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Abstract

The mitochondrial transcriptome from land plants undergoes hundreds of specific C-to-U changes by RNA editing. These
events are important since most of them occur in the coding region of mRNAs. One challenging question is to understand
the mechanism of recognition of a selected C residue (editing sites) on the transcript. It has been reported that a short
region surrounding the target C forms the cis-recognition elements, but individual residues on it do not play similar roles for
the different editing sites. Here, we studied the role of the 21 and +1 nucleotide in wheat cox2 editing site recognition
using an in organello approach. We found that four different recognition patterns can be distinguished: (a) +1 dependency,
(b) 21 dependency, (c) +1/21 dependency, and (d) no dependency on nearest neighbor residues. A striking observation
was that whereas a 23 nt cis region is necessary for editing, some mutants affect the editing efficiency of unmodified distant
sites. As a rule, mutations or pre-edited variants of the transcript have an impact on the complete set of editing targets.
When some Cs were changed into Us, the remaining editing sites presented a higher efficiency of C-to-U conversion than in
wild type mRNA. Our data suggest that the complex response observed for cox2 mRNA may be a consequence of the fate of
the transcript during mitochondrial gene expression.
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Introduction

RNA editing challenges the central dogma of molecular biology

as it changes the information encoded for by the gene at the RNA

level. This process affects a wide variety of organisms through

nucleotide insertion/deletion or nucleotide conversion [1]. In

plant mitochondria, RNA editing occurs by site-specific deamina-

tion of cytosines [2]. While around 30 editing events occur in the

chloroplast transcriptome [3], more than 400 cytosine residues are

changed to uracil in flowering plant mitochondria [4,5,6,7,8]. In

most cases, changes occur in the coding region of mitochondrial

mRNAs, increasing the similarity of the encoded proteins with

their counterparts from organisms that do not edit their transcripts.

Therefore, RNA editing constitutes an essential step to ensure the

production of functional proteins and the proper functioning of

mitochondria [9,10].

One major issue is to understand how the editing machinery

can recognize specific C residues on the transcript, since there is

no obvious consensus sequence when comparing the different cis-

elements on the transcriptome. Based on in vitro and in organello

experiments, it has been reported that the cis-acting elements

necessary and sufficient for recognition reside in a short sequence

of fewer than 30 nucleotides encompassing the C target [11,12,

13,14]. However, in some cases, distal regions can affect the

editing efficiency [15,16].

Little is known about the trans-elements constituting the RNA

editing machinery in plants. Organellar RNA editing trans factors

were first discovered for the chloroplast [17] and recently, several

PPR proteins have been identified as trans acting factors involved

in mitochondrial RNA editing [18,19,20,21,22,23,24,25,26,27,

28]. Since no deaminase activity has been found associated with

these PPR proteins, it is postulated that they are involved in

editing site recognition. The specific binding to the cis elements is

thought to recruit the catalytic element, the cytosine deaminase.

However, to date, specific binding to the cis element has only been

reported for two PPR trans factor, CRR4 in the chloroplast [29]

and PpPPR_71 in the mitochondria from the moss Physcomitrella

patens_[24]. It should be noted that some PPR proteins participate

in editing several C residues [19,20,23,25,26,27,28]. Considering

that the cis-acting elements of these sites present no similarity, the

mechanism allowing the recognition of different sites by trans-

acting factors remains an important question.

To gain insight into the RNA editing process, we studied the

consequences of point mutants of cis recognition elements on the

editing capacity of cox2 editing sites. Extensive mutagenesis

analyses of C77 and C259 editing sites from wheat cox2 demon-

strated that although the extent of cis-elements is similar, the role

of each residue is different in the recognition of these targets

[11,12]. Notably, two different recognition patterns were observed

based on the requirement for either the +1 or the 21 neighbor
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nucleotide to the target C residue [11]. These observations have

been confirmed by in vitro and in silico analyses [30,31,32]. One

question is whether the identity of the nearest neighbor nucleotide

of the editing site reflects a general recognition mechanism for

trans-acting factors. In this case, selected residues in the cis-element

should make it possible to discriminate between different editing

sites on the transcript. Bioinformatic analyses suggest that trans

acting factors may be able to distinguish purines from pyrimidines

and, at particular positions, one specific nucleotide [33].

