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Abstract

The Embedded Figures Test (EFT) requires observers to search for a simple geometric shape hidden inside a more complex
figure. Surprisingly, performance in the EFT is negatively correlated with susceptibility to illusions of spatial orientation, such
as the Roelofs effect. Using fMRI, we previously demonstrated that regions in parietal cortex are involved in the contextual
processing associated with the Roelofs task. In the present study, we found that similar parietal regions (superior parietal
cortex and precuneus) were more active during the EFT than during a simple matching task. Importantly, these parietal
activations overlapped with regions found to be involved during contextual processing in the Roelofs illusion. Additional
parietal and frontal areas, in the right hemisphere, showed strong correlations between brain activity and behavioral
performance during the search task. We propose that the posterior parietal regions are necessary for processing contextual
information across many different, but related visuospatial tasks, with additional parietal and frontal regions serving to
coordinate this processing in participants proficient in the task.
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Introduction

In an increasingly chaotic visual environment, we are often

challenged to find a particular object hidden among distracting

items. In a typical day, we might search for a bike in a packed bike

rack, look for a particular paper or book on a cluttered desk, or try

to find an important news item on a disorderly webpage. In order

to successfully complete these tasks, we must suppress the

extraneous, surrounding items in order to focus on the target

object. Researchers have studied this ability with a laboratory

exercise known as the Embedded Figures Test (EFT, [1]) or with

variants such as the Hidden Figures task (HFT, Figure 1a; [2]). In

each of these tasks, participants must determine whether a simple

geometric shape is embedded inside a more complex figure

composed of many intersecting lines. (Because of the overarching

similarity between the Embedded and Hidden Figures Tasks, we

will not distinguish them further; the term EFT will be used to

refer to both, unless otherwise specified).

As one might imagine, there are large individual differences in

the ability to perceptually ‘‘disembed’’ the hidden figure in the

EFT. Interestingly, Witkin and colleagues [3] noted an inverse

correlation between EFT performance and susceptibility to an

illusion of context – the rod-and-frame illusion, in which a vertical

rod is seen as slightly tilted when viewed in the presence of a

surrounding frame tilted at an angle away from vertical [4]. That

is, individuals who excel in the EFT tend to be less affected by the

presence of the tilted frame in the rod-and-frame illusion. This

series of results led Witkin and colleagues to construct a theory of

cognitive processing style, which he termed field dependence/

independence (FDI) [5]. In general, field-dependent individuals seem

to be more affected by the contextual information present in a

situation (or visual image) and cannot easily disembed parts from

the whole. Field-independent individuals, on the other hand, are

better able to focus on the details of the image while ignoring

contextual information. This tendency of the latter group would

make them better able to suppress the gestalt of the EFT in order

to focus on the individual line segments that form the hidden

target shape, as well as to ignore the misleading, tilted frame in the

rod-and-frame task. Work in our lab (Dassonville, Walter, and

Bochsler, 2007, presented at the Annual Meeting of the Vision

Sciences Society) has recently demonstrated that performance in

the EFT is also negatively correlated with susceptibility to another

contextual visual illusion, the induced Roelofs effect (in which the

perceived location of a target is biased to the left or right when

presented in the context of a large illuminated frame that is offset

right or left of the observer’s midsagittal plane, respectively;

[6,7,8]). These tasks appear to be linked by virtue of the need to

suppress contextual information in order to perform optimally (i.e.,

to score well on the EFT and to be immune to the Roelofs and

rod-and-frame illusions).

Though these tasks are linked theoretically and correlated

behaviorally, the neural mechanisms underlying visuospatial

contextual processing remain unclear. A previous imaging study

performed in our laboratory found bilateral regions of posterior
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parietal cortex to be selectively active when the stimuli included

visuospatial contextual information that led to the induced Roelofs

effect [9]. Because susceptibility to the Roelofs effect and

performance in the EFT are correlated behaviorally, we surmised

that similar neural structures might be involved in processing the

visuospatial contextual information in the two tasks. Indeed, other

researchers have reported similar parietal regions of activation

when participants performed a variant of the EFT [10,11,12].

However, it is impossible to determine whether identical posterior

parietal areas are involved in processing visuospatial contextual

information in the two tasks, given the differences in task

methodology and scan parameters across studies and differences

in brain anatomy across participants.

The main objectives of the current study are two-fold. First, we

examine the neural basis of the disembedding process associated

with the EFT, with the particular goal of gaining an understanding

of the individual differences in task performances associated with

field dependence/independence. Second, we directly test the

hypothesis that identical neural areas are recruited for processing

the visuospatial contextual information that leads to the induced

Roelofs effect and degraded performance in the EFT. This was

accomplished by inviting participants who previously participated

in our Roelofs imaging study [9] to return and perform a variant of

the EFT in the same scanner, using identical scanning parameters.

The existence of overlapping regions that are activated in the two

tasks would suggest a common substrate for the processing of the

contextual information relevant to field dependence in a wide array

of tasks. Alternately, entirely independent regions of activation in

the two tasks would suggest that although our conceptual use of the

term ‘‘visuospatial context’’ has overlapping cognitive theoretical

implications, it is divisible neurologically into more specialized

processing networks.

