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Abstract

In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological
functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-
mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the
cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG)
extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized
much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the
midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual
behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded
open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal
columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a
dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced
Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting
that much of the ICo is homologous to the dorsal PAG.
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Introduction

The midbrain periaqueductal gray (PAG) comprises several

histochemically and functionally distinct, semi-longitudinal col-

umns that integrate descending information from limbic-hypotha-

lamic forebrain areas and ascending sensory information from

spinal and medullary afferents to coordinate downstream activa-

tion of motor processes that generate overt behavior [1,2,3,4,5].

The ventrolateral (VL) PAG regulates passive coping strategies

and analgesia, whereas the dorsal PAG, which includes the

dorsomedial (DM), dorsolateral (DL) and lateral (L) columns,

regulates active coping strategies such as fight-or-flight behavior

[1]. Importantly, different social stimuli reliably induce unique

patterns of activation across the various columns. For instance,

aggressive interactions produce Fos activation in the DL column of

dominant male rodents [6,7] and in the DM and L columns of

subordinates [8], whereas predator exposure activates the DM and

DL columns rostrally, plus L and VL columns caudally [8,9,10]. In

contrast, copulation in male rodents activates only the most medial

aspects of the DM and L columns in the rostral PAG [11].

To date, it remains unclear whether non-mammalian homo-

logues of the PAG exhibit a similar functional organization. The

large optic tectum of birds is laterally displaced and thus the

central gray (CG) is stretched mediolaterally, rather than

dorsoventrally as in mammals. This lateral extension of the avian

CG has also been noted by Dubbeldam [12] who proposed that

the CG and adjacent dorsomedial part of the intercollicular

nucleus (ICo) share features with the mammalian PAG. Consistent

with these ideas, we here hypothesize that the avian CG is

organized like a folded open PAG, with medial CG being

equivalent to ventral PAG and lateral CG/ICo being equivalent to

dorsal PAG. To test this hypothesis, and to determine whether

birds possess longitudinal columns that run rostrocaudally, we

compared the immunocytochemical distributions of several

neuropeptides and enzymes in mice and finches, as well as Fos

activation patterns in birds (using the gregarious zebra finch,

Taeniopygia guttata, and the territorial violet-eared waxbill, Urae-

ginthus granatina) with those known for rodents. We predicted that 1)

the distinct cluster of neuronal nitric oxide synthase (nNOS)

neurons that defines the DL column [13,14] occupies the

ventrolateral CG, 2) the dense innervation of the dorsal PAG by

met-enkephalin (ENK) and substance P (SP) [5] lies laterally in the

CG, 3) the vasoactive intestinal polypeptide (VIP) and tyrosine

hydroxylase (TH) neurons that characterize the ventral third of the

mammalian PAG [15,16] occupy the medial third of the avian

CG, and 4) dominance and defensive interactions would produce

the strongest Fos activation in the lateral CG, whereas 5)

copulation would most strongly activate the rostral CG, in a

dorsal region adjacent to the ventricle.

The ‘‘folded open hypothesis’’ receives strong support from both

the functional and immunocytochemical analyses. However,

characteristic features of the dorsal PAG do not lie within the
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CG as classically defined, but in the adjacent ICo [17], a region

known to be vocally active across a diversity of avian taxa [18].

Results

Immunohistochemical analyses of the avian CG
Based on the lateral displacement of the avian midbrain, we

predicted that histochemical features located ventrally in the

mammalian PAG would be located medially in the avian CG,

whereas histochemical features located dorsally in the PAG, would

be located laterally in the CG. Immunohistochemical comparison

of the midbrains of C57BL/6 mice and zebra finches strongly

confirm these predictions. Whereas TH immunoreactive (-ir) cells

are located basally along the aqueduct in both species, these

neurons are present in the ventral PAG of mice (arrowheads in

Figure 1A, C, E), while presumably homologous neurons are

found in the medial CG of finches (arrowheads in Figure 1B, D, F).

In both mice and birds, only light peptidergic immunoreactivity

adjoins the region of the medial TH- and VIP-ir cell groups at

mid-rostral levels, primarily VIP-ir cells and fibers that extend

along the aqueduct and a few nNOS-ir cells (Figure 2A, arrows

and Figure 2B).