We present here the editing status of mitochondrial mRNAs

from single and multiple mutants of cox2 introduced into purified

mitochondria. This approach allows the coincidental analysis of all

editing sites on the same transcript. Our study reveals at least four

different recognition patterns for C-to-U editing based on the

importance of the contiguous residue. Furthermore, our findings

suggest that RNA editing in plant mitochondria is not isolated but

is rather part of a more general maturation process.

Materials and Methods

All plasmids used in this study are based on the pCOX2Ta

vector previously described [12]. They contain the inverted repeat

region from the wheat cob gene (Ir-cob) (accession no. AF337547).

This sequence combined with the 23 bp upstream insert sequence

served to specifically amplify transgenic products with nested

PCR.

Construction of mutants
The list of the oligonucleotides used is given in Table S1. The

strategy is based on the QuikChangeH Site-Directed Mutagenesis

Kit (Stratagene). Complementary primers bearing the mutation

were used for PCR reactions on 100 ng of pCOX2Ta plasmid or

derivatives. The PCR mixture contained 1 mM of each primer,

200 mM of each dNTP and 2.5 units of Pfu DNA polymerase

(Stratagene) in a final volume of 50 ml, according to the supplier’s

protocol. Parameters for amplification were 95uC for 2 min, 20

cycles at 95uC for 30 s, 48uC for 30 s and 68uC for 14 min, and

finally 68uC for 10 min. After amplification, 10 units of DpnI

endonuclease (Promega) were directly added to the PCR reaction

for 3 hours at 37uC to eliminate the original DNA template. Ten

microliters of the digestion reaction were used to transform

competent E. coli DH5a. The sequence of selected mutants was

verified before use.

Mitochondrial purification and electroporation
Mitochondria were prepared from 20 grams of wheat embryos

essentially as described [34]. Sucrose gradient purified mitochon-

dria were used immediately in electroporation experiments after

protein determination using the Bio-Rad Protein Assay (Bio-Rad).

Electroporation was carried out with 1 mg of mitochondrial

proteins in 50 ml of 0.33 M sucrose and 2 mg of recombinant

plasmid in the conditions previously described [34]. Electroporat-

ed mitochondria were incubated for 18 h at 25uC with shaking

at 130 rpm in a reaction mixture containing 0.33 M mannitol,

90 mM KCl, 10 mM MgCl2, 12 mM Tricine (pH 7.2), 5 mM

KH2PO4, 1.2 mM EGTA, 10 mM sodium succinate, 1 mM GTP,

2 mM ADP, 0.15 mM (each) CTP and UTP, 2 mM dithiothreitol.

Mitochondria were recovered by centrifugation at 150006 g for

15 min at 4uC. RNA was purified with 800 ml TrizolH reagent

(Invitrogen) according to the supplier’s protocol.

RT-PCR
One microgram of nucleic acids obtained after TrizolH

treatment was digested with 2 U of DNase I Amplification grade

(Invitrogen) for 15 min at 25uC. cDNA synthesis was performed

with 200 units of Superscript II RT (Invitrogen) using 100 ng of

random primers hexamers as primers (Promega). PCR amplifica-

tions were performed with primers 1a and 1b using the Advantage

2 polymerase mix (Clontech) as follows: 95uC for 2 min, 20 cycles

at 95uC for 30 s, 64uC for 1 min and 68uC for 2 min, and finally

68uC for 10 min. Primers 2a and 2b were used for nested PCR

on 2 ml of PCR1. Parameters were the same for PCR2, except

for annealing temperature and cycling, which were 55uC and 20

cycles respectively.

Primers used in RT-PCR analyses
1a: GCGGTGCAGTCATACAGATCTGC

1b: TCCCGCGGGAAGCGGAAAGC

2a: GAGCAGAGCTGAAAAAGATG

2b: TATCCAGATTTGGTACCAAA

Quantization of RNA editing
To determine the profile and the rate of C-to-U conversion in

RT-PCR products, PCR bands corresponding to the mature

transcripts were excised from the agarose electrophoresis gel and

purified with the GFX PCR DNA and Gel Band Purification Kit

(GE Healthcare). The purified fragments were ligated into pGEM-

T easy vector as recommended by the manufacturer (Promega).