Materials and Methods

Participants
Experimental procedures were approved by the Institutional

Review Board at the University of Oregon, and informed, written

consent was obtained from each participant. Sixteen right-

handed participants (12 female; 18–28 years of age) were

compensated either with money or course credit for an

introductory psychology course. Most participants (n = 10) in

the current study had participated in our earlier study of the

Roelofs effect [9], however all remained naı̈ve to the overall goals

of the current study. In addition, nine of the participants

completed a localizer task designed to highlight areas of the brain

Figure 1. The Embedded Figures Task (and related variant) measures a participant’s ability to locate a simple shape within a
complex figure. (a) An example of the original Hidden Figures Task. Participants are asked to determine which of the five simple shapes is hidden in
the complex shape below (from Ekstrom et al., 1976). Stimuli of the present study (b,c) comprised two potential tasks. When the top shape was red
(b), the participant determined whether the simple shape matched the (red) pop-out stimulus in the lower figure (matching task). When the top
shape was white (c), the participant judged whether the simple shape was hidden inside the complex image below (search task). In the stimulus
shown, the simple shape was included in the complex image (the lower left slanted line of the complex image forms the lower left slanted line of the
simple shape).
doi:10.1371/journal.pone.0020742.g001
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involved in making eye movements. The EFT scanning session

lasted approximately 1–1.5 hours.

Behavioral tasks
Participants performed a variant of the EFT [1] during this

event-related functional imaging study. All images were presented

to participants on a screen that was viewed via an angled mirror

attached to the head-coil. Participants indicated their response via

an MR-compatible custom-built keypad, using the index and

middle finger on the right hand. During each trial, participants

viewed a black background with a simple shape (drawn in white or

red; approximately 3u by 5u visual angle) presented simultaneously

above a more complex lined figure (drawn predominately in white

with a subset of the lines, comprising a closed shape, drawn in red,

all spanning approximately 7u by 7u; see Figure 1b and c). The

color of the simple shape determined the task to be performed.

When the simple shape was drawn in red (Figure 1b), the

participant was to perform a shape matching task, indicating via

button press whether the simple shape matched the red form that

‘‘popped-out’’ of the complex figure below (a button-press by the

index-finger indicated that the two red shapes matched, while a

press by the middle-finger indicated no match). If the simple shape

was instead drawn in white (Figure 1c), the participant was asked

to determine whether that shape was hidden in the complex figure

below (search task; a button-press by the index-finger indicated that

the simple shape was hidden in the complex figure, while a press

by the middle-finger indicated an absence of the simple shape

within the complex figure). When the simple shape was contained

within the complex figure, it was always the same size and

orientation as the simple shape presented above. In half of the

matching trials, the red ‘‘pop-out’’ shape matched the simple

shape, while in the other half it did not. Similarly, half of the

search trials contained a hidden figure and half did not. The

stimuli remained on the screen until a response was made, at

which point the screen went blank for a pre-specified intertrial

interval (ITI, 1–16 s) before the next stimuli were presented. If no

response was made, the trial timed out after 12 seconds, and the

next trial began after the ITI.

For the match trials, we instructed our participants to respond

as soon as they had determined whether the items matched or not,

but emphasized that accuracy was more important to us than

speed. For the search trials, participants were asked to respond as

soon as they found the simple shape hidden inside the complex

figure, and were asked to indicate that the shape was absent only

after they were fairly certain it was absent. If the participants were

not sure if the target shape was present or absent, they were to

keep looking until they could make a decision, or until the trial

timed out (after 12 seconds).

Participants performed forty trials (20 matching and 20 search)

during each run, which lasted approximately 6.5 min (run

durations varied somewhat across participants, depending on the

individual differences in response time). Participants each

performed six runs (for a total of 120 matching and 120 search

trials) over the course of the experiment. A different complex

figure was used for each of the 240 trials, in order to prevent any

explicit or implicit learning that might otherwise occur if the

stimuli were reused. Thirty-two of the stimuli were modifications

of those used in the standard HFT [2], while the remaining 208

were custom-made to match the style, size and complexity of those

used in the HFT. Each trial used one of five simple shapes, which

had an equal probability of being associated with a ‘‘present’’ or

‘‘absent’’ correct response. Trials were subsequently analyzed with

respect to whether the participant answered correctly or not (or

did not respond). Thus, a trial could end up as one of twelve types

(see Table 1), depending on the task (matching or search), response

(‘‘present’’, ‘‘absent’’ or timed-out) and evaluation of the response

(correct or incorrect).

Eye movement localizer task
Because we wanted the participants to view the EFT stimuli in a

natural manner, we did not restrict their eye movements while in

the scanner. However, it is likely that the search task required

more eye movements than did the matching task (as the searching

task was generally more difficult and took longer to perform). In

order to account for functional activations possibly caused by

differences in the patterns of eye movements across the two tasks,

an eye movement localizer task was carried out with a subset of

participants. In an additional run, participants (n = 9) made eye

movements to small targets (0.5u60.5u, 1 s duration each, no ISI)

that appeared on a black background, during 20 s blocks

separated by intervening periods of rest (16 s). Eye-movement

blocks were preceded by 2 s of the instruction ‘‘Follow target.’’

Participants were instructed to foveate each target during the

movement blocks, and lay still with their eyes open, but without

making eye movements, during the rest periods.