In contrast, neuropeptides densely innervate the dorsal half of

the PAG in mice and the lateral CG extending through the ICo

in finches. In mice, SP-ir fibers innervate the DM and L columns

(the latter much more heavily) of the rostral and mid-rostral PAG

(Figure 1A, C), whereas a comparable SP innervation is observed

for the lateral CG and ICo in finches, also at rostral and mid-

rostral levels (Figure 1B, D). Furthermore, just as the apex of the

DM column exhibits light SP-ir fibers (Figure 1A, C), so does the

ICo region lateral to the nucleus mesencephalicus lateralis, pars

dorsalis (MLd; Figure 3). ENK-ir fibers heavily overlap the SP-ir

fibers of the lateral CG/ICo at mid-rostral levels in finches

(Figure 2C), and a similar overlap is observed in the dorsal PAG

of mice at mid-rostral levels, in agreement with the overlap of

ENK and SP mRNA in the dorsal PAG of rats (note that

immunodetection of these peptidergic cells are likely not possible

without colchicine pretreatment) [5]. At caudal levels of the avian

CG, ENK-ir and SP-ir fibers overlap and extend medially

towards the midline, although the ENK-ir labeling is more

prominent (Figure 2D) and a comparable descending ENK-ir

innervation of the VL column is observed in mice (cf. [16,19]). In

addition, the distinct column of small round nNOS-ir cells that

characterizes the DL column in mice (average soma size,

9.9 mm+/20.567 mm; Figure 1A, C, arrows) is observed as a

distinct cluster of small round nNOS-ir cells in the ventrolateral

CG/ICo region in finches (average soma size, 10.2 mm+/

20.318 mm; arrows in Figure 1B, D, see also asterisk in

Figure 2A and Figure 4B) within territory classically defined as

the ICo [17]. The large nNOS-ir cells clustered within the ventral

PAG more caudally in mice (average soma size, 18.3 mm+/

20.978 mm; arrowheads in Figure 4A) likely correspond to the

large nNOS-ir cells observed in the medial CG of finches

(average soma size, 18.4 mm+/20.652 mm; arrowhead in

Figure 4B). The pattern of labeling for b-endorphin (b-END) is

particularly interesting, since b-END-ir fibers below the CG/ICo

appear to delineate the ventral boundary of this area very well,

and also distinguish MLd from the surrounding ICo (Figure 2A).

However, diffuse b-END-ir fibers can be observed in the lateral

ICo at rostral and mid-rostral levels (Figure 5, arrows).

Functional columns of the avian CG
Analyses of Fos responses in the 39 sampling areas (Figure 6)

revealed 9 functional zones of the CG and the ICo that are

differentially responsive to the various social conditions (see

Methods for details and Figure 7 for an example), and which

mostly form longitudinal columns that span multiple rostrocaudal

levels (Figure 8). Note that our delineation of functional zones

based on Fos response profiles was conducted without making a

priori assumptions about rostrocaudal contiguity. To maintain a

high degree of resolution, we assigned different zone numbers to

rostrocaudally continguous areas that showed only minor

differences in response profile. Most notable in this regard is

the assignment of different zone numbers to zone 4 (level 1) and

zone 7 (level 2). Both of these areas exhibited a Fos response in

dominant waxbills whereas only zone 7 exhibited a Fos response

in subordinate individuals (see below for details). Other zones

showed greater consistency across levels. A schematic of these

zones, color-coded by response profile, is presented in Figure 8A.

In general, the functional organization of the avian CG is

strongly consistent with our predictions (see Discussion).

Nonsocial defense (waxbills). Relative to control and

dominant subjects, waxbills in the nonsocial defense group

exhibited significantly greater Fos induction in a midline column

that spanned all three rostrocaudal levels (zone 1, F(3,20) = 6.929,

p = 0.0022; Figure 8A, B). A similar response was observed in

subordinate subjects, as described below. This is the only column

in which a significant Fos response was observed for the nonsocial

defense group.

Dominance (waxbills). Dominant male waxbills exhibited

Fos responses that were restricted to the far lateral portions of our

sampling area, including a zone on the medial edge of MLd, which

exhibited highly selective responses in the dominant subjects,

although this was observed only at the rostral-most level (zone 4,

F(3,20) = 2.919, p = 0.0503; Figure 8A, C). Just caudally, at the mid-

rostral level, a topographically similar and contiguous area showed

a significant Fos response in both the dominant and subordinate

groups (zone 7, F(3,20) = 5.554, p = 0.0061; Figure 8A). A virtually

identical response pattern was observed for the lateral-most ICo

(i.e., lateral to MLd; zone 6, F(3,20) = 4.531, p = 0.0140; Figure 8A,

D, see also Figure 7). Zone 6 formed a functional longitudinal

column that spanned the full rostrocaudal extent of the ICo.

Subordinance (waxbills). Subordinate waxbills exhibited

widespread activation across the CG and ICo, with the notable

exception of the ventromedial portions of the sampling area (gray

boxes in Figure 8A). In addition to the zones mentioned above, in

which subordinates exhibited activation that overlapped with

other groups, the subordinate waxbill group exhibited significant

activation of the dorsocentral CG/ICo (zone 8, F(3,20) = 3.275,

p = 0.0424; Figure 8A, E), and a contiguous area that extended

ventrolaterally to MLd (zone 5, F(3,20) = 2.993, p = 0.050;

Figure 8A). The number of Fos-ir cells in zone 5 correlates

positively with the number of aggressive behaviors received by

subordinate subjects (r = 0.899, p = 0.0149) and is also activated by

mate competition aggression in zebra finches (see below). The

ventromedial areas that showed no group differences (zones 3 and

9) nonetheless exhibit Fos-ir cell counts that are also positively

correlated with aggression received by subordinates (zone 3,

r = 0.830, p = 0.0362; zone 9, r = 0.944, p = 0.0046; Figure 8F). We

have presented these two sampling areas as different zones because

zone 3 also exhibits a negative correlation between Fos-ir cell

counts and the aggression displayed by the dominant subjects

(r = 20.859, p = 0.0282; Figure 8G). Notably, the response profiles

of zones 3, 5, 8 and 9 are maintained across rostrocaudal levels,

and hence appear to characterize robust and functionally distinct

longitudinal columns.

Mate competition and copulation (zebra finches).

Significant Fos responses to copulation were restricted to a rostral,

Organization of the Avian Central Gray
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dorsolateral region of the ICo directly adjacent to the ventricle

(zone 2; Figure 8A, H; F(3,15) = 7.199, p = 0.0032). This area also

exhibited significant responses to a same-sex conspecific, which is

likely an affiliative context for zebra finches, and mate

competition, a context that elicits a combination of both

courtship and aggression. Fos induction was very similar in the

two groups exposed to females (mate competition and

copulation). Mate competition in resident males also produced

a strong response in the ventrolateral ICo, adjacent to the medial

edge of MLd (zone 5; Figure 8A, I; F(3,15) = 5.552, p = 0.0093),

and Fos-ir cell counts in this area correlated positively with the

number of displacements the resident male directed at the

intruder male (Figure 8J; r = 0.864, p = 0.05). Notably, this

positive correlation in zone 5 is similar to that observed for

aggression received in subordinate waxbills, and no significant

correlation was observed in this area for dominant male waxbills.