Cloned PCR products were sequenced with the BigDyeH Termi-

nator Cycle Sequencing Kit v 1.1 (Applied Biosystems). Sequences

analyses were performed at the Genotyping and Sequencing

Facility of Université Bordeaux Segalen. Editing efficiency was

determined by sequencing at least 16 cDNA clones from each

electroporation experiment as described [35]. Editing efficiency

variations in mutants between independent experiments were

lower than 10%. Moreover, no significant variations in the ratio

precursor/mature mRNA were observed.

Results

The wheat cox2 construct and their mutant derivatives are

formed by two exons of 388 and 392 bp, split by a 1223 bp intron.

The cox2 transcript possesses 17 editing sites, 6 in the first and 11

in the second exon respectively [36]. After introduction of the

recombinant DNA into T. aestivum mitochondria, the mRNA was

analyzed by RT-PCR and the identity of spliced molecules was

verified by sequence analysis. The editing efficiency of wild-type

and mutant cox2 transcripts was determined by sequencing at least

16 individual RT-PCR clones from each electroporation exper-

iment. The results presented correspond to the percentage of C-to-

U conversion for every editing site in the population of cDNA

analyzed. The editing efficiency of site C259, which has been

extensively studied [11,12], was used as an internal standard and

was systematically monitored for each assay. In all the experiments

presented in this study, site C259 was edited with an efficiency

higher than 85%.

Four different recognition patterns exist based on +1/21
dependency

RNA editing of sites C77 and C259 on cox2 transcripts is known

to be affected by mutations at the 21 and +1 residues, respectively

[11,12]. We extended these analyses to the entire transcript by

mutating the neighbor 21 or +1 residue from the different cox2

editing sites. The A residues were replaced by T and vice versa; the

C residues were replaced by G, and the G residues were replaced

by T. Site C385 belonging to the IBS1 region of exon1 was not

modified.

Mutational Analysis of cox2 mRNA Editing
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The editing response was defined as ‘‘severely affected’’ when

the editing efficiency was reduced to less than 25% of the wild

type, and ‘‘slightly affected’’ when the editing efficiency was

comprised between 75% and 25% of the wild type. Individual

mutants showed that residues C167, C169, C467, C550, C563

and C620 were severely affected when the neighbor +1 residue

was changed, whereas sites C449 and C587 were slightly affected.

Residues C30, C466, C682 and C704 were not affected by the +1

mutation (Fig. 1). When the 21 residue was mutated, sites C167,

C563 and C682 were severely affected, whereas sites C30, C466,

C467, C550, C587 and C620 showed only a moderate reduction

of editing. A weak editing efficiency modification for sites C169,

C449 and C704 was observed in 21 mutants (Fig. 1).

These results make it possible to define four different recog-

nition patterns based on the role of the +1/21 nucleotide: (a) +1

dependency for sites C169, C449, C467, C550, and C259, (b) 21

dependency for sites C30, C682 and C77, (c) 21/+1 dependency

for sites C167, C563 and C620, (d) no dependency on the nearest

neighbor residues for sites C466, C587 and C704.

As previously described, sites C482 and C638 are not consi-

dered in this analysis because they were found unedited in

electroporation experiments [11]. This observation was confirmed

in most of the experiments described here. Unexpectedly, the +1

mutation on site C482 and the 21 mutation on site C638 (Fig. 1)

showed a low but significant level of editing for both residues.

