects really occur in vivo, or whether this is just a

limitation of the in vitro assay, in either case the growth-inhibitory

activity of antibodies from a malaria endemic area for a specific

antigen should be interpreted with caution. However, the GIA is

the only functional assay widely used for AMA1-based vaccine

development. If the growth-inhibitory activity measured by the

GIA reflects some mechanism of protection in vivo, the results of

this study suggest that pre-existing anti-malaria immunity may

modulate the efficacy of the AMA1 vaccine. At a minimum, we

believe it is extremely important to take these findings into account

in evaluating immunogenicity of AMA1-based vaccines when a

study is conducted in populations exposed to malaria.
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