Although counterintuitive, this result is consistent with previous

studies showing that aggression in mate competition contexts is

regulated in a manner very differently from aggression in other

contexts [20,21]. Mate competition further induced a significant

Fos response within a small region on the dorsomedial margin of

MLd (F(3,15) = 5.112, p = 0.0124), which likely corresponds to the

dorsal medial nucleus classically assigned to ICo [22] and at least

in part to the intercollicular core nucleus as defined in the chick

([23,24]; see Discussion).

Discussion

Based on the lateral displacement of the optic tectum in birds,

we hypothesized that the avian CG is organized much like a folded

open mammalian PAG, with the medial CG being equivalent to

the ventral PAG and the lateral CG being equivalent to the dorsal

PAG (which includes the DM, DL and L columns). Although this

hypothesis receives strong support from our data, the predicted

pattern of results is observed only if the avian CG is expanded to

include virtually all of the ICo as presently defined. Thus, based on

histochemistry, position relative to other structures, Fos responses

to social stimuli, and the presence of functionally distinct

longitudinal columns, we propose that the avian CG and ICo

are collectively homologous to the mammalian PAG, and that the

Figure 1. Immunocytochemical comparisons of the midbrains of mice and zebra finches. The PAG in mice (A, C, E) and the CG in finches
(B, D, F) at rostral (A, B) and mid-rostral (C–F) levels of the midbrain, showing immunoreactive (-ir) cells and fibers for tyrosine hydroxylase (TH;
purple), neuronal nitric oxide synthase (nNOS; red), and substance P (SP, green). Note that TH-ir cells are located ventrally along the aqueduct in mice
(arrowheads in A, C, E) and medially along the aqueduct in finches (arrowheads in B, D, F) while SP-ir fibers and nNOS-ir cells are located in the
lateral and dorsal columns of the PAG of mice (A, C) and in the lateral CG and ICo of finches (B, D). White arrows denote the cluster of small round
nNOS-ir cells that is presumably homologous in mice and finches. TH-ir cells shown in C and D are shown at higher magnification in E and F,
respectively. The schematic insets in E and F show the location of these TH-ir cells (purple dots) with respect to the aqueduct. While these neurons are
located basally in both species, they are found in the ventral PAG of mice and the medial CG of finches (i.e. along red outline of aqueduct).
Abbreviations for finches: Aq, aqueduct; CG, central gray; EW, Edinger-Westphal nucleus; FLM, medial longitudinal fasciculus; ICo, nucleus
intercollicularis; MLd, nucleus mesencephalicus lateralis, pars dorsalis (auditory torus); nIII, oculomotor nerve; OMd/v, dorsal and ventral oculomotor
nucleus; SGPv, stratum griseum periventriculare; TeO, tectum opticum. Abbreviations for mice: 3, oculomotor nucleus; bic, brachium inferior
colliculus; DL, dorsolateral column of PAG; DM, dorsomedial column of PAG; L, lateral column of PAG; PAG, periaqueductal gray; PC3, parvicellular
trigeminal nucleus; sc, superior colliculus; Su3, supraoculomotor central gray; Su3C, supraoculomotor cap; VL, ventrolateral column of PAG. Scale bar
in A = 500 mm for A–D. Scale bar in E = 200 for E and F.
doi:10.1371/journal.pone.0020720.g001
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ICo is specifically homologous to the dorsal PAG (i.e. DM, DL

and L columns).

Chemoarchitectural analyses support a folded open
model of the avian CG/ICo

Our comparisons of histochemistry in birds and mammals were

of two kinds: 1) Direct comparisons of immunolabeling for TH,

SP, nNOS and ENK in the midbrains of mice and finches, and 2)

comparisons of b-END and VIP immunoreactivity in zebra

finches with the patterns reported in the mammalian literature. In

all cases, these comparisons support our predictions. Several

histochemical features of the VL PAG, such as the TH- and VIP-ir

cells that lie ventrally along the cerebral aqueduct in mammals

[5,16], are located medially along the aqueduct in finches, and at

mid-rostral levels, peptidergic innervation of the VL PAG and

medial CG is comparably light. Similarly, birds and mice exhibit

presumably homologous large nNOS-ir cells within the caudal

midbrain, which lie medially in the CG and ventrally in the PAG

(Figure 4, arrowheads).

