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Abstract

Introduction: Gene expression patterns characterizing clinically-relevant molecular subgroups of glioblastoma are difficult
to reproduce. We suspect a combination of biological and analytic factors confounds interpretation of glioblastoma
expression data. We seek to clarify the nature and relative contributions of these factors, to focus additional investigations,
and to improve the accuracy and consistency of translational glioblastoma analyses.

Methods: We analyzed gene expression and clinical data for 340 glioblastomas in The Cancer Genome Atlas (TCGA). We
developed a logic model to analyze potential sources of biological, technical, and analytic variability and used standard
linear classifiers and linear dimensional reduction algorithms to investigate the nature and relative contributions of each
factor.

Results: Commonly-described sources of classification error, including individual sample characteristics, batch effects, and
analytic and technical noise make measurable but proportionally minor contributions to inconsistent molecular
classification. Our analysis suggests that three, previously underappreciated factors may account for a larger fraction of
classification errors: inherent non-linear/non-orthogonal relationships among the genes used in conjunction with
classification algorithms that assume linearity; skewed data distributions assumed to be Gaussian; and biologic variability
(noise) among tumors, of which we propose three types.

Conclusions: Our analysis of the TCGA data demonstrates a contributory role for technical factors in molecular classification
inconsistencies in glioblastoma but also suggests that biological variability, abnormal data distribution, and non-linear
relationships among genes may be responsible for a proportionally larger component of classification error. These findings
may have important implications for both glioblastoma research and for translational application of other large-volume
biological databases.
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Introduction

Glioblastoma (GBM) is the most common primary malignant

brain tumor in adults, and optimal surgical and medical

management of this disease result in a mean survival of only

12–14 months [1,2,3,4,5]. Intense efforts over the past several

decades to advance GBM therapy have resulted in only modest

improvements in survival for patients with theses tumors, and the

current management strategy remains attempted gross total

surgical resection followed by radiation and adjuvant chemother-

apy [6]. While the prognosis remains poor for most GBM patients,

a small subset (10–25%) survive two or more years from the time

of initial diagnosis [5,6,7,8]. This variable response to standardized

management suggests the existence of two or more major clinical

subgroups of GBM patients with unique survival and response-to-

therapy phenotypes. These subgroups are not readily identified by

the current, histological grading and World Health Organization

(WHO) classification schemes, prompting a search for alternate

strategies for glioma classification.

The recent development of high-throughput molecular tech-

niques for comprehensive characterization of tumor genomes and

transcriptomes has been embraced by the translational neuro-

oncology community and has been applied to the challenge of

molecular GBM subclassification. Numerous investigators have

reported successful identification of gene expression patterns

characteristic of distinct tumor genomic profiles associated with
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unique clinical phenotypes [8,9,10,11,12,13,14,15]. These results

suggest that molecular analyses may improve prognostication in

patients with GBMs and, more importantly, may identify subsets

of GBM patients prospectively with distinct survival or response-

to-therapy phenotypes.

Initial optimism that molecular classification tools represent a

major breakthrough in GBM management has, more recently,

been tempered by the lack of consistency and reproducibility of

genomic signatures with putative associations to survival pheno-

types. While multiple groups have reported the ability to predict

patient survival accurately based upon specific gene expression

signatures [8,12,13,15], there is little overlap between the specific

signatures reported by each group. Although it may be appealing

to conclude that differences in the complex, multistep algorithms

for gene selection can explain the variability among the specific

genes comprising each reported molecular ‘‘survival fingerprint,’’

it is difficult to verify that analytic (rather than biologic or

technical) differences are the principal determinants of this

variability. Moreover, while hypothesis generation abounds

regarding the potential biological significance of the genes in each

profile, evidence supporting such hypotheses has heretofore been

lacking. This problem is compounded by persistent uncertainty

regarding the relative strengths and weaknesses of individual

analytic models to capture phenotypically-relevant biology, and

attempts to optimize these models is hindered by our incomplete

understanding of cancer systems biology. Together, these

observations can cast suspicion upon the biologic significance of

the GBM expression signatures described by each group, and,

consequently, upon the ultimate potential for clinical utility of this

approach to molecular subclassification. While most translational

neuro-oncologists believe that the future of GBM research lies in a

better understanding of the molecular biology of these tumors, few

agree on the specific genes of interest, the optimal approach to

using genomic data to generate knowledge regarding the systems

biology of these tumors, or the ideal strategies to apply this

information to the classification and clinical management of GBM

patients.

One step to address the challenges associated with analyzing

and interpreting this data has been the development of a central

repository of genomic and epigenetic data for GBMs. The Cancer

Genome Atlas (TCGA) project [16] was designed as such a data

repository, and GBM was the first tumor type to be cataloged and

shared through the TCGA infrastructure [9,14]. Public availability

of this data increases both the number of investigators searching

for novel genome/phenotype correlations in GBMs and the scope

of biological hypotheses generated regarding such correlations;

however, the accuracy, reproducibility, and utility of these

investigations will remain uncertain until the factors responsible

for the observed inconsistencies in GBM molecular classification

can be identified, modeled, and prospectively addressed.

Comprehensive investigation of the potential sources of

molecular classification errors in GBM requires questioning the

fundamental assumptions regarding both the nature of the

expression data itself and the analytic strategies used for its

analysis. We hypothesize that a combination of biological and

mathematical factors confound interpretation of this data, and we

have undertaken a comprehensive investigation into the nature

and relative contributions of these factors to inconsistencies in

molecular classification of GBMs. To investigate our hypothesis,

we constructed a logic model (Figure 1) to organize the major

potential sources of error associated with current analyses of GBM

expression data.

Logic models are narrative or graphical depictions of processes

that communicate the underlying assumptions upon which an

activity is expected to lead to a specific result. Such a model

describes the logical linkages between elements of a process as a

linear sequence of inputs, activities (in our case analytical steps),

outputs, and outcomes [17,18]. Once a program has been

described in terms of a logic model, critical measures of

performance can be identified. Having constructed our logic

model, we then used as the basis for asking five (5) questions

regarding the classification variability associated with the possible

factors introducing error into any analysis of genomic data. Next,

using publically-available (TCGA) GBM expression data [16], we

designed and conducted eleven (11) mathematical analyses

intended to address these five questions. We believe that this

approach, which represents the first application of this type of

analytic model to a large, publically-available gene expression

database, provides a comprehensive framework for investigating

and understanding the type, nature, and complex interrelationship

among potential sources of error that may confound current

strategies for molecular analysis and classification of GBMs.

Results

Eleven analyses were conducted to test the logic model outlined

in Figure 1. The design and results of these analyses are described

below, and their positions in the logic model are indicated

numerically on the figure. For reference purposes, an unannotated

version of this figure has been included in the supplemental

material (Figure S1).

Multiple Tumor Stratification (#1)
Unsupervised classification using hierarchical clustering (HCL)

[19] and principal components analysis (PCA) [20,21] were

performed on an Robust Multichip Analysis (RMA) –normalized

[22,23,24] dataset containing 364 samples (340 GBM, 20 renal

cell carcinoma [RCC], 4 hepatocellular carcinoma [HCC]). Both

methods yielded excellent separation of the three, distinct tumor

types based upon gene expression profiles (Figure 2). Next,

minimally-supervised clustering using k-means clustering (KMS)

[25] was performed. The value of k was set as 2 for this analysis,

testing the ability to separate the GBMs from the aggregate group

of RCC+HCC (i.e. GBM versus non-GBM) in a retrospective

analysis. The analysis was repeated 100 times to minimize random

classification effects that may be attributable to disproportionate

allocation of tumor types in the population. This method achieved

separation of the two groups with 99.6% accuracy (2/340

misclassifications, data not shown). Finally, the k-nearest neighbor

clustering algorithm (KNNC) [26] was used to test the accuracy of

prospective classification of novel samples as either GBM or non-

GBM (k = 2) based upon expression profile. The KNNC was first

trained with a randomly-selected set of 170 GBMs and 13 non-

GBMs and was then tested using a novel set of 170 GBMs and 13

non-GBMs. This classifier achieved a 98.9% accuracy rate (2/170

misclassifications, data not shown). Together these results

demonstrate the presence of a unique gene expression signature

present within the TCGA data that is characteristic of GBMs and

that is distinct from the molecular signatures of other malignan-

cies.