Some editing sites are not autonomous for editing
reaction

In a second set of experiments, either the 21 or the +1 neighbor

residues from all editing sites, with the exception of C77, C259 and

C385, were mutated on a single construct. In these mutants, the

target residues C466 and C467 are abolished by the 21 and +1

mutation respectively. In both +1 and 21 combined mutant

constructs, the overall editing profile and extent of the transcripts

were different from the wild type (Fig. 2). Notably, site C385 had a

decreased editing efficiency in combined +1 mutant although it

was not mutated (Fig. 2B). Comparing the editing efficiency of

individual sites in transcripts from the combined mutant with those

from single mutants, we observed that sites C167, C169, C449,

C482, C550, C638 and C704 presented a similar response. In

contrast, sites C30(21), C620(+1) and C620(21) showed weaker

editing efficiency in transcripts from the single mutant construct

than those from combined mutant ones (Table 1). For sites

C587(+1) and C587(21) the situation was the contrary as editing

efficiency was higher in combined than individual mutants.

Moreover, sites C563(+1) and C682(21) reached 10% editing

efficiency in individual mutants whereas they were not edited in

combined constructions. These results indicate that some editing

sites are not autonomous and that the editing reaction may be

affected by mutations outside of the 216/+6 region. Indeed, the

editing profile of cox2 transcripts from single 21 and +1 mutants

(supplemental Fig. S1) indicate that modifications in point

mutations may have an impact on the editing status of the mRNA.

Editing is increased in pre-edited molecules
To verify whether the editing status of one site may have an

impact on the editing efficiency of others, we decided to modify

the residues that are highly edited in wild type transcripts. For this

purpose, sites C259, C466, C467, C550 and C704 were mutated

into Ts (pre-edited state). Notably, sites C77, C167, C169, C482,

C638 and C682 were more efficiently edited in pre-edited than in

wild type mRNAs. The editing efficiency of sites C30, C385,

C449, C563 and C620 showed minor differences or none at all.

Interestingly, site C587 behaves differently as it was less edited in

the pre-edited context than in the wild type one (Fig. 3).

Editing efficiency is influenced by the status of another
site

In the case of contiguous editing sites, the C targets are also part

of the cis-recognition sequence of the neighboring one. The

contiguous C167 and C169 editing sites allow the reciprocal

influence between editing sites to be studied. For this purpose,

different constructs containing either 21 or +1 mutations were

expressed in isolated mitochondria. Fig. 4A depicts the different

mutations used. As shown above, editing of C167 was strongly

affected by 21 or +1 mutation (61 and 62). It was reduced about

50% by the mutation at position +3 (63). In contrast, editing of

C169 was not affected by the 21 mutation (62) but was severely

reduced in the mutant + 1 (63) (Fig. 4B). It should be noted that

62 represents a +1 modification for C167, but is a 21 mutant

with regard to C169. The same mutations were introduced into

pre-edited C167T and C169T constructs. Both C167T and

C169T presented slight modifications on the editing efficiency of

the contiguous residue. The C169T mutant did not affect the

editing efficiency of C167 when combined with the 62 and 63

mutations compared to the wild type construct. On the other

Figure 1. Effect of nearest neighbor mutations on cox2 mRNA editing. The editing efficiency of different editing sites on cox2 mRNAs was
analyzed for 21 (blue bars) and +1 (red bars) mutants from wheat cox2 constructs. Gray bars represent the editing status of wild type transcripts.
Editing status of C targets was assessed by sequencing of at least 16 independent RT-PCR clones. The results presented are representative from at
least two separate experiments. Editing efficiency variations in replicates was lower than 10%.
doi:10.1371/journal.pone.0020867.g001

Mutational Analysis of cox2 mRNA Editing
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hand, the pre-edited C167T form increased the inhibitory effect of

61 mutations (Fig. 4B, line C167T). The C169T mutant did not

affect the editing efficiency of C167. Similarly, 61 and 62

mutations had an effect on C167 editing whatever the C169 status.

However, the pre-edited C169T alleviated the editing inhibition

when combined with the 61 mutation (Fig. 4B, line C169T).

Discussion

RNA editing is a major posttranscriptional process in plant

mitochondria where hundreds of particular cytosine residues are

changed into uracil in mRNAs to produce functional proteins.