Scan parameters and image processing
Functional MR images were acquired using a 3T head-only

MRI (Siemens Magnetom Vision, Erlangen, Germany), with a

standard birdcage head-coil. For each functional run, we used a

standard BOLD (blood oxygenation level dependent) gradient-

echo EPI (echo-planar imaging) sequence (TR = 2 s, TE = 30 ms,

Table 1. Proportion (mean 6 s.d., %) and response times (ms) of the different stimulus-response types in the matching and search
tasks.

Participant’s Response

Task Target ‘‘Present’’ ‘‘Absent’’ None

% RT (ms) % RT (ms) % RT (ms)

Matching Present 97.660.1 13996314 0.860.1 10086252 1.660.1 12000*

Absent 0.560.1 401663739 98.060.3 15996627 1.560.3 12000*

Search Present 76.960.7 45916943 13.560.5 759662127 9.660.4 12000*

Absent 3.960.2 601562532 73.661.5 835261559 22.561.4 12000*

*Trials timed out after 12 s if no response was made.
doi:10.1371/journal.pone.0020742.t001
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32 slices, 4 mm thickness, 0 mm gap, FOV = 20062006128 mm)

allowing us to achieve nearly whole-brain coverage with an in-

plane resolution of 3.12563.12564 mm. In addition, we collected

anatomical images (whole brain, 1 mm slices, 0 mm gap) using a

standard MPRAGE sequence, yielding an in-plane anatomical

resolution of 16161 mm. To ensure that the laterality of the

images would be correctly interpreted, participants were scanned

with a small marker (0.5 ml centrifuge tube filled with a nickel

sulfate solution) taped to the right side of the forehead.

Stimulus presentation durations in this event-related design

were dependent on the rate of each participant’s response, while

ITIs ranged from 1–16 s in a manner designed to maximize our

ability to reconstruct the hemodynamic response signal for each

study condition (see [13]). We used the optseq program (http://

surfer.nmr.mgh.harvard.edu/optseq/) to yield near-optimal se-

quences of trial types (search or matching task, target shape

present or absent) and ITIs for each run, for each participant [14].

Though we attempted to optimize the sequence of trial types and

ITIs, the variability in participant response time and response

choice made it impossible to precisely determine the optimal

stimulus sequence in advance.

Raw functional images from each participant were converted

into BrainVoyager format and pre-processed using custom

MatLab scripts to automate portions of the processing and to

ensure standardization across all runs. Images were preprocessed

with a slice-time scan correction, 3-D motion correction, a

temporal high-pass filter to remove the 1st, 2nd and 3rd order

elements, and a spatial low-pass filter that smoothed the data using

a 4 mm FWHM Gaussian smoothing kernel. Finally, the

functional images from each participant were aligned to their

own anatomical scan, which were then aligned with the AC-PC

plane and converted into the Talairach atlas space as defined by

Talairach and Tournoux [15] by individually defining bounding

boxes for the entire brain, using AC and PC set as anchor points

for the transformation (BrainVoyagerQX 1.9).

Data from all participants were combined and analyzed using

the general linear model with separate predictors for matching and

search trials. For the predictors of both types, error trials (i,e,, those

in which the participants answered ‘‘present’’ when the target was

absent from the complex figure, or vice-versa) were discarded from

analyses and not considered further. The predictor for the search

trials, however, also included timed-out trials in which the target

shape was absent from the complex figure; although these trials

were not technically ‘‘correct’’, it was assumed that the absence of

a response indicated that participants maintained their search for

the hidden figures up until the time at which the trial timed-out.

Since the focus of the study was on the disembedding process that

was being attempted during this search process, it was deemed

appropriate to include these timed-out trials in the analyses. We

used a duration of 12 s (the maximum duration of any trial) for

these time-out trials.

The predictors, delineating the duration of the individual trials

of a given type from stimulus presentation until response/time-out,

were convolved with the hemodynamic response as implemented

in the BrainVoyagerQX 1.9 statistical package. Below, we first

present the results of a random-effects analysis of all sixteen

participants (using a voxel-wise threshold of p,0.001 uncorrected,

with a cluster-correction threshold of p,0.05; cluster-based

corrections were performed using the Cluster-level Statistical

Threshold Estimator plug-in for BrainVoyagerQX 1.9, [16]). In

addition, we present the results of a fixed effects analysis (voxel-

wise threshold of p,0.05, Bonferroni corrected) of the ten

participants who took part in both the present EFT study and

our imaging study of the Roelofs effect [9].

Results

Behavioral results
Although participants responded correctly on the majority of trials,

there were significant differences in the error rates and response times

in the search and matching tasks (error ratematching = 0.761.1% (mean

6 s.d.), error ratesearch = 12.066.8%, t(15) = 6.77, p,0.001; response

timematching = 16376629 ms, response timesearch = 719961621,

t(15) = 13.89, p,0.001; see Table 1 for a full description of these

performance measures). Because each participant correctly answered

a different number of trials, and did so with varying response times, we

quantified each participant’s overall performance in the tasks using the

methods of information theory [17]. With the two-alternative

decisions required in the present tasks, each response could transmit,

at most, one bit of information, with errors decreasing the average

information to less than one bit per trial. Dividing this value by the

average response time for each participant yielded a measure of

performance (processing speed, expressed in bits/s) that is less prone

(compared to the separate measures of accuracy and response time) to

the difficulty that is introduced by individual differences in a speed-

accuracy tradeoff. On average, the matching trials elicited processing

speeds of 0.6260.19 bits/s, while the search trials had significantly

slower processing speeds of only 0.07660.041 bits/s (t(15) = 11.80,

p,0.001).