Likewise, markers that characterize the dorsal PAG in mammals

were observed in the lateral CG/ICo of birds. For instance, a

dense plexus of SP-ir fibers is localized to the DM and L columns

in the rostral and mid-rostral PAG of mice, and in the lateral CG/

ICo of finches at comparable rostrocaudal levels. A similar pattern

is observed for ENK. In mammals, ENK-ir fibers and ENK

mRNA are predominately localized to the L column, and to a

lesser extent in the DM column of the dorsal PAG, whereas ENK

labeling in the VL column is observed more caudally [5,19]. In the

current study, robust ENK-ir in zebra finches was observed in the

lateral CG/ICo at all rostrocaudal levels while a thin band of

ENK-ir extended medially from ICo to the midline at caudal

levels. This latter pattern is similar to the ENK-ir pattern in the

VL column of mice [19]. Furthermore, the overlap of ENK

mRNA and SP mRNA in the L column of the dorsal PAG of rats

[5] is also observed with ENK-ir and SP-ir fibers in the lateral

CG/ICo of zebra finches, and in the L column of mice. Perhaps

the most striking evidence for a correlation between the dorsal

PAG and the lateral CG/ICo is the finding that the distinct group

of nNOS cells that characterize the DL column in mice and rats

Figure 2. Chemoarchitecture of the avian CG/ICo. A, Immunoreactive label for b-endorphin (b-END; red), neuronal nitric oxide synthase (nNOS;
green) and vasoactive intestinal polypeptide (VIP; blue) at a mid-rostral level of the midbrain. A distinct cluster of VIP-ir cells is observed in the medial
CG (arrowheads) while a discrete cluster of nNOS-ir cells is found in the lateral CG/ICo (asterisk). Diffuse immunoreactive label for VIP and nNOS is
present in the dorsomedial CG (arrows, see also B). b-END-ir fibers clearly define MLd at this midbrain level, yet diffuse b-END-ir fibers can be observed
in lateral ICo at both rostral and mid-rostral levels (see Figure 5). B, A higher magnification of the VIP-ir cells and fibers and nNOS-ir cells in the
dorsomedial CG that were highlighted by arrows in A. Many cells within this region are co-labeled by a-VIP and a-nNOS (white arrowheads). C, D
Immunoreactive label for enkephalin (ENK; red) and substance P (SP; blue) in the lateral CG/ICo at a mid-rostral (C) and caudal (D) level of the
midbrain. Note that at the caudal level, ENK-ir and SP-ir extend to the midline, with ENK-ir being more prominent. See Figure 1 for abbreviations.
Scale bar in A, C and D = 500 mm. Scale bar in B = 200 mm.
doi:10.1371/journal.pone.0020720.g002

Figure 3. Immunoreactive label for substance P (SP) in the ICo
surrounding MLd of a zebra finch at a mid-rostral level of the
midbrain. Note that SP-ir fibers extend through the periventricular
stratum (SGPv) into the ICo lateral to MLd (arrows) and appear to define
this region. See Figure 1 for abbreviations. Scale bar = 200 mm.
doi:10.1371/journal.pone.0020720.g003
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([13,14]; Figure 1A, C and Figure 4A) is found as a distinct cell

cluster in the ventrolateral CG/ICo (Figure 1B, D and Figure 4B).

Finally, b-END-ir fibers were observed in the lateral ICo at rostral

and mid-rostral levels (Figure 5), consistent with b-END-ir label in

the dorsal PAG of cats that spans the DM, DL and L columns

[25].

In summary, whereas some histochemical comparisons indicate

a fairly specific correspondence between columns of the mamma-

lian PAG and CG/ICo (e.g., as shown for the medial CG and VL

PAG, both of which express large VIP- and nNOS-ir cells), other

histochemical features suggest a less specific correspondence. For

instance, just as the peptidergic innervations of the DL, L and DM

columns are poorly differentiated in mice, so too are they poorly

differentiated in the lateral CG/ICo of finches, which allows us

only to state with confidence that the lateral CG/ICo corresponds

to the dorsal PAG in mice, which encompasses the DM, DL and L

columns (Figure 9).

Immediate early gene analyses support a folded open
model of the avian CG/ICo

Aggressive interactions induce robust Fos activation of the

dorsal PAG in rodents [6,26], although subordinate rodents tend

to exhibit substantially more Fos induction than do dominant

males [8]. Similarly, and consistent with our model, dominant

zebra finches exhibit activation of the lateral ICo following mate

competition, and only the lateral-most ICo (i.e. adjacent to MLd)

exhibits Fos induction in both dominant and subordinate waxbills,

similar to the dorsal PAG of mammals. Activation in subordinate

violet-eared waxbills covers a broader portion of the lateral ICo

than that observed for dominant males, and for much of this

territory, subordinates exhibit greater activation than do all other

groups, including the nonsocial defense group. This highlights one

modest inconsistency with rodents, in that nonsocial defense in

waxbills (escape from pursuit by a human hand), activates only the

most medial CG/ICo region, whereas predator exposure in rats

activates not only the VL, but also the DM/DL columns [8,9].

However, this may simply reflect a difference in the nature of the

fear stimulus and/or the coping or recuperative responses of the

test subjects. Fos activation of the VL PAG is associated with

recuperative responses following intense physical activity and/or

emotional stress [27], which may also explain why waxbills in both

the subordinate and nonsocial defense groups exhibited equivalent

Fos responses in the medial CG.

Copulation in male rats activates dorsomedial and lateral

regions directly adjacent to the aqueduct of the rostral PAG [11],

and consistent with our model, copulation activates the rostral ICo

Figure 4. Immunoreactive label for neuronal nitric oxide synthase (nNOS) in the PAG of mice and CG/ICo of finches. A, B, A distinct
population of large nNOS-ir cells is present in the VL column of the PAG (A, arrowheads) and the medial CG (B, arrowhead), in addition to the cluster
of smaller nNOS-ir cells in the DL column of the PAG (A, asterisk) and lateral ICo (B, asterisk). See Figure 1 for abbreviations. Scale bar = 200 mm.
doi:10.1371/journal.pone.0020720.g004

Figure 5. b-endorphin (b-END) in the midbrain of a male zebra
finch. While b-END-ir fibers clearly define MLd at a mid-rostral level of
the midbrain, diffuse b-END-ir fibers can be observed in the lateral ICo
(arrows) at both rostral and mid-rostral levels. See Figure 1 for
abbreviations. Scale bar = 500 mm.
doi:10.1371/journal.pone.0020720.g005