Unsupervised Classification and Clinical Parameters (#2)
Unsupervised classification using hierarchical clustering with

bootstrapping support (HCS), KMS, and PCA was performed on

the dataset containing 340 GBMs normalized to controls to

investigate whether unbiased clustering algorithms would separate

the population of GBMs into genomic subsets with corresponding,

clinically-relevant phenotypes. Eight versions of each analysis were

Variability in Molecular Classification of GBM
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performed, each with samples colorized according to one of the

eight clinical phenotypes with known or potential clinical

significance recorded in the TCGA dataset. The results of the

complete PCA analysis are presented in Figure 3, and represen-

tative results from the HCS and KMS analyses are given in

Figure 4. These analyses demonstrate that three different unbiased

class discrimination algorithms fail to segregate the GBM

population into genomic subgroups correlated with any of the

eight, clinically-relevant phenotypes for which clinical data is

available.

Eigenvalue Analysis (#3)
To study the extent to which the principal components (PC)

describe the variability in the GBM population, we examined the

eigenvalues resulting from the PCA matrix decomposition of the

dataset containing 340 GBMs normalized to controls. Eigenvalues

for each PC were computed both as a raw value and as a percent

of the cumulative total eignevalue. The eigenvalue plot, as well as

the individual eigenvalues and the eigenvalue percents associated

with each of the first 20 PCs, are presented in Figure 5. This

analysis demonstrates that the first three principal components,

which serve as the basis for class discrimination represented by the

3-D PCA plot, account for only 29.6% of the total molecular

variability of the GBMs. This suggests that this classification model

does not capture or represent 70.4% of the genomic variability in

this dataset. Moreover, it indicates that the most variable genes in

this dataset, which theoretically contribute significantly to the first

three PCs, may not have direct correlations with clinically-relevant

phenotypes.

Biological Analysis of the Outlier Group (#4)
HCS and PCA of the 340 GBMs (normalized to controls)

demonstrated a cluster of 14 tumor ‘‘outliers’’ that consistently

segregated from the remainder of the group in multiple analyses

(Figure 6). We hypothesized that if there was a biological basis to

this segregation, then more genes should be differentially-

expressed between the outlier cluster and the remainder of the

GBM population than would be expected by random chance.

More importantly, functional annotation of the genes that are

differentially expressed between the two groups should reveal

Figure 1. Logic Model for Analyzing Variability in the TCGA GBM Dataset. Annotated logic model, as applied in this investigation to the
TCGA GBM data. The five fundamental questions forming the branch points of the logic model (see Discussion) are indicated in italics, and the
answers to these questions are presented in red. Numbers (brown) corresponding to analyses 1–11 (see Results) are indicated at the locations where
their results provide evidence. Analyses performed as a part of this investigation are indicated in blue, while supporting evidence from the literature
is in green. Future directions for research are indicated in purple and are indicated below the corresponding branch of the model.
doi:10.1371/journal.pone.0020826.g001
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enrichment of genes and categories believed to be associated with

discrete GBM phenotypes. This analysis is qualitative in nature

and limited in its power to draw definitive conclusions, but it

represents one approach to investigate the hypothesis that valid,

biological differences are present within the dataset and are

contributing to the unsupervised tumor stratification.

The significance analysis for microarrays (SAM) [27,28]

algorithm with false discovery rate (FDR) = 0 was used to identify

2,501 over-expressed genes (Table S1A) and 2,704 under-

expressed genes (Table S1B) in the outlier group relative to the

remainder of the GBM population, more than would be expected

by chance alone [2,501+2,704 = 5,205 genes identified by SAM vs.

172 (p = 0.01) or 857 (p = 0.05) that would be differentially

regulated by pure chance]. EASE [29] overrepresentation analysis

of the structural and functional annotations of these genes,

including annotations from the Gene Ontology [30,31] project,

the Kyoto Encyclopedia of Genes and Genomes [32,33], and

GenMAPP [34,35], demonstrated statistically-significant (EASE

score ,0.05) overrepresentation of 473 categories, many of which

have plausible roles in differential tumor phenotypes (Tables S1C

and S1D). Comparison of this gene list and annotation profile with

a profile that our group previously identified as differentially-

expressed between GBM survival phenotypes [8] demonstrated

overlap in 8 (15%) genes and 6 (46%) categorical annotations

(Table S1E). Together, these results provide qualitative evidence

to suggest that genomic differences with potential phenotypic

significance do exist among the TCGA GBM data and that at least

some of this biological information influences the results of the

clustering algorithms.

Expression Data Distribution Analysis (#5)
One assumption common to most linear classifiers used in

microarray analysis is that the values of the variables upon which

classification is based conform to a Gaussian distribution [21,36].

To test this assumption, we examined the distributions associated

with the RMA normalized, Log2 (tumor/normal) data. We studied

the distribution characteristics of the variables (gene expression

values) in the dataset for the complete expression matrix (17,172

Figure 3. Unsupervised Classification (PCA) Colored by Clinical Phenotypes. GBMs do not segregate on PCA along any of 8 clinically-
relevant parameters recorded in the TCGA database, which suggests that genomic signatures associated with these phenotypic differences are not
identified accurately by this unsupervised, linear data reduction algorithm. A: Survival (Red = top 20th percentile; Blue = bottom 20th percentile;
Yellow = intermediate percentiles). B: Time to Progression (Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles).
C: Time to Recurrence (Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles). D: Karnofsky Performance Score
(KPS) at diagnosis (Red = 100; Yellow = 80–90; Blue = 70 or less). E: Sex (Blue = male, Pink = female). F: Histologic Evidence of both Endothelial
Proliferation and Necrosis (If yes, coded Green; if no, coded Pink). G: Adjuvant chemotherapy administered (Green = yes, Pink = no). H: Adjuvant
radiotherapy administered (Green = yes, Pink = no). Note1: adjuvant therapy categories are not themselves phenotypic characteristics, but the need
for these therapies may be a surrogate marker for underlying tumor biology and they are therefore included in this analysis. Note 2: for all images,
spheres colored gray or brown = data not available.
doi:10.1371/journal.pone.0020826.g003

Figure 2. Multiple Tumor Stratification. PCA successfully separates
glioblastoma (GBM, Blue) from renal cell carcinoma (RCC, green) and
hepatocellular carcinoma (HCC, red) based upon expression profile.
doi:10.1371/journal.pone.0020826.g002
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genes6340 samples = 5,838,480 variable values) as well on a per-

gene and per-sample basis. We characterized the distribution by

computing standard descriptive statistics as well as skew and kurtosis

measurements (and descriptive statistics for each of these measure-

ments). The results of this analysis are summarized in Table 1.

The distribution analysis demonstrates that the TCGA GBM

data deviates from a pure Gaussian distribution both in the overall

expression matrix (Figure 7) and in the per-gene (Figure 8) and

per-sample (not shown) analyses. Examination of the RMA-

normalized, log2(ratio) data reveals that the complete expression

matrix is centered around a mean and median of 0.03 with a

standard deviation of 0.92, suggesting a normal (standard

Gaussian) distribution. However, the skew of this distribution is

20.21, an effect that is easily overlooked on visual inspection

(Figure 7A). While this value may not initially appear to be of

significant magnitude, the statistical significance of the degree of

skew must be considered in the context of the number of variables

(n) associated with the distribution. A test statistic, reflecting the

number of standard errors of skew (SES) [37] away from zero, can

be computed from equation 1:

test statistic~
skewness

SES
where SES~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 nð Þ(n{1)

n{2ð Þ nz1ð Þ(nz3)

s

This equation essentially performs a two-tailed test of skew?0,

where a test statistic value of 62 corresponds to p = 0.05. Using

n = 5,838,480 (the total number of values comprising the expression

matrix), SES = 0.001 and the test statistic = 2207.2, indicating that

the distribution has a statistically-significant degree of skew.