Neural activations associated with both tasks
The results of the random-effects analysis demonstrated that

extensive cortical and subcortical activations were associated with

both the matching and search tasks (Figure 2). In the cortex,

prominent bilateral activations were seen in much of the occipital

lobe and inferotemporal cortex, along the intraparietal sulcus, and

in the anterior cingulate and middle frontal gyri. Subcortically,

activations were seen in the basal ganglia, thalamus and midbrain.

Because of the difficulty in parsing these large regions of

activation, and because the goal of the study was to focus on the

activations that distinguished the matching and search tasks, no

attempt was made to delineate these activations further.

Neural activations associated with the matching task
A contrast of the correct matching trials versus the correct (and

timed-out) search trials indicated several cortical regions whose

activations more closely fit the time course of the predictor for the

matching trials (Table 2 and Figure 3, cool colors). These included

bilateral activations in the superior and medial frontal, precentral,

cingulate and superior temporal gyri, and the cuneus.

Neural activations associated with the EFT
Because the main goal of the this study was to determine the

brain areas specifically involved in the disembedding component

of the EFT, the functional contrast of greatest interest was a

comparison of all correct (and no-response) search trials versus all

correct matching trials. This contrast indicated that the EFT was

associated with bilateral activations in the parietal lobe (precune-

us/SPL, BA 7) and middle frontal gyrus (BA 6), and in left

occipital cortex (BA 31; see Table 2 and Figure 3, warm colors).

To assess whether the overall speed of processing in the EFT was

associated with a differing pattern of neural activity during this task,

we performed a whole-brain analysis of covariance (ANCOVA, using

a voxel-threshold of p,0.001 uncorrected, with a cluster-correction

threshold of p,0.05), using each participant’s speed of processing in

the search trials (as measured in bits/s) as a covariate. We found

significant correlations between brain activation and processing speed

in a predominantly right-lateralized network of frontal and parietal

areas. Specifically, we found positive correlations in a portion of right

Cortical Activation in an Embedded Figures Task
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parietal cortex, extending posteriorly from a region in the

temporoparietal junction (BA 39; r2 = 0.75; see Table 3 and

Figure 4) to the precuneus (BA 19; r2 = 0.72). In addition to the

parietal loci, sections of the right inferior frontal gyrus (BA 9;

r2 = 0.76) and insula (BA 13; r2 = 0.72), and the left precentral gyrus

(BA 4; r2 = 0.74) showed strong correlations between processing speed

and activation. In all of these regions, participants with higher

processing speed showed greater activation than did participants with

lower processing speed.

Neural activation associated with the eye movement
localizer task

To account for possible differential effects of eye movements in

the search and matching tasks, we compared our EFT results to

those from an additional eye movement localizer task completed

by nine of our participants. Because the intent of this analysis was

to compare activations within the tested group of participants, we

performed a fixed-effects analysis of the eye-movement activations

and compared the results with those of a fixed-effects analysis of

the EFT data (voxel-wise threshold of p,0.05, Bonferroni

corrected). During the eye movement localizer blocks, extensive

regions of cortex were significantly activated, including the frontal

eye fields (FEF; precentral gyrus) and regions in the parietal cortex,

with foci near the intraparietal sulcus. In addition, large regions of

the occipital (BA 17/18) and inferior parietal cortices (BA 40) were

activated during the eye movement localizer. Although the frontal

areas active in the EFT (search .. matching) contrast did overlap

with areas implicated in the eye movement localizer task, the

profile of parietal activations associated with the EFT was very

different from that associated with the eye movement localizer task

(see Figure 5a). Indeed, of the parietal cortex activated in the EFT,

76.2% showed no overlap with the areas activated in the eye

movement localizer task. In addition, the parietal saccade-related

activations did not overlap with the parietal regions whose

activations were correlated with individual differences in the rate

of processing in the EFT.

Discussion

The EFT [1] and related paradigms (e.g., [2]) entail a process of

searching for and isolating the individual line segments of a

geometric shape embedded within the gestalt of a more complex

image. It has been demonstrated many times that the ability to

perform this disembedding process differs greatly between

individuals, a finding that led Witkin et al. [5] to propose this

task as a measure of a cognitive construct he called field

dependence/independence. From this perspective, field-indepen-

dent individuals are less affected by the contextual effects of the

gestalt, and are better able to isolate the hidden figure. On the

other hand, field-dependent individuals are more prone to

consider the gestalt, which then is more effective in obscuring

the hidden figure and thus hampers search performance.

The tasks employed in the present study were designed in such a

way as to isolate the neural mechanisms underlying the

disembedding process that defines the EFT. For example, with

the exception of the color of the simple shape, the stimuli used in

the search task were identical to those of the matching task (e.g.,

both were of equal size and brightness, had equal levels of

complexity, and included a subset of line segments that were

differently colored; Figure 1b and c), so that a contrast of the

functional activation associated with the two tasks would subtract

out the low-level sensory processes that the tasks had in common.

Similarly, both tasks required a comparison of geometric shapes,

and both required identical motor responses to indicate the

presence or absence of the simple shape within the complex image.