Organization of the Avian Central Gray
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Figure 6. An exemplar set of photomicrographs from the CG and ICo of a male zebra finch, showing the gridwork of boxes and
polygons that were used for counts of Fos-ir cells at each of the three levels analyzed in zebra finches and violet-eared waxbills.
Fos-positive cells were counted in a separate Photoshop layer using the paintbrush tool (red dots). A, B Boxes and polygons used to examine Fos
activation at a rostral midbrain level in the medial CG (A) and lateral CG/ICo (B). C, D Boxes and polygons used to examine Fos activation at mid-
rostral (C) and caudal (D) midbrain levels. E, The triangular area of ICo lateral to MLd. This area was analyzed for each of the 3 rostrocaudal levels.
Given the large individual variability in the size and shape of this area, we traced the entire triangular ICo and conducted cell counts within the

Organization of the Avian Central Gray
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in male Japanese quail [28,29]. Copulation also induces Fos within

a dorsal, periventricular portion of the rostral ICo in zebra finches,

although this area responds to other sociosexual stimuli as well,

perhaps reflecting the highly gregarious nature of zebra finches

and subject isolation prior to experiments.

The magnitude of Fos activation following exposure to

aggression, sex or fearful stimuli is remarkably high in mammals

[9,26], and much more striking than that observed in the present

experiments. However, whereas very low levels of constitutive Fos

activity are observed in the mammalian PAG [9,26], songbirds

exhibit exceptionally high levels of constitutive Fos expression in

the CG and many other parts of the brain [30,31].

Redefining ICo as part of the avian CG
ICo has traditionally been considered a vocalization area based

on early studies in a variety of bird species, which showed that

electrical stimulation of the midbrain, and ICo in particular, can

elicit natural vocalizations [18,32,33,34,35,36,37]. Vocalizations

have also been elicited from the peripheral region of the torus

semicircularis in lizards [38] and tegmental territory immediately

medial to the torus semicircularis in fish [39,40], which is

considered the piscine CG based on position and interconnections

with other brain areas [40]. Many mammals also exhibit

vocalizations that resemble natural calls following electrical

stimulation of the midbrain PAG ([41], rat; [42], bat; [43], cat;

and [44], monkey; see [45] for a review in mammals). In fact, the

hypothesis that the PAG of mammals may be homologous to the

ICo of birds was suggested as early as 1965 by Brown when he

proposed that the avian torus semicircularis corresponded to the

mammalian PAG based on the location of midbrain vocalization

centers across different species [32].

The idea that vocal regulation in birds is tightly integrated with

other midbrain behavioral processes was proposed by Seller [18]

after studies showed that stimulation of the ICo region medial to

MLd evoked fear responses and components of threat displays, in

addition to natural calls [33,34,36,46]. Further evidence that the

ICo is involved in complex behavior beyond vocalization was

provided by studies in Japanese quail in which males that emitted

few crows but were allowed to copulate with females showed

higher immediate early gene activation in rostral ICo compared to

males that crowed frequently within an empty arena [28].

Similarly, self-stimulation of the midbrain PAG in humans has

been shown to induce complex emotional states [47,48] in

addition to eliciting natural vocalizations [48].

Notably, based on histochemical and developmental consider-

ations, Puelles and colleagues recently proposed a laterally

expansive PAG in the chick, but these authors still recognize a

distinct ICo (or at least its ‘‘core nucleus’’), which they define

primarily on the basis of vocal activity [24]. As just noted,

however, the CG/PAG of other vertebrate taxa represent the

major vocal conduit in the midbrain, and although adjacent

tegmentum is also sometimes vocally active in mammals, it lacks

the heavy peptidergic innervation that characterizes the mamma-

lian dorsal PAG, the ICo and the intercollicular core nucleus of

Puelles et al. [23,24].

Connectional studies also demonstrate that features of the avian

ICo are consistent with those of the dorsal PAG. In mammals,

overlapping projections from the spinal cord, dorsal column nuclei

and sensorimotor cortex define an intercollicular region that lies

substantially within the lateral portion of the dorsal PAG, medial

to the inferior colliculus [49,50,51,52,53]. Interestingly, the dorsal

column nuclei, spinal cord and hyperstriatum accessorium (HA) of

the rostral Wulst (an area thought to be homologous to the

mammalian somatosensory cortex; [54,55]) all project onto the

avian ICo territory adjacent to MLd [56,57,58]. Furthermore,

projections of the ventromedial nucleus of the hypothalamus,

which heavily target and clearly define the dorsal/dorsolateral

PAG in mammals [59], target virtually the entire classical ICo of

birds, rather than the classical CG, and strongly differentiate this

area from surrounding tegmentum [60].