Similarly, the kurtosis of the distribution is calculated at 6.45

(excess kurtosis = 3.45). The statistical significance of the magni-

tude of the kurtosis must also be considered in the context of the

number of variables (n) associated with the distribution, and a test

statistic reflecting the number of standard errors of kurtosis (SEK)

[37] away from zero, can be computed from

equation 2:

test statistic~
kurtosis{3

SEK

where SEK~2(SES)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2{1

n{3ð Þ nz5ð Þ

s

For n = 5,838,480, SEK = 0.002 and the test statistic = 1701.6,

indicating that the distribution has a highly statistically-significant

degree of leptokurtosis (Figure 7B).

Figure 4. Unsupervised Classification (HCS, KMS) Colored by Survival Phenotype. The topmost color gradient bar displays the scale along
which the Log2 (tumor/control) values for each gene are colorized in the dendrogram. The color bars immediately above the dendrogram branches
indicate the survival phenotype group to which each sample belongs: Red = top 20th percentile of survival time; Blue = bottom 20th percentile;
Yellow = intermediate percentiles, Black = survival not recorded. A: Hierarchical clustering with support (bootstrapping with 20 iterations)
demonstrates no separation by survival phenotype. Support values for each node of the dendrogram also reveal significant inconsistency in
clustering, suggesting underlying noise (black = 100% support, gray = 90–99%, blue = 80–89%, green = 70–79%, yellow = 50–69%, pink/red ,50%).
Only the topmost portion of the full heatmap is depicted in this figure. B: Clusters resulting from k-means support (k = 2, 10 iterations), again showing
no segregation by survival phenotype.
doi:10.1371/journal.pone.0020826.g004
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When the skew and kurtosis as well as their corresponding test

statistics are computed for each gene (a per-gene analysis, where

n = 340), the mean skew is 0.64 (mean test statistic = 4.84) and the

mean kurtosis is 3.07 (mean excess kurtosis 0.07, mean test

statistic = 0.27). A similar analysis done on a per-sample basis

(n = 17,172) demonstrates a mean skew of 20.18 (mean test

statistic = 29.64) and a mean kurtosis of 5.82 (mean excess kurtosis

2.82, mean test statistic = 75.34), suggesting significant deviations

from a pure Gaussian distribution in both analyses. Examples of

the diversity of skew and kurtosis of gene distributions are given in

Figure 8. While the classification implications of these deviations

from the Gaussian distribution require further investigation

Figure 6. Outlier Group. A group of 14 outliers (red box) is consistently identified with various unsupervised clustering algorithms, including
hierarchical clustering (A) and PCA (B). Note: a reproduction of Figure 3G has been used here and is colorized in an identical fashion.
doi:10.1371/journal.pone.0020826.g006

Figure 5. Eigenvalue Decomposition Analysis of PCA. Eigenvalues for all principal components are plotted, and numeric values for the
eigenvalue percentages and cumulative percentages of the first 1–3 principal components are given. See text for discussion.
doi:10.1371/journal.pone.0020826.g005
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[36,38], it is apparent from this analysis that the TCGA GBM

data violates the Gaussian assumption that is a fundamental

precondition of most linear classifiers.

Unsupervised Classification and Technical Parameters
(#6)

Unsupervised classification using PCA was performed on the

dataset containing 340 GBMs (normalized to controls) to

investigate whether unbiased clustering algorithms would separate

the population of GBMs into subsets corresponding to technical

differences related to the samples or to their processing. Eight

versions of the analysis were performed, with samples colorized

according to one of eight technical parameters that could

introduce classification error. The results of this analysis

(Figure 9) demonstrate that these eight technical parameters do

not appear to be major contributors to the first three principal

components and are therefore unlikely to be primary contributors

to classification errors or inconsistencies.

Platform Noise and Chip Quality Analysis (#7)
Multiple technical variables associated with sample preparation,

hybridization efficiency, physical array quality, and image

acquisition can contribute to technical noise and subsequently to

classification error. These effects have been studied extensively

[39,40,41,42,43,44,45,46,47,48], and numerous modeling and

optimization strategies have been suggested to estimate and to

minimize technical noise [40,49,50,51,52,53]. Implementation

and optimization of such modeling is beyond the scope of this

investigation, but semi-quantitative estimation of the magnitude

and effects of technical noise are useful to illustrate their relative

importance for this dataset.

For each gene in each array, the MAS5 algorithm [54]

calculates a discrimination score (Ri) based upon the relative signal

levels measured for the perfect match (PM) and mismatch (MM)

cells for each probeset. A one-sided Wilcoxon’s Signed Rank Test

is used to calculate a p-value associated with Ri. Comparison of the

p-value with user-defined threshold values (a1 and a2) serves as the

basis for the algorithm’s present/absence call, and the p-value

itself can be conceptualized as a measure of confidence that the

measured signal is the result of valid hybridization rather than

background noise. Qualitative assessment of the extent of the noise

in the TCGA dataset was performed by calculating the percentage

Table 1. Descriptive Statistics for the TCGA GBM Distribution.

T RMA Normalized, Log2 (Tumor/Normal)

Standard
Gaussian
(normal)

By Gene By Sample Overall

Distribution

Mean 0.03 0.03 0.03 0.00

Median 0.00 0.04 0.03 0.00

SD 0.45 0.91 0.92 1.00

Skew 20.21 0.00

Mean 0.64 20.18

Median 0.50 20.20

SD 1.14 0.33

Min 27.57 21.00

Max 14.13 1.06

Kurtosis 6.45 3.00

Mean 3.07 5.82

Median 0.86 5.88

SD 9.97 1.14

Min 21.60 2.69

Max 236.58 9.35

Note that both the mean and median are approximately equal to zero and the
standard deviation is approximately equal to 1. Measurements of skew and
kurtosis deviate from those expected for a Gaussian distribution, and test
statistics indicate that these deviations are statistically significant (test statistic
.2 approximately corresponds to p,0.05, see text). These results are depicted
graphically in Figure 7.
doi:10.1371/journal.pone.0020826.t001

Figure 7. Distribution of the Complete Gene Expression Matrix for the TCGA GBM Data. A: TCGA GBM expression matrix histogram. The
zero position on the abscissa is indicated with a red meridian. Careful inspection (particularly at the apex) reveals the negative skew. B: Overlay of the
TCGA GBM distribution and the standard Gaussian (normal) distribution. This representation, in particular, demonstrates the leptokurtosis of the
TCGA GBM data distribution. Scales of the ordinates have been adjusted to facilitate distribution overlay.
doi:10.1371/journal.pone.0020826.g007
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of genes in the expression matrix for which p.0.05 (41.76%) and

p.0.01 (51.50%). This analysis suggests that approximately 40–

50% of the individual expression measurements in the matrix are

not significantly different from background. We performed similar

analysis on smaller sets of previously-published expression data for

GBMs (n = 20) [8] and for low-grade gliomas (n = 23) [55] and

found similar percentages for each dataset (45.98%/57.35% and

50.43%/64.16%, respectively). Similarly, we calculated the

percentages for genes called present, absent, and marginal by

the MAS5 algorithm (with a1 = 0.05, a2 = 0.065, t= 0.015) for the

TCGA dataset and for the two comparison datasets and again

found comparable values in each category (Table 2).

Next, we used the p-value associated with Ri as the basis of a

semi-quantitative analysis examining the effects of technical noise

on clustering results. We recognize that this is not a comprehensive

marker of all possible sources of technical noise, but it is a useful

index of one dimension of this noise and has been used as a

surrogate marker for array noise in other investigations [49]. We

computed the mean of the p-value (pm) for each gene across the set

of 340 arrays and subsequently filtered out genes for which

pm.0.05 from the RMA-normalized dataset used in our other

analyses. We then performed PCA on this filtered dataset and

found no qualitative improvement in clustering into survival

phenotypes (data not shown). The sum of the first three eigenvalue

percentages from this analysis was slightly better than that of the

unfiltered data (34.4% vs 29.6%). Together, the results of these

analyses suggest that technical noise is present within the TCGA

dataset but that it does not appear to be the major factor

confounding clustering into clinically-relevant phenotypes.

Chip quality was also performed to identify areas of chips with

inhomogeneous signal characteristics. This can be attributable to

physical errors on the chips, fluidics errors, regional binding

inconsistencies, or other regional effects. We first examined the

virtual chip images created using the RMA Express [22] software

package’s QA tools. These pseudoimages are derived from the

RMA algorithm’s residual PLM values and are capable of

highlighting areas of inhomogeneous signal on the array chips.