Based on in organello experiments, it was demonstrated that a region

formed by nucleotides 216 to +6 and encompassing the target C

constitutes the cis element necessary and sufficient to perform the

editing reaction [11,12]. These studies were performed by site-

directed mutagenesis on the regions encompassing two sites with

different nucleotide sequences, C77 and C259. They also revealed

different roles for the individual residues in the 216 to +6 region

[11]. Particularly striking is the behavior of mutants affecting the

nearest neighbor residue to the C target. Editing of C77(21) and

C259(+1) mutants was completely abolished, indicating that two

different responses are possible and that different trans-acting

factors are involved in their recognition. The length of cis-elements

and the importance of the nearest residue in RNA editing were

confirmed by other approaches [13,14,30,31].

We wondered whether the role of the residue neighboring the C

target could be considered as a general recognition mechanism.

To obtain more insight into this hypothesis, we systematically

changed 21 or +1 residues from the different editing sites on the

cox2 gene and observed the effect on the editing reaction (Fig. 1).

We found that the 21 or +1 dependence was not the only way to

distinguish the type of recognition for the editing sites. We

distinguished four different responses: (a) dependency on the +1

residue for sites, C169, C259, C449, C467 and C550 (this report

and [12]); (b) dependency on the 21 residue for sites C30, C77

and C682 (this report and [11]); (c) dependency on both 21 and

+1 residues for sites, C167, C563 and C620; (d) no dependency on

neighboring residues for sites C466, C587 and C704. Thus, while

editing of some sites clearly depends on the identity of the

neighboring residue, this situation is not a general rule since some

of them are only slightly affected by the mutations or not at all.

The different recognition patterns found for cox2 mRNA could

be an indication of the diversity of trans acting factors involved in

RNA editing. The discovery of several genes characterized as trans-

acting factors and involved in plant mitochondrial RNA editing is

Figure 2. Editing status of cox2 transcripts carrying combined 21 or +1 mutations. Gray bars represent the editing efficiency on the wild
type transcripts. (A) Editing status of mRNA from the combined 21 mutant (blue bars). (B) Editing status of mRNA from the combined +1 mutant (red
bars). The sites C77, C259 and C385 not mutated in the 21 or +1 combined constructs are shown by light gray bars. The results presented are
representative from at least two separate experiments. Editing efficiency variations in replicates was lower than 10%.
doi:10.1371/journal.pone.0020867.g002

Mutational Analysis of cox2 mRNA Editing
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in agreement with this observation [18,19,20,21,22,23,24,25,26,

27,28]. As some of these proteins recognize several editing sites

[19,20,23,25,26,27,28], their different targets might have some

features in common. As there is clearly no sequence identity on the

cis-acting elements [11], the dependency of the editing sites on the

+1/21 nucleotide could constitute a common feature for site

recognition by trans-acting proteins.

Sites C482 and C638 are efficiently edited in endogenous cox2

mRNAs but are unedited in electroporation experiments with the

wild type construct ([11] and this report). Surprisingly, both sites

were found edited in pre-edited constructs and in transcripts from

+1 and 21 single mutants, respectively (Supplementary Fig. S1).

These observations indicate that the inability to edit C482 and

C638 was not due to a deficiency of the experimental model, but

rather to the availability of trans-acting factors that are probably

recruited primarily by other editing sites. One explanation is that

mutations increase the binding ability of trans-factors for C482 and

C638, which conceivably undergo RNA editing later than sites

C259 or C704 in wild type transcripts. This may explain some of

the results obtained in studies using potato cox2 genes expressed in

heterologous mitochondria [37].

The efficiency of C-to-U conversions for different editing sites in

cox2 mRNAs may be explained by the expression level of specific

trans-acting factors [28]. Thus, the residues edited most efficiently

could be expected to be recognized by abundant trans-acting

factors. In this regard, several editing sites may compete when

recognized by the same limiting trans-acting factor. Several reports

on chloroplast RNA editing revealed competition between editing

sites, suggesting that trans-recognition elements may be limiting

in the editing reaction [38,39,40]. However, our results do not

support this idea since the editing efficiency of a particular site can

vary in different unrelated mutants. Another possibility is that

the affinity of different trans-elements, specificity factors and/or

deaminases for the respective editing sites are not the same. The

dependency on the nearest neighbor residue may be explained by

this fact. However, it cannot account for the influence on RNA

editing when the mutations are located far from the cis-element.