Thus, the anatomical studies mentioned above, together with

the functional and chemoarchitectural data presented here,

suggest that much of what has been classically defined as the

‘‘ICo’’ in birds is, in fact, homologous to columns of the dorsal

PAG of mammals. The idea that the ICo and CG share

characteristics with the PAG was suggested by Dubbeldam and

den Boer-Visser following an analysis of midbrain connectivity and

distribution of neuromodulators [12]. Furthermore, Dubbeldam

Figure 7. Enhanced Fos activation in the ICo region lateral to MLd (zone 6 in Figure 8 A, D). Greater Fos activation is observed in a
dominant violet-eared waxbill following a resident intruder encounter (B) as compared to a waxbill in the control condition (A). The white
arrowheads in B illustrate examples of Fos-ir cells with different levels of Fos protein in the nucleus.
doi:10.1371/journal.pone.0020720.g007

outline. As with cell counts from the boxes and polygons, all Fos-ir cell counts were standardized to a unit of Fos-ir cells per 100 mm2. Based on similar
response properties in contiguous sampling areas, including those that are rostrocaudally contiguous, the 36 separate sampling areas (per side) were
reduced to 9 functional zones (see methods and Fig. 8A). Note that in B, C, D and E, only the left midbrain is shown, yet we analyzed both a left and
right midbrain section for each animal at each rostrocaudal level. Note also that at the most rostral level analyzed, we present both the left and right
medial CG in A. See Figure 1 for abbreviations. Scale bars = 250 mm.
doi:10.1371/journal.pone.0020720.g006
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Figure 8. Functional columns of the avian CG/ICo as delineated by Fos induction. A, Schematic rostrocaudal representation of Fos
responses in the avian CG and ICo following exposure to different social conditions (see legend). B–E, Fos-ir cell counts in male violet-eared waxbills
exposed to a handled control condition (CON), nonsocial defense manipulation (pursuit by a human hand; DEF) and a resident-intruder encounter
(dominant, DOM, and subordinate, SUB) within zones 1, 4, 6 and 8, respectively. F, Fos-ir cell counts in zone 9 of subordinate animals are positively
correlated with the total number of aggressive behaviors received. Similar results are obtained for zones 3 and 5 (see schematic). G, Fos-ir cell counts
in zone 3 of dominant animals are negatively correlated with total number of aggressive behaviors displayed. H–I, Fos-ir cell counts of male zebra
finches following exposure to a handled control condition (CON), a conspecific male (MALE), a mate competition interaction (COMP; includes both
courtship and aggression) and a copulatory interaction with a female (COP). J, Fos activation in zone 5 is positively correlated with the number of
displacements the dominant subject directed at the competing male during mate competition. Data in panels B–E, H, I are shown as means +/2
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[61] suggested that the dorsomedial nucleus of ICo is functionally

equivalent to the lateral parts of the PAG based on respiratory

pathways in birds and mammals (see below for further details). In

the present study, we attempted to compare all regions of the CG

and ICo with specific PAG columns, as well as determine whether

the avian CG/ICo contains functional longitudinal columns.

Based on our results, together with previous literature, CG and

ICo regions that are homologous to several of the PAG columns

appear clear. For instance, immunolabeling for TH and nNOS

defines the VL (TH and nNOS) and DL (nNOS) columns in mice

and the medial CG and lateral ICo, respectively, in birds (Figure 1

and Figure 4). Furthermore, the L column in mammals likely

corresponds to an area in the lateral ICo of birds that is medial to

the boundary with MLd, and is delineated by intense SP

immunolabeling (Figure 1). Interestingly, this intense SP labeling

in lateral ICo overlaps the nNOS labelling at all rostrocaudal

levels (Figure 9), suggesting that the avian homologues of the DL

and L PAG columns overlap (Figure 1D), in contrast to what is

observed for mammals (Figure 1C). Further evidence that the

avian homologue of the L PAG column lies within the ICo region

just medial to MLd is provided by studies examining midbrain

projections to nucleus retroambiguus (NRA), a group of premotor

neurons in the caudal medulla that are involved in vocalization via

their control of expiration and laryngeal musculature [62,63,64].

In mammals, projections to NRA arise predominantly from the L

PAG column [65,66]. Consistent with our predictions, projections

to the NRA in zebra finches arises from the dorsomedial nucleus of

the ICo, a region directly medial to MLd (Figure 4B in [22]) that is

Figure 9. A summary schematic illustrating the organization of various neuropeptides and neurotransmitters within the zebra
finch CG and ICo across multiple rostrocaudal levels that suggest the existence of longitudinal columns based on
immunohistochemistry. The distribution of substance P (SP), vasoactive intestinal polypeptide (VIP) and neuronal nitric oxide synthase (nNOS)
are shown at three rostrocaudal midbrain levels on the left while enkephalin (ENK) and tyrosine hydroxylase (TH) are shown on the right. A legend is
shown at the top. The density of dots for SP-ir and x’s for ENK-ir correspond to the intensity of immunoreactive fibers. Areas of the avian CG and ICo
that are hypothesized to correspond to specific PAG columns in mammals are indicated in bold type at each rostrocaudal level. Note that for each
neuropeptide or neuromodulator examined, each is found in a specific mediolateral position that is comparable across the different rostrocaudal
levels, suggesting a longitudinal organization of neuropeptides and neuromodulators within the avian midbrain.
doi:10.1371/journal.pone.0020720.g009

SEM. Different letters above the error bars denote significant group differences (Fisher PLSD p,0.05 following significant ANOVA). Abbreviations: AP,
area pretectalis; Cb, cerebellum; CT, commissura tectalis; CP, commissura posterior; DBC, decussatio brachiorum; DM, dorsomedial nucleus; Is, nucleus
interstitialis; OM, occipitomesencephalic tract; Ru, nucleus ruber; SPM, nucleus spiriformis medialis. See Figure 1 for other abbreviations.
doi:10.1371/journal.pone.0020720.g008
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known to be a prominent midbrain vocal control center in

songbirds [67]. An outstanding question is the location of the avian

homologue of the DM column of the PAG. Based on the folded

open model of the PAG, we predict that the DM homologue is

located lateral to the distinct nNOS and intense SP labeling in ICo

and potentially extends to the region of ICo lateral to MLd. While

none of the immunohistochemical markers used in the present

study marked only the DM column, this column contains lighter

SP-ir that than found in L, as does the ICo area immediately

surroundly MLd (both medial and lateral to MLd; Figure 1D and

Figure 3). Furthermore, significant Fos activation is observed in

the dorsal PAG of resident male hamsters and rats exposed to an

intruder [6,26] and a similar Fos activation was observed in the

ICo regions directly adjacent to MLd (red in Figure 8) of male

waxbills exposed to a resident intruder paradigm, including the

lateral-most ICo. Thus, we hypothesize that the region lateral to

MLd is part of the dorsal PAG and that the homologue to the DM

column lies within this region. In summary, our data support the

claim that the VL PAG and CG are likely homologous, as well as

the DL/L PAG and the ICo region medial to the MLd. However,

further evidence is needed to more clearly specify the boundaries

of the avian homologue of the DM column.