Figure 2. Functional maps demonstrating widespread regions in occipital, temporal and parietal cortex that were significantly
active during both the search and matching trials. All activations surpassed a whole-brain voxel-level threshold of p,0.001 (uncorrected) with
a cluster-corrected threshold of p,0.05.
doi:10.1371/journal.pone.0020742.g002
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Thus, the primary difference between these tasks lay in the

manner in which the participants disembedded the target shape

within the complex image. With the matching task, color was used

to cause the target shape to ‘‘pop out’’ from the complex image,

whereas the search task could be completed only by a methodical

parsing of the line segments contained in the complex image.

A comparison of the activations with the two tasks indicated that

this disembedding process is associated with a bilateral frontopa-

rietal network of brain regions, specifically in the superior parietal

cortex, precuneus and middle frontal gyrus (Figure 3). In addition

to the frontoparietal regions associated with the search task across

all participants, the ANCOVA analysis revealed non-overlapping

regions that were correlated with the speed of processing in the

EFT performance for individual participants. These regions

showed a greater activation for participants who were better at

the task, suggesting that they may be part of a second processing

circuit capable of modulating EFT performance.

The matching .. search contrast showed activations in a

surprisingly large number of cortical areas (Figure 3, cool colors),

especially given that similar contrasts in previous studies (albeit

with paradigms using block designs) showed no areas that were

specifically active in the matching task [10], or only a region of left

medial temporal lobe [11]. However, in interpreting the matching

.. search contrast in the present study, one must consider how

this contrast might have been affected by the large differences in

response times associated with the matching and search trials, with

the matching trials having relatively short and highly consistent

response times and the search trials having relatively long and

variable response times. For example, given the consistent

response times, in the matching trials, the activation of primary

motor cortex associated with the button-press report would always

be tightly synced to the onset of the trials, whereas it would be

delayed by the variable response time in the search trials.

Accordingly, the activation of primary motor cortex that can be

seen in the matching .. search contrast should not lead to the

conclusion that primary motor cortex is more specifically active in

the matching task. Similarly, other aspects of the tasks that occur

only at the very beginning or end of both trial types (e.g., visual

processing and attentional alerting driven by the onset of the

stimulus, task switching guided by the color of the simple stimulus,

stimulus-response decoding to correctly guide the button-press

report) would be expected to be better fit by the short, consistent

time course of the predictor for the matching trials. Thus, the

regions found to be active in the matching .. search contrast

Table 2. Random-effects analysis for the search versus matching contrast (n = 16).

Talairach Coordinates

BA Anatomical location x y z Extent (mm3) average t-value

Matching .. Search

Frontal 6 R superior frontal gyrus 16 19 56 273 4.57

Frontal 6 L superior frontal gyrus 214 25 55 220 4.53

Frontal 9 R superior frontal gyrus 13 53 31 380 4.29

Frontal 8 L superior frontal gyrus 220 40 39 1013 4.35

Frontal 10 R medial frontal gyrus 9 52 9 229 4.39

Frontal 6 L medial frontal gyrus 21 27 51 803 4.51

Frontal 9 L medial frontal gyrus 26 48 19 2191 4.54

Frontal 44/6 R precentral gyrus 49 7 7 854 4.52

Frontal 43 R precentral gyrus 56 25 13 977 4.48

Frontal/Parietal 1/2/3/4 L postcentral/precentral gyrus 241 227 55 3477 4.72

Occipital 17/18/23/30 R/L cuneus/posterior cingulate 1 276 12 18793 4.79

Limbic 31/24/29/30 R/L cingulate/posterior cingulate 1 239 32 11970 5.10

Temporal 13/22/42/39 R superior temporal gyrus 53 246 20 14087 4.81

Temporal 22 L superior temporal gyrus 251 218 3 6901 4.65

Temporal 40 L supramarginal gyrus 250 251 23 14595 4.95

Cerebellum R cerebellum (anterior lobe) 25 245 219 1550 4.59

Cerebellum L cerebellum (anterior lobe) 236 249 222 560 4.54

Cerebellum R cerebellum (posterior lobe) 22 273 237 432 4.52

Cerebellum L cerebellum (posterior lobe) 230 273 236 262 4.50

Search .. Matching

Parietal 7 L superior parietal 217 264 51 2410 4.90

Parietal 7 R precuneus 16 269 51 2962 4.62

Occipital 31 L precuneus 223 276 29 1440 4.68

Frontal 6 R middle frontal gyrus 25 210 56 1268 4.82

Frontal 6 L middle frontal gyrus 224 211 56 1221 5.40

All contrasts were performed using a whole-brain voxel-level threshold of p,0.001 (uncorrected) with a cluster-corrected threshold of p,0.05. Each entry refers to the
center of mass of a single region of activation (reported in the normalized coordinate space of Talairach and Tournoux, 1988), and all Brodmann areas refer to the
anatomical region nearest the center coordinate, obtained from the Talairach daemon (Lancaster et al., 2000; http://www.talairach.org/daemon.html).
doi:10.1371/journal.pone.0020742.t002
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(Figure 3) would reflect not only those areas truly more active in

the matching trials, but also those areas that are involved in the

processes that are common to both tasks at the beginning or end of

the trials. On the other hand, the search .. matching contrast

should more specifically reflect the neural mechanisms that are

active during the disembedding process associated with the EFT

throughout the duration of the search trials.