When the 21 (or +1) neighboring residues from a majority of C

targets were changed on a single construct, most sites were edited

with similar efficiency to that found for single mutants (Table 1).

Such a behavior is expected since editing sites are thought to be

recognized individually by the editing machinery according to the

hit-and-run model [11,16]. However, this is not the case for sites

C30(21), C620(+1) and C620(21), which are less efficiently edited

in single than in multiple mutants. On the other hand, C587(+1)

and C587(21) showed enhanced editing in single mutants. These

editing sites derogate from the postulated autonomy, indicating

that the recognition mechanism is more complex than thought and

that additional parameters are probably involved. As C30, C587

and C620 are relatively isolated from other editing sites on the

transcript, the respective 216/+6 regions were not affected in

Table 1. Comparison of RNA editing in single and combined
21 or +1 mutants.

WT 21 Mutants +1 Mutants

Editing site single combined single combined

C30 40 12 60 43 49

C167 60 0 0 0 0

C169 80 73 90 0 5

C449 100 77 80 29 17

C466 100 — — 77 95

C467 100 43 20 — —

C482 0 0 0 16 12

C550 100 57 70 22 24

C563 60 0 0 13 0

C587 80 31 10 47 20

C620 80 22 60 20 63

C638 0 14 20 0 0

C682 40 9 0 38 32

C704 100 87 100 95 90

Editing sites are indicated by a C followed by the position of the base on the
mature cox2 transcript. Combined mutants present all but C77, C259 and C385
editing sites mutated either at 21 or +1 position in a single construct. Sites
C466 and C467 disappeared in the 21 and +1 combined mutants respectively.
The numbers indicate the percentage of edited transcripts at the site indicated
after sequencing of at least 16 RT-PCR clones.
doi:10.1371/journal.pone.0020867.t001

Figure 3. Editing of cox2 transcripts carrying pre-edited sites. Residues C259, C466, C467, C550 and C704 were changed into T (pre-edited) on
the cox2 transgene. The editing efficiency of the remaining sites was determined by sequencing at least 16 independent RT-PCR clones obtained
from spliced products. Gray bars represent the values obtained from wild type transcripts. Blue bars indicate the values from mutated mRNAs. Pre-
edited sites are depicted by light gray bars. The results presented are representative from at least two separate experiments. Editing efficiency
variations in replicates was lower than 10%.
doi:10.1371/journal.pone.0020867.g003

Mutational Analysis of cox2 mRNA Editing
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combined mutants. One can argue that some cis-elements may be

longer than previously described, or that the editing status of some

residues has an impact on the editing ability of others [13,15,41].

Moreover, we cannot exclude the hypothesis that the mutations

introduced affect RNA editing through changes in the RNA

secondary structure.

Structural constraints during RNA processing may indeed

explain the variation in editing efficiency observed. A survey of the

editing status of the complete set of editing sites for each single

mutant either at the 21 or +1 position clearly shows that each

construct presents different editing patterns (see Supplementary

Fig. S1). This observation is significant since the results from

replicate experiments are very reproducible for wild-type or

mutant constructs, and are in agreement with the idea that long-

range effects on the efficiency of C deamination operate in plant

RNA editing.

Transcripts from mutants with sites C259, C466, C467, C550

and C704 changed conjointly into Ts were more efficiently edited

than the wild type construct at all sites, except for C587 (Fig. 3).

Interestingly, sites C482 and C638 were found edited, as was the

case in some 21 and +1 mutants (Figs. 1 and 2). Taken together,

these observations support the idea that some C-to-U changes

promote the editing reaction of other target Cs, in agreement with

the ‘‘scanning model’’ for RNA editing where the editing ma-

chinery, once bound to the transcript, searches along the RNA

(Fig. 3 and Supplementary Fig. S1) [13,15,30]. This is in contrast

with the ‘‘hit-and-run’’ model which posits that the choice of

editing targets is a stochastic event [11,41]. However, the majority

of cox2 editing sites analyzed in this report showed an autonomous

behavior (Table 1), indicating that no current hypothesis can

provide an accurate description of the editing mechanism.