Materials and Methods

Ethics Statement
Experiments were performed in accordance with federal and

institutional guidelines for the ethical treatment of animals. Tissue

for the present studies was collected under protocol S00032 that

was approved by the Institutional Animal Care and Use

Committee at the University of California, San Diego, and

protocols 07-026, 07-027 and 09-035 that were approved by the

Bloomington Institutional Animal Care and Use Committee at

Indiana University.

Animals and housing
Chemoarchitecture studies. Tissue for double- and triple-

label chemoarchitecture studies was collected from 3 male

C57BL/6 mice and 4 male zebra finches, each of which yielded

three series for labeling. In addition, we utilized a large amount of

material that was generated as part of previous experiments,

including TH immunolabeling in 91 zebra finches (82 male, 9

female; [68]) and 19 violet-eared waxbills (10 male and 9 female;

[69]). Fos studies: Twenty-eight adult male zebra finches and

twenty-four adult male violet-eared waxbills were used for the

present behavioral experiments. Zebra finch males were housed

with same-sex conspecifics in 61 cm W636 cm D641 cm H wire

cages while violet-eared waxbills were individually housed in

61636641 cm wire cages. Animals were maintained on a

14L:10D photoperiod and provided seed mix and water ad libitum.

Immunocytochemical analysis of zebra finch and C57/BL/
6 mouse brains

Three series of 40 mm coronal tissue sections were collected

from 3 male C57/BL/6 mice and 4 male zebra finches. These

were immunofluorescently labeled according to previously pub-

lished protocols [68,70]. For mouse tissue, we used various

combinations of the following primary antibodies: sheep anti-TH

(Novus Biologicals, Littleton, CO), monoclonal mouse anti-nNOS

(Sigma-Aldrich, St. Louis, MO), rabbit anti-SP (Chemicon,

Temecula, CA), and monoclonal mouse anti-ENK (Chemicon).

Primary antibodies were visualized with secondary antibodies

raised in donkey and conjugated to Alexa Fluor 488, 594 and 680

(Invitrogen, Eugene, OR). We additionally referenced tissue from

a previous study [71] that was labeled using an AVP antibody

raised in guinea pig (Bachem, Torrance, CA), and tissue from

alternate series of the same brains that we labeled for nNOS as just

described. For zebra finch tissue, we used various combinations of

the TH, nNOS, ENK and SP antibodies listed above, plus guinea

pig anti-b-END (Bachem), and both rabbit and guinea pig anti-

VIP (Bachem). We have not previously employed the nNOS

antibody in finches; however, deletion of the primary antibody

yields no labeling and the pattern of labeling with this antibody

closely matches the distribution of nNOS elements in rodents (e.g.,

[13,14]; also present data) and the distribution of nicotinamide

adenine dinucleotide phosphate-diaphorase elements in birds (e.g.,

[72]). Primary antibodies were labeled using secondary antibodies

conjugated to either Alexa Fluors (488, 594 or 680) or biotin,

which was subsequently visualized using streptavidin conjugated to

Alexa Fluors (see [70,73]). Photomicrographs shown here were

shot at 56magnification using a Zeiss Axioskop microscope (Carl

Zeiss, Jena, Germany) and an Optronics Magnafire digital camera

(Optronics, Galeta, CA) linked to an Apple Macintosh MacPro

computer (Apple Corporation, Cupertino, CA). Image color,

contrast and brightness level were adjusted in Photoshop CS3

(Adobe Systems, Seattle, WA).

Behavioral testing in violet-eared waxbills
Male violet-eared waxbills were acclimated to a walk-in sound

isolation booth by placing their home cages into the booth for

2 hrs per day for 2 days. Prior to behavioral testing, waxbills

remained in the booth overnight. Both resident and intruder

subjects were placed in the same booth, but were visually isolated.

The following morning, subjects were exposed to one of four

experimental manipulations in a 7 min test: a control condition in

which no stimulus bird was introduced (n = 6); a nonsocial defense

manipulation in which the subject was pursued by a human hand

40 times, distributed across the 7 min (n = 6); or a resident-intruder

encounter in which the subject was either a dominant resident

(n = 6) or a subordinate intruder (n = 6). For each condition, lights

were turned off, food was removed, and to control for handling of

the intruders, all subjects were caught with the aid of a flashlight,

held for 3 sec, then placed on the cage floor. The lights were

turned on and behavior was observed for 7 min using a curtain

blind. We recorded displacements, threats, pecks and agonistic

calls. At the end of testing, lights were turned off, subjects were

again handled, and intruder animals were returned to their home

cages. Lights remained off until perfusion 90 min after the start of

testing. Lights were left off in order to prevent agonistic vocal

interactions between the two subjects in the sound booth, which

would produce Fos responses to behavioral interactions outside of

the 7 min period of behavioral quantification. Lights were not left

off in the next experiment, since subjects were housed alone.