Relationship to oculomotor and visual-spatial attention
circuitry

The posterior parietal regions implicated in processing visuo-

spatial contextual information are somewhat similar to those

regions suggested to comprise a frontoparietal eye-movement and

attention network. Although eye movements were not recorded

during the present experiment, it can be assumed that the pattern

of eye movements differed somewhat between the search and

matching tasks. Thus, it is possible that the parietal and frontal

activations associated with the EFT were not caused by the

disembedding process per se, but were rather an artifact of a

difference in oculomotor behavior. Indeed, an examination of

Figure 5a demonstrates that the frontal regions associated with the

EFT did overlap substantially with an eye-movement-related

frontal activation (presumably the frontal eye fields) as delineated

by the eye movement localizer task. It cannot be ruled out,

Figure 3. Functional maps demonstrating regions that were more active during the search (warm colors) or matching trials (cool
colors). The event-related averages (bottom panels, corresponding to the labeled arrows in the brain images) show the time course of the activation
from the search (red) and matching trials (blue) in the search-specific regions of parietal and frontal cortices. All activations surpassed a whole-brain
voxel-level threshold of p,0.001 (uncorrected) with a cluster-corrected threshold of p,0.05.
doi:10.1371/journal.pone.0020742.g003
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therefore, that these frontal regions were only active due to a

possible difference in the pattern of eye movements associated with

the search and matching tasks. In contrast, although the parietal

activations associated with the EFT were located near the parietal

eye fields, there was in fact very little overlap between these

regions of activation. This suggests that the observed parietal

activations were not caused directly by a difference in the

oculomotor behavior between the search and matching tasks.

The difference between the matching and search tasks of the

present study can be conceptualized as a difference between

bottom-up (i.e., pop out) processes for locating the target in the

matching condition as contrasted with top-down processes

mediating search for the embedded figure. Previous work

(reviewed by Corbetta and Shulman [18]) has indicated that

different neuronal circuits are involved in these two aspects of

attentional processing, with regions in temporoparietal and

inferior frontal cortices involved in stimulus-driven attention,

and regions of the intraparietal, superior parietal and superior

frontal cortices involved in the top-down control of the attentional

focus. These general patterns of activation are consistent with the

activation seen here with the matching and the search tasks,

respectively, and, in particular, indicates that the superior parietal

cortex plays an important role in the disembedding process

associated with the EFT.

Furthermore, it is possible that additional neural circuits come

online for those individuals who are more proficient at solving the

EFT. Indeed, activation in right-lateralized areas of the tempo-

roparietal junction, precuneus, inferior frontal gyrus and insula is

not evident across all participants, but is instead correlated with

individual differences in performance on the EFT, with more

proficient participants showing greater activation. These areas

may be more directly involved in the executive control and

coordination of the stimulus-driven and top-down attention

required in a search for the hidden figure. In particular, the right

inferior frontal gyrus (IFG) has been singled out by other

researchers as being critical for inhibitory control [19]. Interest-

ingly, in a task requiring interference suppression, Bunge and

colleagues [20] found activation within a network of regions very

similar to those found in the correlation analysis in the current

study – including right inferior and middle frontal gyri, inferior

parietal regions, and insula. Thus, it is possible that, in participants

proficient in the EFT, these regions are responsible for inhibiting

the distractions of the extraneous line segments in the complex

image during the search for the hidden figure. Serences and

colleagues [21] also found that a similar network of regions,

including right inferior and middle frontal gyri, temporoparietal

junction, inferior parietal sulculs, and insula, was involved in

coordinating voluntary and stimulus-driven attention in a complex

Figure 4. Scatter plot showing the correlation between brain activation and processing speed in the search task (as measured in
bits/s) for right-lateralized regions in (a) inferior frontal gyrus (BA 9; center of mass at Talaraich coordinate: 53, 12, 32) and
temporoparietal junction (BA 39; 38, 255, 31). All activations surpassed a whole-brain voxel-level threshold of p,0.001 (uncorrected) with a
cluster-corrected threshold of p,0.05, with R2 = 0.76 in the inferior frontal gyrus and R2 = 0.75 in the temporoparietal junction.
doi:10.1371/journal.pone.0020742.g004

Table 3. ANCOVA analysis, correlating a measure of processing speed (bits/s) with activation levels in the search trials (n = 16).

Talairach Coordinates

BA Anatomical location x y z Extent (mm3) average R2

Parietal 19 R precuneus 36 267 40 415 0.72

Parietal 39 R temporoparietal junction 38 255 31 636 0.75

Frontal 9 R inferior frontal gyrus 53 12 32 307 0.76

Frontal 4 L precentral gyrus 231 226 52 299 0.74

Sub-lobar 13 R insula 45 14 1 148 0.72

All contrasts were performed using a whole-brain voxel-level threshold of p,0.001 (uncorrected) with a cluster-corrected threshold of p,0.05. Each entry refers to the
center of mass of a single region of activation (reported in the normalized coordinate space of Talairach and Tournoux, 1988), and all Brodmann areas refer to the
anatomical region nearest the center coordinate, obtained from the Talairach daemon (Lancaster et al., 2000; http://www.talairach.org/daemon.html).
doi:10.1371/journal.pone.0020742.t003
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task. In the present study, these regions appeared to be similarly

involved in coordinating top-down and bottom-up attention as the

participants shifted attention among the components of the

complex image in search of the simple shape.