We considered chips to have significant regional error if

inhomogeneities were identified on at least part of 5 or more of

the 49 subgrids (,10%) of the array chip (Figure 10). A total of 24

chips (7.1%) with such regional errors were then excluded from

subsequent clustering analysis. PCA clustering demonstrated no

apparent improvement in ability to segregate survival phenotypes

after exclusion of these chips (data not shown) and no significant

improvement in the sum of the eigenvalue percentages associated

with the first three principal components (27.6% vs 29.6%). We

Figure 8. Distributions of Three Sample Genes from the TCGA GBM data. The expression distributions across all 340 GBM samples of three,
representative genes with approximately equal means, medians, and standard deviations are plotted. Note that, for each sample, the mean and
median are nearly equal and the standard deviation is approximately equal to 1. These descriptive statistics suggest a Gaussian distribution. However,
the three distributions are significantly unequal, a finding only reflected in the measurements of skew. Mild kurtotic effects can also be observed. Test
statistics for skew and kurtosis are calculated as described in the text. (Note: The negatively skewed sample gene is TCEAL2]211276_at], the positively
skewed sample gene is CENTA1 [90265_at], and the unskewed gene is CYFIP2 [21578_s_at].).
doi:10.1371/journal.pone.0020826.g008
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then repeated this analysis using more stringent criteria for chip

quality, including either evidence of regional errors in 3 of 49

(,6%) subgrids or other patterns potentially suggestive of

nonbiological inconsistency (see Figure 10). This resulted in

exclusion of 108 (31.8%) arrays but did not improve qualitative

classification (data not shown) or cumulative eigenvalue percent-

ages (27.8% vs. 29.6%) in subsequent PCA analysis. Both analyses,

however, did result in a change in morphology of the PCA plot

(relative to the plot of the unfiltered data, data not shown), the

significance of which requires further investigation. Together these

analyses suggest that platform noise and chip quality are present in

the TCGA GBM dataset but may not be the primary contributors

to inaccuracies in sample classification.

Data Filtering (#8)
Two potential sources of statistical noise that may impede

classification are genes with either relatively static expression levels

throughout the data set or genes for which expression values are

absent in a significant portion of the expression matrix. We

performed a series of data filtering analyses designed to investigate

the effects of these variables, in isolation and in combination, on

unsupervised classification into survival groups. We first performed

PCA using the baseline data set of 340 GBMs (relative to controls)

and then repeated this analysis using progressively stringent

variance and present/absent data filters on the normalized dataset.

These filters removed the least variable 50% or 80% of genes

(variance filter) or limited inclusion of genes to those with

measurable signal present in .50%, .80%, or in 100% of

samples (percent present filter). Data filtering trials were

performed with individual filters or with combinations of the

variance and percent present filter in place at various individual

thresholds. PCA was performed on each of the filtered datasets,

and the ensuing classifications were evaluated qualitatively by

examining the plots of the first three principal components

(colorized by survival) and semi-quantitatively by analyzing the

eigenvalue percentages associated with each of the first three

principal components in each of the trials (Figure 11). The results

of the semi-quantitative analysis show a trend toward increasing

eigenvalue percentage as progressively more stringent criteria are

applied, suggesting that statistically ‘‘noisy’’ genes do contribute, to

some degree, to the variability represented by the first three

principal components. The qualitative analysis demonstrated that,

while filtering changed the overall morphology and orientation of

the sample cloud in 3-dimensional, PCA space, the observed

reduction in variability did not improve the accuracy of

stratification into clinically-relevant subgroups. Overall, these

results suggest that technical variability introduced by genes with

relatively homogeneous or absent expression are a source of

Table 2. Analysis of MAS5 p-values as Markers of Background
Noise.

TCGA
GBMs

Comparison
GBMs

Comparison Low
Grade Gliomas

Call = Present 58.2% 44.5% 49.6%

Call = Absent 40.6% 54.0% 48.6%

Call = Marginal 1.2% 1.5% 1.9%

p.0.05 41.8% 46.0% 50.4%

p.0.01 51.5% 57.4% 64.2%

P-values were computed by the Affymetrix MAS5 algorithm using a one-sided
Wilcoxon Signed Rank Test. ‘‘Call’’ refers to the Affymetrix Present/Absent call.
Comparison GBMs were initially reported in Marko et al., 2008 [8], and
comparison low-grade gliomas were reported in Marko et al. 2009 [55].
doi:10.1371/journal.pone.0020826.t002

Figure 9. Unsupervised Classification (PCA) Colored by Technical Phenotypes. GBMs do not segregate on PCA along any of 8 technical
parameters recorded in the TCGA database. This suggests that these factors are not primary contributors to erroneous misclassification. A: Tissue
Sample Size (Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles). B: Clinical Center of Origin (By TCGA ID
number: Red = 02, Green = 06, Blue = 08, Yellow = 12, Purple = Other). C: RNA Concentration (Red = top 20th percentile; Blue = bottom 20th percentile;
Yellow = intermediate percentiles). D: Optical Density 260/280 nm (Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate
percentiles). E: Ribosomal 28S/18S (Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles). F: RNA Index Number
(Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles). G: .50% Tumor Cells in Sample (Green = yes, Pink = no).
H: Prior Treatment (Green = yes, Pink = no). Note: in all figures, gray = data not available.
doi:10.1371/journal.pone.0020826.g009
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classification variability, but these do not appear to be the primary

factors impeding accurate phenotypic classification of GBMs in

the TCGA data set.

Batch Effects Analysis (#9)
The TCGA GBM data set includes 340 samples derived

collected from patients treated at multiple clinical centers and

processed at one of several sample preparation laboratories.

Combining the data from such samples may introduce batch

effects into the concatenated data set. This phenomenon has been

well described by array statisticians [56] but is sometimes

overlooked by clinician-scientists using large, public datasets for

hypothesis generation and testing. We analyzed the potential

contribution of batch effects in the TCGA GBM data to tumor

misclassification using both a ‘‘bottom-up’’ and a ‘‘top-down’’

approach. For the ‘‘bottom-up’’ analysis, we first prepared several

data subsets in which samples were matched for approximate

tissue size, OD260/280, 28S/18S, and RNA integrity number

(RIN). We held constant either clinical center of origin or TCGA

batch number while varying the other parameter. PCA was

performed on the data subsets, and samples were colorized by the

variable parameter. This approach facilitates qualitative explora-

tion of the independent batch effects associated with either clinical

center of origin or TCGA batch number, although it is limited by

the scope of the technical data reported in TCGA as to the

number of technical parameters that can be matched or

controlled. The results of these analyses demonstrate no gross

clustering trends associated with either center of origin or with

TCGA batch, although caution must be used in interpreting this

data because the qualitative nature of the analysis limits the extent

to which batch effects can be studied.

Recognizing the limitations of the ‘‘bottom-up’’ analysis, we also

performed qualitative and semi-quantitative analysis of batch

effects using a ‘‘top-down’’ approach. We assumed the presence of

some batch effects associated with clinical center of origin and

TCGA batch, attempted to correct empirically for such errors, and

compared the PCA plots and the eigenvalue data before and after

correction to obtain a post hoc estimate of the classification impact

of batch effects. We implemented this analysis by first performing

baseline PCA analysis (colorized by survival) with eigenvalue

decomposition on the complete set of 340 GBMs. Next, we applied

the ComBAT algorithm [57], a tool that uses a Bayesian approach

based upon empirical and parametric priors to reduce batch

effects. We ran ComBAT using TCGA batch as the primary effect

and clinical center of origin as the covariate. We repeated the PCA

and eigenvalue analyses on the ‘‘corrected’’ dataset. The results of

this analysis suggest that some center-of-origin and TCGA-batch-

number batch effects are present in the concatenated data set. The

result of correction for these effects can be observed qualitatively

by comparing the pre- and post-combat PCA plots (Figure 12).

The latter appears to demonstrate a reduction in correlation

between the first two principal components, suggesting that batch

effects may contribute to the identity and subsequent stratification

of samples along these two components in some underlying and

correlated fashion. Notwithstanding, the application of ComBAT

does not result in qualitative improvement in phenotypically-

significant (survival) clustering, suggesting that batch effects are not

the primary contributor to classification error. This finding is

verified by semi-quantitative analysis using the eignevalue data,

which shows only a slight improvement in the sum of the first three

eigenvalue percents (31.2% vs 29.6%).