Given that subjects in both experiments were devoid of social

stimulation after the behavioral test, this small point of difference

between studies is not expected to impact socially-induced Fos

response profiles; regardless, no statistical comparisons are made

between the two datasets.

Behavioral testing in zebra finches
The behavioral testing in male zebra finches has been fully

described [68] and is briefly summarized as follows: The day

before behavioral testing, zebra finches were removed from same-

sex housing and placed into individual 36 cm W633 cm

D617 cm H test cages in a quite room. The following morning,

subjects were exposed to one of four experimental conditions, as

described below. For each condition, lights were turned off, food

was removed and the stimulus bird(s) was placed in the subject’s
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cage. The lights were turned on and behavior was recorded for

10 min. After testing, the lights were then turned off, the stimulus

bird(s) was removed, food was reintroduced, lights were turned on

and the subject was left in the cage until 90 min after the start of

the test. Birds were then perfused for immunocytochemical

labeling of Fos protein. The four conditions were: 1) a control

condition in which no stimulus bird was introduced (n = 4); 2)

exposure to a conspecific male (n = 5); 3) a mate competition

paradigm [74] in which the subject was exposed to both a

conspecific male and female (n = 5); and 4) sexual interactions with

a female. Only males that successfully mounted the female (n = 5)

were included.

Immunocytochemistry and image analysis for behavioral
experiments

Tissue from zebra finches and violet-eared waxbills was

processed and immunofluorescently double-labeled for TH and

Fos as previously described [68], using a rabbit anti-Fos antibody

(Santa Cruz Biotechnology, Santa Cruz, CA), a sheep anti-TH

antibody (Novus Biologicals) and donkey anti-rabbit and anti-

sheep secondary antibodies conjugated to Alexa Fluor 594 and

488, respectively (Invitrogen).

Monochrome photomicrographs were shot at 106 magnifica-

tion at three different rostrocaudal levels of the midbrain for each

animal (corresponding approximately to plates P 0.2, P 0.8 and P

1.0 of the canary atlas; [75]) using a Zeiss Axioskop microscope

(Carl Zeiss) and an Optronics Magnafire digital camera (Op-

tronics) linked to an Apple Macintosh MacPro computer (Apple

Corporation).

A montage for each rostrocaudal level was created in Adobe

Photoshop 7 (Adobe Systems) using consecutive monochromes

images captured from the most medial aspect of the CG through

the most lateral aspect of the ICo just beyond MLd, homologue of

the inferior colliculus. Fos cell counts were conducted from

montaged images in Photoshop using a gridwork of boxes and

polygons that spanned the entire mediolateral extent of the CG

and ICo for each level (Figure 6). Montages of both the left and

right midbrain at each rostrocaudal level were sampled and

counted for each animal. Our goal in this process was to generate

a reasonable level of spatial resolution without oversampling. The

actual size and shape of these boxes and polygons was largely

dictated by the shape of the CG and the ICo, and individual

variation in those parameters. The number of boxes and polygons

per side (i.e. right versus left) was 10 (3 for rostral-center and 7 for

rostral-lateral), 12 (mid-rostral) and 11 (caudal) for the three

rostrocaudal levels. An additional area lateral to MLd corre-

sponding to the triangular portion of the lateral-most ICo

(Figure 6E) was also analyzed for each level. Fos-immunoreactive

(-ir) nuclear profiles were dotted in a separate Photoshop layer

using the paintbrush tool, and the dots were then counted in

Image J (National Institutes of Health, Bethesda, MD). A cell

nucleus was counted as Fos-ir if there was any detectable level of

Fos protein in the nucleus that was above background levels (see

arrowheads in Figure 7B for examples of Fos-ir cells).

In a first round of analyses, group data were analyzed by

ANOVA followed by Fisher’s PLSD, and simple regressions were

used to determine correlations between Fos-ir cell counts and

aggression displayed by dominant subjects, and aggression

received by subordinate subjects. This was conducted separately

for each sampling area (36 total sampling areas per side,

distributed across 3 levels; Figure 6). Based on similar, statistically

significant response properties in contiguous sampling areas,

including those areas that are rostrocaudally contiguous (i.e.,

across levels, as determined by superimposition of photomicro-

graphs), the 36 separate sampling areas shown in Figure 6 for a

given side (i.e. left versus right) were reduced to the 9 functional

zones shown in Figure 8. Although this first stage of analysis

required many ANOVAs and regressions, we did not correct for

multiple comparisons, as our goal was simply to reduce the large

number of sampling areas to a smaller number of functionally

comparable zones, in which case type I errors could lead to

unnecessary ‘‘splitting’’ of zones. The data reported here are thus

ANOVAs and regressions that were conducted for each of the 9

zones. Sampling areas were only pooled if absolutely all significant

effects were shared. For instance, in the case that two adjacent

sampling areas showed the same pattern of response in the group

ANOVAs, but one area further exhibited a significant correlation

between Fos-ir cell counts and behavior whereas the other area did

not, we present these as separate zones in Figure 8 (e.g. zones 4

and 7; both zones were significantly activated in dominant waxbills

in a resident intruder paradigm while zone 7 but not zone 4 was

also activated in subordinate animals). In order to standardized

data to the unit of Fos-ir cells/100 mm2, we summed the pixel

areas for sampling boxes that comprise a given zone, divided this

zone area by the pixel area of a 100 mm2 box, and then divided

the total number of Fos-ir cells within that zone by the area of the

zone.
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