To better understand the effect of pre-edited mutants, we

focused on sites C167 and C169 with overlapping cis-elements,

since they are directly concerned by the C-to-U conversions of the

neighboring site (Fig. 4). Interestingly, in the C167(21) mutant,

the conversion of C169 was severely reduced but not in the

C167(+1) mutant. The fact that C169 is efficiently edited in

mutants where editing of C167 was abolished and in mutants

where this residue is pre-edited (C167T, Fig. 4B; see also Sup-

plementary Fig. S1) indicates that the differences observed on

C169 were not related to the editing status of the upstream site. In

contrast, when site C169 was pre-edited, it counteracted the

inhibition of C167 editing observed for the C167(21) mutant

(169TX1, Fig. 4B). One can argue that editing of C167 requires a

prior deamination of C169, thus improving the recognition of

C167 by the editing machinery. Indeed, an enhanced binding

Figure 4. Editing of mutants of overlapping C167 and C169 sites. (A) Sequence encompassing sites C167 and C169.61 and62 represent the
21 and the +1 mutations of the site C167 respectively. 62 is also the 21 mutant of site C169. 63 represents the +1 mutation of the site C169. (B)
Chromatopherograms of the sequences surrounding the sites C167 and C169 from different constructs. Arrows indicate the C167 (left) and C169
(right) editing sites. The editing efficiency in wild type and mutant transcripts is indicated below the chromatopherogram. C167T and C169T indicate
the presence of a residue T at the place of the editing target C167 and C169 respectively. At least 16 independent RT-PCR clones were sequenced for
each construct.
doi:10.1371/journal.pone.0020867.g004

Mutational Analysis of cox2 mRNA Editing
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activity of a trans acting factor for the edited form of the mRNA

has recently been shown [24]. On the other hand, it was reported

that the editing of individual sites did not influence the status of the

neighboring ones in atp4 mRNA [41]. In our case, the fact that

C167T and C169T pre-edited constructs had little or no effect on

the neighboring site in the absence of additional mutation

indicates that C-to-U conversion for both sites is not involved in

recognition of the nearest neighboring site.

Taken together our results indicate that RNA editing cannot be

interpreted solely as the interaction between independent cis- and

trans-elements. It was recently found that altering the mRNA

maturation process results in impaired RNA editing [35,37,42]. It

is thus plausible that the mutations introduced on the transcript

may have an impact on different events of RNA maturation,

thereby influencing RNA editing. We therefore postulate that

transcripts have to be recognized and engaged in the editing pro-

cess during a coordinated RNA maturation process.

An important conclusion from this study is that some ex-

perimental results on RNA editing must be interpreted with cau-

tion since this event may be affected by the fate of the mRNA.

This may be relevant when studying trans-acting factors and may

explain why some of them only partially affect the editing reaction

[22,26]. Recently, it was shown that a trans acting factor can

influence the editing efficiency of two sites different from its

primary targets [28]. Similarly, PPR956 is known to reduce the

editing efficiency of several sites on a single transcript [18]. As PPR

proteins are involved in several organellar gene expression pro-

cesses [43], the effects induced by mutations have to be carefully

investigated in order to discriminate between a direct contribution

to RNA editing and a secondary consequence of impaired RNA

processing.

Supporting Information

Figure S1 Editing profile of cox2 transcripts single mutants.

Mutations were performed on the 21 or +1 nearest neighbor

residue of the editing target. The number of the editing site

corresponds to the position of the C target in the mature transcript,

starting from the first nucleotide of the initiation codon. The base

changes in 21 and +1 mutant constructs were performed by

changing purines by pyrimidines and vice versa. To avoid the

introduction of a potential C target, the following changes were

performed: A was changed to T, T to A, C to G and G to T

depending on the nature of the residue neighbor to the editable C.

The results represent the average of at least 16 sequenced RT-PCR

clones. The results presented are representative from at least two

separate experiments. Editing efficiency variations in replicates was

lower than 10%.
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