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Abstract

Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains
both singleplex and multiplex proteins. In this paper, by introducing the ‘‘multi-label scale’’ and hybridizing the information
of gene ontology with the sequential evolution information, a novel predictor called iLoc-Gneg is developed for predicting
the subcellular localization of Gram-positive bacterial proteins with both single-location and multiple-location sites. For
facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gneg-mPLoc was adopted
to demonstrate the power of iLoc-Gneg. The dataset contains 1,392 Gram-negative bacterial proteins classified into the
following eight locations: (1) cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, (5) inner membrane, (6) nucleoid, (7)
outer membrane, and (8) periplasm. Of the 1,392 proteins, 1,328 are each with only one subcellular location and the other
64 are each with two subcellular locations, but none of the proteins included has §25% pairwise sequence identity to any
other in a same subset (subcellular location). It was observed that the overall success rate by jackknife test on such a
stringent benchmark dataset by iLoc-Gneg was over 91%, which is about 6% higher than that by Gneg-mPLoc. As a user-
friendly web-server, iLoc-Gneg is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Gneg. Meanwhile, a
step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user’s
convenience, the iLoc-Gneg web-server also has the function to accept the batch job submission, which is not available in
the existing version of Gneg-mPLoc web-server. It is anticipated that iLoc-Gneg may become a useful high throughput tool
for Molecular Cell Biology, Proteomics, System Biology, and Drug Development.
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Introduction

Bacteria can be divided into two groups: Gram-positive and

Gram-negative. Gram-positive bacteria are those that are stained

dark blue or violet by Gram staining; while Gram-negative

bacteria cannot retain the stain, instead taking up the counter-

stain and appearing red or pink.

It has special meaning for both basic research and drug design

to study bacteria because (1) they are the workhorses for the fields

of molecular biology, biochemistry, and genetics due to their

ability to quickly grow and being relatively easier to be

manipulated, and (2) they are both harmful and useful. With the

explosion of protein sequences generated in the post-genomic era,

we are challenged to develop computational methods for timely

and accurately identifying the subcellular locations of newly

discovered bacterial proteins based on their sequence information

alone because this kind of knowledge will be very useful for

selecting proper bacterial proteins for a special target, or screening

and prioritizing candidates in drug design.

Actually, numerous predictors were developed for identifying

subcellular localization of proteins in various organisms (see [1,2]

as well as the long list of references cited in the two review papers).

However, those that are specialized for dealing with Gram-

negative proteins are only a few. They are called ‘‘PSORT’’

[1,3,4], ‘‘PSORT-B’’ [5], and PSORTb v.2.0 [6]. All these

methods have played important roles in stimulating the develop-

ment of this area. To improve the prediction coverage scope and

the quality of benchmark datasets, the predictor called Gneg-
PLoc [7] was developed. Compared with the previous methods,

Gneg-PLoc extended the coverage scope from five to eight

subcellular location sites. Also, the benchmark datasets used to

train and test the predictor have been significantly refined. For

instance, the benchmark datasets used in PSORT-B [5] contain

many proteins with pairwise sequence identity higher than 90%,

while in the benchmark datasets of Gneg-PLoc [7] none of the

proteins included has §25% pairwise sequence identity to any

other in a same subcellular location; i.e., the latter is much more

stringent and rigorous than the former in excluding the homology

bias and redundancy. Also, Gneg-PLoc was able to yield higher

success rates.

However, all the aforementioned predictors cannot be used to

deal with multiplex proteins that may simultaneously exist at, or
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move between, two or more different subcellular locations.

Proteins with multiple locations or dynamic feature of this kind

are particularly interesting because they may have some very

special biological functions intriguing to investigators in both basic

research and drug discovery [8,9]. Particularly, as pointed out by

Millar et al. [10], recent evidences have indicated that an

increasing number of proteins have multiple locations in the cell.

To make Gneg-PLoc [7] be able to deal with multiplex Gram-

negative proteins as well, a predictor called Gneg-mPLoc [11]

was developed recently, where the character ‘‘m’’ in front of

‘‘PLoc’’ stands for ‘‘multiple’’, meaning that it can be also used to

deal with Gram-negative bacterial proteins with multiple locations.