Progressive Tumor Population Size Analysis (#10)
Although increasing the number of samples in a microarray

experiment may increase classification power in some instances,

this presupposes that the signal-to-noise ratio of the samples is

higher than those of the base set. If the opposite is true or if the

SNRs are approximately equal, then increasing population size

may either disproportionately introduce noise that could impede

classification or may have little to no added effect, respectively. To

study the possibility of this effect in the TCGA GBM data, we used

a random number generator to randomly divide the RMA-

normalized, 340 tumor dataset into 6 subgroups of approximately

equal size (n = 5764, n = 5662). We then progressively combined

the subsets, creating five sub-populations of 114, 171, 228, 284,

and 340 samples. Qualitative PCA and eigenvalue analysis were

performed on each of the six subsets and on the five sub-

populations. The results of these analyses demonstrate approxi-

mately stable magnitude of the eigenvalue percentages associated

with each of the first three principal components in all subsets and

concatenated sub-populations, and qualitative analysis of the PCA

data does not demonstrate appreciable improvement (or decline)

in phenotypic classification accuracy as the population size

increases (Figure 13). These findings suggest that there is little

Figure 10. Assessment of Array Chip Quality. Pseudo-chip images
created from the RMA probe-level modeling (PLM) residual values were
used to screen chips for quality. The presence of either positive (red) or
negative (blue) residuals indicates some degree of deviation from the
ideal (zero residual) value and therefore suggests some degree of error
in the measurement. Technical problems may result in nonrandom
regions of unusually large residuals. Depicted are examples of chips
considered to be of good (A), intermediate (B), or poor (C) quality in our
analysis.
doi:10.1371/journal.pone.0020826.g010
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relationship between tumor population size and classification

accuracy for the TCGA GBM expression data.

Two-Dimensional Analysis of Principal Components
(#11)

A necessary condition for successful class discrimination by

linear classifiers or data reduction algorithms is that the

relationships between the variables used for classification must

be linear [36]. Additionally, many data reduction algorithms

require that the relationship between the most important

variables (or the aggregate vectors that represent them) be

orthogonal. PCA is among the most commonly-applied class

discrimination and data decomposition algorithms used in GBM

expression analysis, and it is an example of a linear classifier

requiring that both conditions be satisfied [21]. Here, the former

condition frames the data reduction as a change-of-basis

problem, while the latter allows linear algebra techniques to be

applied to the decomposition in orthonormal space. While these

requirements limit the application of PCA to datasets whose

variables comply with this underlying structure, they can also be

exploited to investigate the relational structure among significant

variables (or, at least, among those with the largest variance) in an

expression data set by comparing the actual to the expected

outcomes. We used PCA to investigate the validity of the

assumptions of linearity and orthogonality for the TCGA GBM

expression data set.

When the underlying data relationships are both linear and

orthogonal, two-dimensional plots of successive principal compo-

nents (PC) should demonstrate that the samples display, on

average, a linear relationship to one another with the regression

line having a y-intercept and slope that approximate zero. Using

the RMA-normalized data set of all 340 GBMs, we performed

PCA and then examined the three, two-dimensional plots of the

first three principal components (PCs 1 vs. 2; 1 vs. 3; and 2 vs. 3;

Figure 14). Examination of the PC 1 vs. 2 plot suggests a linear

correlation of the data but with a regressed slope ,0. This effect

can be observed when both PCs are influenced by one or more

correlated variables and suggests that the first two principal

Figure 11. Data Filtering Analysis. Various combinations of data filtering strategies are applied to the TCGA GBM dataset (as indicated below the
images) and PCA plots colored by survival phenotype (Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles) are
generated. A summary of the eigenvalue data is presented in tabular form. This analysis suggests that technical variability introduced by genes with
relatively homogeneous or absent expression values is a source of variability but does not appear to be the primary factor impeding accurate
phenotypic classification.
doi:10.1371/journal.pone.0020826.g011
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components may not be purely orthogonal [21]. Examination of

the PC 1 vs. 3 and PC 2 vs. 3 plots suggest qualitatively that the

samples may be better represented by a nonlinear regression (i.e.

cluster better around an arc than along a straight line). This

artifact, sometimes referred to as a ‘‘horseshoe effect,’’ can be

observed when the relationship between the variables contributing

to the principal components is non-linear [21,58,59]. Although

these observations require further investigation, examination of

the 2-D PC plots raises the possibility of non-linear relationships

between variables and/or non-orthogonal data structure within

the TCGA GBM expression data that may explain some of the

inconsistencies or failures of robust linear classifiers.

Discussion

The Role of Transcriptomic Data in Phenotype Prediction
Laboratory techniques for analyzing the transcriptome, includ-

ing RT-PCR and microarray analysis, have evolved into some of

the most robust and efficient means of collecting large quantities of

molecular data from biological sepcimens. Because assays of the

transcriptome are believed to provide a comprehensive window

through which cellular physiology can be studied, a great deal of

effort and resources have been devoted to large-scale transcrip-

tomic analyses of human disease. It is essential to realize, however,

that these investigations, while comprehensive, are unlikely to be

exhaustive in their ability to predict phenotype. Post-translational

processes also have phenotypic influence, and predictive models

that include this data are likely to have improved accuracy when

compared to transcriptome-only models. Notwithstanding, be-

cause genotype influences phenotype, the transcriptome is likely to

contain valuable information on which predictive models can be

built. The objective of this investigation is to better understand the

potential sources of error in such models and to suggest strategies

for reducing this error. Whether applied to transcriptomic data in

isolation or to such data applied in a more comprehensive

framework, an improved understanding of these error sources can

only improve the predictive ability of molecular models that

incorporate transcriptomic data.

The Noise Problem and its Implications
Large scale molecular datasets, such as those generated by

whole-genome expression analysis, have been heralded by the

translational oncology community as an important step toward

using tumor biology to guide disease diagnosis and therapy.

Because genomic profiles and phenotype are related, it is logical

that molecular signatures associated with specific phenotypes can

be identified retrospectively and used to identify specific

phenotypes with clinical relevance prospectively. Translational

studies performed in the context of this paradigm have succeeded

in both domains, retrospectively identifying differential patterns of

gene expression between tumors from patients with distinct

phenotypes and prospectively using such signatures to classify

accurately novel tumor samples into appropriate phenotypic

categories [8,11,12,13,14,60,61].

Initial enthusiasm inspired by these investigations has tempered,

however, as repeated attempts at molecular subclassification of

various malignancies fail to validate the putative role of genes

identified as relevant by these classification schema and remain

unable to reproduce consistent genomic signatures associated with

similar clinical phenotypes. We believe that these two observations,

Figure 12. Batch Effects Analysis. A–C: Analysis of subsets (A = baseline subset) matched for all technical parameters except for either Hospital of
Origin (B; by TCGA Hospital code, Green = 02, Red = 08) or TCGA Batch (C; Green = batch 1, Blue = batch 2, Red = Batch 5). Samples do not segregate
by either technical variable, even when all other technical variables are controlled. This suggests that these variables are not major contributors to the
first three principal components. D–E: The ComBAT algorithm was used to correct for batch effects. This changes the distribution along all 3 principal
components (suggesting that batch effects may contribute to these components) but does not improve classification into survival phenotype,
(suggesting that batch effects are not the principal factor confounding the PCA). Note: D–E are colorized by survival phenotype, as in Figure 3A.
doi:10.1371/journal.pone.0020826.g012
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the successful prospective predictive ability of gene expression data

and the inconsistencies in the specific expression patterns on which

such classifications are made, reflect two distinct and equally-

important characteristics of large scale molecular datasets. The

predictive power of classifiers based upon molecular signatures [62]

demonstrates both the wealth of biological information contained in

these datasets and the robustness of the analytic models applied to

the problems of classification based upon this data. This finding

validates the enthusiasm with which these investigations are

undertaken and illuminates their potential utility as clinical tools.