Comparison with previous studies of the EFT
Previous imaging studies of typically-developing individuals

have also examined the neural activation associated with the

disembedding process of the EFT [10,11,12]. In general, these

earlier studies found a similar network of frontal and parietal areas

associated with the task, though with a pattern that was more left-

lateralized than that reported here (Figure 6). This difference in

lateralization might be attributable to a difference in task difficulty,

as evidenced by a rough correlation between the reported

lateralization and reaction times in the search tasks of the different

studies. Indeed, Manjaly et al. designed relatively simple stimuli so

that the accuracy rates could be maintained at more than 85%

with a relatively short stimulus duration of 3 s; thus, response times

were approximately 2.1 s [10] and 1.8 s ([11], using adolescent

participants). These simple hidden figures stimuli were associated

with activation only in the left parietal and frontal cortices

(locations marked 1 and 2 in Figure 6). Lee at al. [12] used stimuli

that evoked longer response times (5.8 s), which led to a bilateral

activation in the parietal lobe and a left-lateralized activation in

frontal cortex (marked 3 in Figure 6). Mean response times in the

EFT of the current study were 7.1 s, and were associated with

bilateral parietal and frontal activations (marked with filled stars in

Figure 6). This relationship between lateralization and response

times suggests that the parietal cortices in a frontoparietal network

in the left hemisphere is primarily responsible for the disembed-

ding process with simple stimuli, with an analogous network in the

right hemisphere recruited only as the task becomes more difficult.

Figure 5. A comparison of the brain activation for performance of the EFT, the Roelofs task, and an eye movement localizer task. (a)
Brain regions showing voxels significantly activated in a fixed-effects analysis of all participants who performed an eye movement localizer task, in
addition to the EFT (n = 9). Yellow voxels depict those areas significantly more active during the search trials than during the matching trials; blue,
regions activated during the eye movement localizer task; and green, regions common to both the search .. masking contrast as well to as the eye
movement localizer task. (b) Brain regions showing voxels significantly activated in a fixed-effects analysis of all participants who performed the
Roelofs task (Walter and Dassonville, 2008), in addition to the eye movement localizer and EFT. Red voxels depict those areas significantly activated
during both the Roelofs task as well as the EFT; blue, regions activated during the eye movement localizer task; and purple, regions common to all
three tasks. All contrasts are thresholded at p,0.05, Bonferroni corrected.
doi:10.1371/journal.pone.0020742.g005

Figure 6. A comparison of the results from the present experiment (filled stars indicating the center of mass for significant
activations in the search .. matching contrast, Table 2; unfilled stars indicating the regions where the activation was correlated
with the speed of processing in the search task, Table 3) and those of Manjaly et al. (2003, markers labeled 1; 2007, markers labeled
2), and Lee et al. (2007, markers labeled 3). Only those sites located on the lateral cortical surface are shown; not shown are sites in the superior
frontal gyrus/anterior cingulate, left lingual/fusiform gyrus and right parahippocampal/fusiform gyrus (Lee et al., 2007), and a site in the insula whose
activation was correlated with the speed of processing in the current study. Finally, the open circles indicate the locations of activations associated
with the processing of the illusion-inducing context of the Roelofs effect (Walter and Dassonville, 2008).
doi:10.1371/journal.pone.0020742.g006
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The present study also went further than previous studies of the

EFT in that it used event-related fMRI methods to avoid possible

confounds caused by differences in the time-on-task that are

inherent in paradigms comparing blocks of trial types with

different levels of difficulty. These methods allowed us to examine

differences in the patterns of activation that correspond to

individual differences in the performance of the task. In particular,

we found that participants who were more efficient (that is, who

had faster rates of information processing, in bits/s) showed

greater levels of activation in the right-lateralized network of

frontal and parietal regions (Figure 6, unfilled stars), compared to

the less efficient participants. These results suggest that the more

efficient performers were those that were more successful at

recruiting the resources of the right hemisphere. In the context of

field dependence/independence, this suggests that field-indepen-

dent individuals typically recruit a strongly bilateral network of

parietal and frontal regions when performing the EFT. Thus, the

difference between field-dependent and field-independent individ-

uals may be the ease at which they can recruit the neural resources

of the right hemisphere for this task.

Relationship to the enhanced EFT performance
associated with autism

In addition to the widely-studied individual differences of EFT

performance in a typically-developing population, it is also known

that EFT performance is affected in individuals with autism.

Indeed, individuals with autism excel in the EFT, showing faster,

more accurate performance than typically-developing individuals

[22,23,24,25]. A recent hypothesis of Baron-Cohen and colleagues

suggests that specific autistic traits exist as continua across the

general population, with individuals with autism occupying the

extremes of these continua (see [26], for a review). Given this, it is

interesting to consider the possibility that the boost in EFT

performance associated with autism is an extension of the

individual differences seen with field-independence in the general

population. If this were the case, one would expect individuals with

autism to show an extreme version of the pattern of activation seen

in the current study with the more efficient EFT performers.

Several imaging studies have attempted to assess the neural

activations that underlie this enhanced EFT performance within

individuals with autism [11,12,27] or their parents [28];

unfortunately, results across these studies are highly variable.