The inconsistencies, however, demonstrate the presence of one or

more sources of noise within the dataset, where noise is defined as

the presence of measured variable values (i.e. gene expression

values) that do not contribute to the intended molecular

classification. Despite thorough investigation, much remains

unknown about the nature and magnitude of the noise, highlighted

by the observed inconsistencies in identifying specific genes and

gene expression signatures useful for classification. While the latter

challenge is surmountable, it risks overshadowing the former

strength unless the sources of such noise can be appropriately

identified, modeled, and suppressed in future translational molec-

ular oncology investigations. This problem spurred the present

investigation.

Data Quantity and Quality Relationships in Translational
Molecular Biology

Strategies employed to reduce noise and improve the accuracy

and precision of genome-based classifiers have focused on

reducing error primarily by increasing the quantity of available

data used in molecular classification investigations. Large,

publically-available repositories of molecular data spanning a

large number of pathologies were developed, including the Gene

Expression Omnibus (GEO) [63,64,65] and The Cancer Genome

Atlas (TCGA) [16]. This approach is consistent with traditional

models of biological and clinical research, where improvements in

power and reduction in error are achieved primarily through

increases in sample size.

Figure 13. Progressive Tumor Population Size Analysis. PCA plots (colored by survival phenotype, Red = top 20th percentile; Blue = bottom
20th percentile; Yellow = intermediate percentiles) show no qualitative change in sample distribution as equal subsets are added. 1a–f refers to
individual analyses of the six, equal subsets that were progressively added. Graphical representations of each of these subsets have been omitted in
the interest of space and are, instead, illustrated by a single, representative, graphical description of subset 1a (labeled 1). From this point, the
numbers correspond to the number of subsets present in the analysis. The eigenvalues associated with each subset and with the combined
populations show no significant changes as additional samples are added (tabular, bottom left; graphical, bottom right). PC, principal component.
This analysis demonstrates that the incorporation of additional samples causes some increase in noise, although this does not appear to be a major
factor contributing to the first 3 principal components.
doi:10.1371/journal.pone.0020826.g013
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Large-scale, molecular data sets differ fundamentally from

traditional biological and clinical data sets, however, in the

relationship between the number of samples being studied (n) and

the number of variables measured per sample (p). In traditional

datasets, relatively few variables are tracked across a proportionately

greater number of samples (n.p). The inverse is true of modern

molecular datasets, where the number of variables measured per

sample (typically expression levels of individual genes) far exceeds

the number of samples in a given investigation [62] (p&n). This

difference calls into question the validity of traditional models of

error and noise reduction through increasing sample size, and two

types of gross evidence appear to validate these concerns. First,

statistical investigations regarding selection of sample size in

microarray experiments, the details of which are beyond the scope

of this discussion, suggest that large sample sizes may not always be

necessary to draw meaningful biological conclusions

[66,67,68,69,70,71,72]. Second, there is little evidence to suggest

that classifiers derived from more recent investigations using large

numbers of gene expression profiles [11] are more powerful or more

robust than those generated from investigations performed using

fewer samples [8]. Together, the combination of these theoretical,

statistical, and practical observations suggest that increasing sample

quantity may be neither necessary nor sufficient to reduce noise and

error in analyses of large-scale molecular datasets.

If increasing sample quantity is not necessarily the primary

method for reducing noise and error, then data quality must be

improved. The concept of the ‘‘quality’’ of expression data is

complicated by the fact that the experimental utility of a given

dataset is relative to the biological hypothesis that it is being used

to test. A molecular dataset that may be ideal to answer one

question may contain too much noise to test an alternate

hypothesis. In addition to stressing the importance of appropriate,

initial study design in molecular analyses, this argument suggests

that the concepts of error and noise have a dynamic component

(that is relative to a given investigation) and that error modeling

may need to be individualized [49] for a particular question

addressed using a specific dataset. This reasoning may explain

some of the theoretical underpinnings of the heterogeneity and

variability noted in the core gene expression patterns employed by

modern molecular classifiers.

Another possibility is that cancers, such as GBM, are much

more molecularly diverse than we have previously recognized.

While there may be some common molecular events contributing

to the development and progression of the disease, it may be that

the clinical phenotypes are mediated by large numbers of

interacting genes and that this diversity would require even larger

patient populations to identify the subtle signals that may be

present. Alternately, it may be that a more hypothesis-driven,

pathway-based approach to identifying phenotypically-relevant

subclasses is necessary.

Phenotypic Correlation as the Benchmark
Identification of genotypic tumor subgroups with phenotypic

significance has been used as the benchmark for ‘‘successful’’

molecular tumor subclassification in this investigation. This

strategy has been chosen because it reflects the real-world needs

of translational neurobiologists and neuro-oncologists. These

investigators, who attempt to identify molecular markers in

glioblastoma patients that define discrete diagnostic, prognostic,

or response-to-therapy subpopulations, represent a significant

proportion of the target audience of the TCGA project and are

currently among the most frequent consumers of the gene

expression data housed in this database. While phenotypic

correlations of genomic data are important in nearly all avenues

of research conducted using such databases, we recognize that the

benchmark we have chosen may not be ideally suited to the

specialized needs of some mathematicians, basic scientists, and

systems biologists who may be analyzing the TCGA data with

non-clinical objectives. Notwithstanding, even investigators with

such alternate aims may benefit from the conclusions drawn from

this analysis.

Logic Models and Error in Tumor Classification
Although specific sources of noise and their relative relation-

ships may vary across diverse datasets and for specific clinical

Figure 14. 2-Dimensional Plots of Principal Components 1–3. Two-dimensional plots of the first three principal components of the TCGA
GBM dataset (colored by survival phenotype, Red = top 20th percentile; Blue = bottom 20th percentile; Yellow = intermediate percentiles). These plots
may suggest nonlinear and/or nonorthogonal relationships among the features (genes) used for classification. See text for detailed discussion.
doi:10.1371/journal.pone.0020826.g014
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questions, there must be some logical framework through which to

approach the identification of such confounding data. To address

this challenge, we created a logic model we believe is useful for

analyzing many of the potential sources of noise that result in

inconsistent phenotypic classification of malignancies based upon

gene expression data (Figure 1).

Our model is predicated upon two, necessary preconditions;

that distinct phenotypic groups exist within the dataset and that

genomic profiles can be used to predict phenotype. Assuming these

conditions are met, we asked five basic questions, the answers to

which frame a logic model for investigating the potential sources of

noise that impedes reproducible classification into clinically-

relevant phenotypes based upon molecular data. Finally, we apply

this logic model to the TCGA glioblastoma expression dataset to

investigate the potential sources of noise specific to this dataset and

to the challenge of molecular classification of GBM into subgroups

with distinct, clinically-relevant phenotypes. This exercise serves

two purposes. First, it provides a specific analysis of the potential

sources of noise and error that have been confounding attempts at

reproducible subclassification of GBM. Second, it illustrates the

broader concept of design and implementation of a logic model for

error analysis that can be applied, with some individual

modifications, to understand sources of noise and error in similar,

translational investigations.

Logical Analysis of Sources of Noise and Classification
Error in the TCGA GBM Data Set

In the following section we describe the five questions used to

frame our logic model and the results of the 11 individual analyses

performed within the context of the model to investigate the

potential sources of noise and error that result in classification

inaccuracy or variability in the TCGA GBM data set.

a. Preconditions. In order for the TCGA dataset to be

appropriate for the task of molecular subclassification of

GBMs into genomic subgroups with phenotypic significance,

two preconditions must be met. First, there must be multiple,

discrete phenotypes of GBM. This precondition is satisfied by

a wealth of clinical experience demonstrating that patients

with GBM have variable time to progression and recurrence,

survival rates, and response to therapy [1,2,5,8]. Next,

genomic profiles must be useful for predicting tumor

phenotype. This has been demonstrated in multiple investi-

gations where different types of malignancies as well as

different classes of the same general malignancy have been

assigned to the appropriate category based upon genomic

profile, including successful subclassification of GBM

[8,11,12,13,14,60,61]. Additionally, our multiple tumor stratifi-

cation analysis (#1) demonstrated that the TCGA GBM

expression data could be used to successfully separate GBM

from other malignancies, validating this specific precondition

for this particular dataset.

b. Question 1: Do unbiased class discovery methods
accurately identify clinical phenotypes of GBM
based upon analysis of the TCGA GBM expression
data? The unsupervised classification and clinical parameters analysis

(#2) addressed this question by applying several unsupervised

classification algorithms to the TCGA GBM expression data.

No algorithm was able to accurately stratify the tumors by

subclass in any of 8 clinically-relevant, phenotypic categories.

These results demonstrate that gene expression-based analysis

fails to classify patients into appropriate clinical subclasses,

suggesting that some type(s) of noise is present within the data

and confound attempts at molecular classification. This

observation differs from some of those previously reported

independently by several groups, who found that phenotyp-

ically-relevant (survival) GBM subgroups could be identified

based upon gene expression data [8,12,13,15]. However,

these previous studies were generally conducted within a

single center and were performed using smaller and more

homogeneous experimental populations. Tissue for these

studies may have been more carefully selected, and clinical

characteristics of patients whose tissues were analyzed may

have been more rigorously reviewed to verify satisfaction of

multiple inclusion criteria. All of these factors reduce analytic

noise by limiting some of the variability within the dataset,

and it is not surprising that accurate phenotypic classification

is more challenging in the more heterogeneous, TCGA

dataset.

c. Question 2: Do clinical and phenotypic differences
exist within the data set? One potential reason for failure

of the molecular classification strategies that must be

addressed at the outset would be the absence of genomic or

phenotypic differences within the TCGA GBM dataset.

Phenotypic variability among GBMs has been well described

in general (see preconditions) [1,2,5,8], and review of the clinical

data associated with this particular dataset revealed the

expected variability among each of the 8 categories analyzed

in analysis #2 (data not shown), indicating that various

clinical phenotypes are also present within the dataset.

Genomic variability is also well described among GBMs

[8,11,12,13,14,60,61], and biological analysis of the unique

expression signature of the outlier group identified in the

biologic analysis of the outlier group (#3) exercise demonstrates

plausible biological variability among samples in this specific

data set. Accordingly, we conclude that genomic and

phenotypic differences do exist in the TCGA GBM dataset.

d. Question 3: Why are underlying differences among
the expression data not identified by the unsuper-
vised analysis? Several unsupervised, linear classifiers and

dimensional reduction strategies failed to classify the TCGA

GBM data into phenotypically-significant groups. The

eigenvalue data analysis (#4) suggests that these classifiers (for

which we use PCA as a prototype) fail to capture a large

percentage (.70%) of the variability inherent in the dataset.

In general, the types of linear algorithms used commonly in

molecular GBM subclassification (and therefore used in this

exercise) are unsuccessful when one of two, necessary criteria

are not satisfied; either (1) the mean and standard deviation do

not accurately and sufficiently represent the dataset, or (2) the

relationships between genomic profile and clinically-relevant

phenotype are either non-linear or non-orthogonal. Individ-

ually, these criteria form the basis of questions four and five.

e. Question 4: Do the mean and standard deviation
accurately and sufficiently represent the dataset? In

this analysis, the mean and standard deviation may fail to

appropriately represent the dataset in one of two circum-

stances. First, they insufficiently describe the dataset when the

values of the variables serving as the basis of classification do

not follow a Gaussian distribution [36]. The expression data

distribution analysis (#5) demonstrates that the underlying data

distribution in the TCGA GBM data is not purely Gaussian,

with statistically-significant skew and kurtosis apparent in both

the composite expression matrix and among the expression

levels of the individual variables (genes). The ultimate

significance of this with regard to classification requires

further, dedicated investigation [36,38], but it provides one
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possible explanation for the failure of linear classifiers applied

to this dataset.

A second circumstance where mean and standard deviation

fail to appropriately represent the dataset is when features

with the largest variance are not the primary contributors to

the clinically-relevant phenotypes. Stated differently, linear

classifiers fail when the signal-to-noise ratio of the dataset is

low. In this context, the term noise is defined as the presence of

measured variable values (i.e. gene expression values) that do

not contribute to the intended molecular classification, and, as

discussed earlier, is relative to the clinical question(s) being

asked. In molecular classification experiments using gene

expression data, both technical and biological noise can

impede accurate classification.

1) Technical noise is present when procedural artifacts are

reflected in the values of the variables. We investigated

potential sources of technical noise, including those associated

with sample preparation (#7), the array platform (#7), the

inclusion of low-variance or incomplete expression data (#8),

batch effects (#9), and sample size (#10). We demonstrated

the presence of technical noise associated with all of these

domains within the TCGA GBM dataset, although no single

domain appeared to be the primary contributor to inaccurate

phenotypic subclassification. Investigation of the relative

magnitude of the individual contributions to the overall error

and the aggregate effects of these sources of technical noise on

the overall classification accuracy require detailed modeling

strategies that are only beginning to be developed and that

are beyond the scope of this analysis. Notwithstanding, our

analysis demonstrates the importance of ongoing research

into such modeling and highlights technical noise as one,

important area for additional investigation.

2) Biological noise [56,73] is present when the values of the

variables (gene expression values) accurately reflect underly-

ing biology but still confound subclassification into clinically-

significant subgroups. This can occur in one of three ways: (1)

the expression values reflect underlying biology that does not

contribute to clinically-relevant phenotypes, (2) the expression

values reflect biological differences that make proportionally

low magnitude contributions to clinically-relevant pheno-

types, or (3) the expression values reflect biology that does

contribute to clinically-relevant phenotypes, but these

phenotypes either are not included in or are not detected

by our analytic model. Specific analysis of the relative

magnitude of the effects from each of these categories

requires not only complex modeling that is beyond the scope

of our investigation, but also some a priori knowledge of the

underlying systems biology of the tumor that may not be

known. These, too, must be areas of active research if the

sources of error in large-scale, molecular datasets are to be

accurately described.

f. Question 5: Are the relationships between features
(genes) and clinically-relevant phenotype linear and
orthogonal? Linear classifiers and dimensional reduction

algorithms, by definition, are designed to classify based

upon linear combinations of feature values associated with

the members of the dataset [36]. Additionally, many

common data reduction algorithms (including PCA) require

orthogonal relationships between features (or their mathe-

matical aggregates) so that linear algebra strategies can be

used to facilitate data reduction [21]. Without a detailed

understanding of the systems biology of the tumor being

studied, it is impossible to know for certain whether any or

all relevant features are related in a linear (or orthogonal)

fashion. A basic understanding of the complex principles

underlying gene regulation, signal transduction, and

malignant transformation, however, provide no particular

basis for the assumptions of linearity or orthogonality and,

in fact, may logically favor a non-linear and non-orthogonal

relationship among genes. These relationships may be

present across the entire expression spectrum of a given

gene or above or below a specific expression threshold.

Although nonlinear relationships are difficult to demon-

strate definitively in incompletely-characterized biological

systems, we exploited knowledge of the mathematics

underlying principal component analysis and the expected

relationships between the identified PCs [21,58,59] to

provide qualitative evidence suggesting underlying non-

linear and/or non-orthogonal relationships among features

(#11). These findings argue in favor of application of

classifiers that do not assume linearity or orthogonality (e.g.,

kernel PCA), strategies which are now being described by

array statisticians [74] but have yet to see broad application

by the translational research community. Including nonlin-

ear models in future analyses of large-volume, molecular

datasets (including the TCGA data) may be a critical step to

improving the accuracy of class discovery and prospective,

molecular classification.

Limitations
The investigation that we have performed focuses on the

TCGA gene expression data and is therefore subject to two,

general limitations inherent to this dataset. First, the TCGA

expression data that we have analyzed reflects only genome-level

changes in tumor biology. While gene expression is believed to

correlate with phenotype, protein-level data may also be a

valuable resource for molecular classification of glioblastoma

[75]. Second, the TCGA gene expression data has been collected

from surgical tumor specimens that necessarily contain a mixture

of neoplastic and non-neoplastic cells. While this may be more

significant for investigations of tumor biology than for those

focusing on molecular tumor classification [8,55], this consider-

ation must be appreciated by investigators working with this

dataset.

We also recognize that the logic model that we have described

and the analysis of the TCGA GBM data that we have performed

have some limitations. First, we recognize that our model may not

encompass every potential source for noise or error in this

particular dataset and that generalization of our model to other

datasets and/or to investigations of alternate hypotheses may

require inclusion or exclusion of additional confounding factors.