Ring et al. [27] found that autistic individuals performing the EFT

showed more activation in striate and extrastriate regions, and less

in premotor and parietal regions, compared to typically develop-

ing controls. Manjaly et al. [11] found a similar pattern in general,

but only when using lower statistical thresholds and qualitative

comparisons between the two groups. Lee et al. [12] also provided

only a qualitative comparison of the activations from the two

groups, finding that whereas control children had activations in

left dorsolateral, medial and dorsal premotor cortex and bilateral

activations in parietal, occipital and ventral temporal cortices

during the EFT, these were reduced to activations in only left

premotor, left superior parietal and right occipital cortices in

children with autism. Baron-Cohen et al. [28] showed that the

parents of children with autism had decreased activations in the

middle occipital and lingual cortices, compared to the parents of

typically developing children. However, one should view the

results of these previous studies with some skepticism, since each

one failed to find a significant difference in EFT performance in

their tested groups, perhaps due to stimuli that were too simple, or

too few trials. To our knowledge, the current study is the first to

demonstrate neural activations that co-vary with individual

differences in EFT performance; it is still an open question

whether the neural basis for these individual differences reflects a

less extreme version of the enhanced EFT performance associated

with autism.

Overlap with contextual processing associated with
visuospatial illusions

While the cognitive construct of field dependence/indepen-

dence has been used as a way of understanding the individual

differences in performance of the EFT, it also suggests an

explanation for individual differences in illusion susceptibility

[3]. This theory suggests that because field-dependent individuals

are more prone to taking into consideration the context of a visual

scene, they would be more susceptible to context-dependent

visuospatial illusions than are field-independent individuals.

Witkin et al. [5] originally demonstrated this relationship with

the rod-and-frame illusion, showing that individuals that were

more prone to the illusion also had a reduced performance (e.g.,

slower response times) in the EFT. Recent work in our lab has

extended these findings to the Roelofs effect, by demonstrating

significant correlations between rod-and-frame susceptibility,

Roelofs susceptibility and EFT performance [29; see also

Dassonville, Walter, and Bochsler, 2007, presented at the Annual

Meeting of the Vision Sciences Society].

The behavioral relationship between EFT and illusion suscep-

tibilities suggests a common underlying neural mechanism driving

performance in these tasks, and led us to predict that we would

find overlapping networks of brain regions involved in processing

the contextual information associated with the tasks. Indeed, a

previous study of the induced Roelofs effect [9] found regions in

parietal cortex that were involved in processing the contextual cue

provided by a Roelofs-inducing frame (Figure 6, open circles), and

ongoing work in our lab has demonstrated that deactivation of

these regions with slow repetitive transcranial magnetic stimula-

tion can decrease susceptibility to the rod-and-frame illusion

(Lester and Dassonville, 2010, presented at the Annual Meeting

for the Society for Neuroscience). Importantly, these areas also

neatly overlap the areas found to be active in the EFT in the

present study and those of Manjaly et al. [10,11] and Lee et al.

[12].

However, the present study allows for a more direct test of the

hypothesis that similar brain structures are involved in processing

the contextual information that leads to greater illusion suscepti-

bility and decreased EFT performance, since 10 of the participants

tested in the EFT were also involved in our earlier study of the

Roelofs effect [9]. Consistent with previous results, we found a

negative correlation (r = 20.28) between behavioral performance

on the two tasks. Although the correlation in this small sample did

not reach significance, it was in the same direction (i.e.,

participants with a greater susceptibility to the Roelofs illusion

had a decreased performance on the EFT) and of similar

magnitude to the significant correlations found with larger samples

(Dassonville, Walter, and Bochsler, 2007, presented at the Annual

Meeting of the Vision Sciences Society). To test for brain regions

significantly active in both tasks, we performed fixed effects

analyses (thresholded at p,0.05, Bonferroni corrected) of the data

in both studies. As we had predicted, bilateral regions of parietal

cortex (centered at Talairach coordinates x = 21, y = 271, z = 41

and x = 221, y = 270, z = 39) were active in both tasks (Figure 5b),

which suggests that these regions are processing the visuospatial

contextual cues that both hinder performance on the EFT and

lead to visuospatial illusions such as the Roelofs and rod-and-

frame effects. Although the evidence presented here falls short of

that required to definitively suggest that these posterior parietal

regions are specifically and singularly devoted to processing
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visuospatial context (see, for example, the inference arguments laid

out in [30]), it does suggest a potential neural locus for the

correlated reliance on contextual information in these two very

different visuospatial tasks.

In this study, we have demonstrated robust activity in parietal

and frontal areas during completion of an Embedded Figures

Task, while controlling for the non-search aspects of the task (e.g.,

appearance of the visual figure, presence of a perceptual judgment

and button-press response). Whereas the frontal regions of

activation may have been attributable to differences in the

patterns of eye movements between the search and matching

tasks, the spatial pattern of activation seen in parietal cortex was

very different from that seen during an eye movement localizer

task. Instead, the parietal regions associated with the EFT

overlapped in large part with activation found during a very

different, but behaviorally related, visuospatial processing task, a

location judgment performed within a visuospatial context that

leads to the illusion of the Roelofs effect [9]. These results, taken

together, suggest that these portions of superior parietal cortex and

precuneus are involved in processing the contextual information

across a wide range of visuospatial tasks.
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