Nonetheless, we believe that our model provides a logical

framework for analyzing error that is readily expandable should

modification of the specific sources of noise or error become

necessary or should alternate, potential sources of error be

identified. Similarly, while our logic model may be useful for

prospectively exploring and limiting potential sources of error

when designing novel studies, we would not support the conclusion

that such a strategy necessarily assures generation of ‘‘high-

quality’’ data and caution that such a conclusion exemplifies the

logical burden-of-proof fallacy. Finally, while our model has

allowed us to identify several targeted areas for future efforts to

improve the quality of the TCGA GBM data, we recognize that

research in additional domains may also be necessary to improve

the translational potential of this dataset.
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Summary and Conclusions
We have constructed a logic model that facilitates a compre-

hensive analysis of potential sources of noise and error that may be

responsible for some portion of the inconsistencies and lack of

reproducibility observed in recent attempts to use constituent data

from the TCGA GBM expression dataset to classify GBMs into

clinically-relevant phenotypes. We believe that this model is a

useful tool to conduct such analyses and can be readily adapted as

new information regarding error and noise becomes available, and

we believe it may be readily generalized to the systematic study of

error in other translational domains.

Based upon our application of this logic model to the TCGA

GBM expression data, we make seven conclusions regarding the

potential sources of inconsistencies and error among molecular

classifiers based upon the expression data comprising this dataset.

1) Because there is evidence that supports the existence of

genomic and phenotypic variability within the dataset, the

failure to discover genomic associations correlated with

clinically-relevant phenotypes may reflect a classification

failure by the common, linear classification algorithms

commonly employed in this and in most other analyses of

gene expression data.

2) The mean and standard deviation do not accurately and

sufficiently describe either the overall expression matrix or

the expression values of the individual genes contained

therein.

3) Neither the distribution of the overall expression matrix nor

the expression distributions of the genes or samples conform

to a pure Gaussian distribution.

4) Technical noise, and likely biological noise as well, limit the

signal-to-noise ratio of this dataset with respect to molecular

tumor classification into phenotypically-relevant subsets.

5) Technical noise is present within the data, but none of the

measured sources appear to individually represent the

primary source of classification-limiting noise.

6) Biological noise is assumed to be present based upon the

logic model but cannot be accurately measured using

current error modeling strategies.

7) There is a suggestion of non-linear and/or non-orthogonal

relationships among genes affecting clinically-relevant GBM

phenotypes in this dataset.

Finally, the results of our analysis suggest that targeted research

in four, specific areas may further efforts to improve classification

accuracy and reproducibility by reducing noise in the TCGA

dataset. These areas include: (1) additional research regarding the

underlying distribution of the dataset and the implications of this

distribution for classification algorithms, (2) expanded develop-

ment and application of non-linear and/or non-orthogonal

classifiers to this data, (3) efforts to improve modeling of technical

noise, (4) and expanded efforts to model biological noise in the

context of improved understanding of the systems biology of

GBMs.

Methods

Logic Model
A logic model for directing data analysis was constructed and is

depicted in Figure 1. This model was used to identify and to place

in context five, fundamental questions that served as the guide for

data analysis (see discussion). Based on logic model structure,

eleven mathematical analyses (indicated numerically on Figure 1

and described below) were then designed to answer these five

questions. Publically-available GBM gene expression data, with

corresponding clinical and technical data, was prepared as

described and was then used as the data source for these analyses.

Gene Expression Datasets
The primary GBM gene expression dataset for this project was

compiled from publically-available, TCGA GBM data [16].

AffymetrixH .cel files for all 340 GBM samples profiled using the

AffymetrixH HT-HG-U133A chip available through TCGA as of

1 October 2009 were downloaded and were included in

subsequent analyses. To facilitate biological comparisons from

the analyses performed using this data set, four .cel files from

normal brain tissue profiled on the same AffymetrixH platform

were downloaded from GEO [63,64,65]. A second dataset was

then constructed, including all 340 GBMs plus the four normal

brain samples, which served as controls in analyses involving

interpretation of tumor biology. Finally, a multiple-tumor dataset

was compiled for use in the multiple tumor classification

investigation. This dataset comprised all 340 GBMs plus an

additional twenty (20) renal cell carcinomas (RCC) and four (4)

hepatocellular carcinomas (HCC). The latter 24 samples were also

profiled using the AffymetrixH HT-HG-U133A chip, and the.cel

files were downloaded from GEO.

Expression Data Preparation
Three datasets were prepared and were used in all subsequent

analyses. The first was composed of all 340 GBM samples, the

second comprised all 340 GBM samples plus the four normal

brain controls, and the third consisted of all 340 GBM samples

plus the 24 non-GBM tumors. Each dataset was normalized using

the Robust Multichip Average (RMA) [22,23,76] with background

adjustment, quantile normalization, and PLM summarization.

When indicated, an alternate normalization strategy using the

AffymetrixH MAS5 method [54] was utilized. All normalized

expression values were log2 converted.

For the dataset containing normal brain tissue, and average

expression value for each gene across the four control samples was

computed. The expression variance among each gene was

computed for the controls, and the most variable 10%,

representing the genes with the least consistent expression in the

control dataset, were removed from downstream analyses (as

previously described). The log2 (tumor/normal) expression value

for each of the remaining genes was computed in each of the 340

samples, and this dataset was used in subsequent analyses

involving biological interpretation of data. This method of data

preparation has been previously described in GBM expression

analyses.

A one-sided Significance Analysis for Microarray (SAM) [27,28]

algorithm with a false discovery rate (FDR) set to zero was applied

to each of the three datasets to exclude genes whose expression

values were not statistically significant from baseline (zero or

control). These genes do not meaningfully contribute to classifi-

cation and can impede downstream analyses. These three datasets

were used, as indicated, in the eleven analyses performed in this

investigation.

Clinical and Technical Data
Access to restricted clinical data was granted through the

standard TCGA data access protocol. Clinical data (when

available), including survival, time to progression, time to

recurrence, Karnofsky performance status (KPS), sex, adjuvant

chemotherapy, adjuvant radiotherapy, and presence of necrosis

and endothelial proliferation in histologic sections, was merged
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with expression data for analyses involving these parameters.

Similarly, data regarding the technical processing and specimen

quality, including prior treatment, relative abundance of tumor

cells, tissue block size, hospital of origin, TCGA batch number,

extracted RNA concentration, OD260/280, 28S/18S, and RNA

integrity number (RIN), was similarly collected and merged for

analyses involving these parameters.

Data Analysis
Microsoft Excel was used for data preparation. The TM4

software package [77,78] was used to analyze gene expression

data. Analyses performed using TM4 include hierarchical

clustering and support (HCS, bootstrapping with 20 iterations)

[19], k-means clustering and support [25] (KMS, 10 iterations

with 80% clustering threshold), k-nearest neighbor classification

(KNNC) [26], and principal component analysis [20,21] (PCA).

Differences were considered statistically-significant at p,0.05,

unless otherwise indicated.

PCA as a Prototypical Linear Classifier
Initial analyses used multiple classification algorithms, including

HCS, KMS, and PCA to verify that all of these linear methods

resulted in qualitatively-equivalent results in class discrimination

investigations. Subsequently, PCA was used as a prototypical

discriminator because of the robust nature of the algorithm and

the logical, graphical representation of its class discrimination.

Supporting Information

Figure S1 Logic Model for Analyzing Variability in the
TCGA GBM Dataset, Unannotated. Logic model applied for

data analysis, without annotations (see Figure 1 for annotated

version and for detailed explanation). Supplied for reference

purposes.

(TIF)

Table S1 Genes Differentially Expressed between the
Outlier Cluster and the Remaining GBMs. Relative fold

change values computed using 2-sided significance analysis for

microarrays (SAM) with false discovery rate (FDR) = 0. Statistical

significance of categorical annotations computed using the EASE

score (adjusted Fisher Exact Test). 1A: Overexpressed in the

outlier group relative to the remainder. 1B: Underexpressed in the

outlier group relative to the remainder. 1C: EASE analysis of

overrepresented categories in the overexpressed genes. 1D: EASE

analysis of overrepresented categories in the overexpressed genes.

1E: Overlap between differentially expressed genes and categories

in the outlier group and those identified in a previously-described

GBM expression fingerprint with putative relationship to the

survival phenotype [8].

(XLS)
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