However, Gneg-mPLoc has the following shortcomings. (1) In

predicting the number of subcellular location sites for a query

Gram-negative protein, an optimal threshold factor h� (see Eq.48

of [2]) was adopted without providing its statistical implication and

detailed learning process. It would be more instructive if we could

find a more intuitive approach to determine this with a more

natural manner. (2) In formulating the protein samples, only the

integer numbers 0 and 1 were used to reflect the GO (gene

ontology) information [12,13]. Such an over-simplified formula-

tion might cause some useful information lost so as to limit the

prediction quality. (3) Although a web-server for Gneg-mPLoc
has been established at http://www.csbio.sjtu.edu.cn/bioinf/

Gneg-multi/, only one query protein sequence at a time is

allowed when using the web-server to conduct prediction. For the

convenience of users in handling many query Gram-negative

protein sequences, such a rigid limit should be improved.

The present study was dedicated to develop a new and more

powerful predictor, called iLoc-Gneg, for predicting Gram-

negative bacterial protein subcellular localization by addressing

the above three problems.

To establish a really useful statistical predictor for protein

system, we usually need to consider the following procedures [14]:

(1) select or construct a valid benchmark dataset to train and test

the predictor; (2) formulate the protein samples with an effective

mathematical expression that can truly reflect their intrinsic

correlation with the attribute to be predicted; (3) introduce or

develop a powerful algorithm (or engine) to operate the prediction;

(4) properly perform cross-validation tests to objectively evaluate

the anticipated accuracy of the predictor; (5) establish a user-

friendly web-server [15] for the predictor that is accessible to the

public. Below, let us describe how to realize these steps one by one.

Materials and Methods

Here, we choose to use the same dataset S in establishing

Gneg-mPLoc [11] as the benchmark dataset for the current

study. The reasons doing so are as follows. (1) The dataset was

constructed specialized for Gram-negative bacterial proteins and it

can cover 8 subcellular location sites; compared with the other

datasets such as the one in PSORTb v.2.0 [6] that only covered 5

subcellular locations, the coverage scope of the dataset S from [11]

is much wider. (2) None of proteins included in S has §25%
pairwise sequence identity to any other in a same subcellular

location; compared with most of the other benchmark datasets in

this area, the dataset S is much more rigorous in excluding

homology bias and redundancy. (3) It contains both singleplex

and multiplex proteins and hence can be used to train and test a

predictor developed aimed at being able to deal with proteins with

both single and multiple location sites. (4) Using the dataset S will

also make it easier to compare the new predictor with the existing

one because the tested results by Gneg-mPLoc on S have been

well documented and reported [11].

The dataset S contains 1,392 Gram-negative bacterial protein

sequences, of which 1,328 belong to one subcellular location, 64 to

two locations, and none to three or more locations. The dataset

covers 8 subcellular locations (Fig. 1), as can be formulated by

S~S1|S2|S3|S4|S5|S6|S7|S8 ð1Þ

where S1 represents the subset for the subcellular location of cell

inner membrane, S2 for cell outer membrane, S3 for cytoplasm,

S4 for extracellular, and so forth (Table 1); while | represents

the symbol for ‘‘union’’ in the set theory. To avoid homology bias

and redundancy, none of the proteins in S has §25% pairwise

sequence identity to any other in a same subset. For convenience,

hereafter let us just use the subscripts of Eq.1 as the codes of the 8

location sites; i.e., ‘‘1’’ for ‘‘cell membrane’’, ‘‘2’’ for ‘‘cell wall’’,

‘‘3’’ for ‘‘chloroplast’’, and so forth (Table 2).

For readers’ convenience, the corresponding accession numbers

and protein sequences in S are given in Supporting Information

S1.

Note that because some proteins may occur in two or more

locations, the 1,392 Gram-negative proteins actually correspond to

1,456 locative proteins. The concept of ‘‘locative proteins’’ was

introduced for studying proteins with multiple subcellular location

sites, as elaborated in [2].

To develop a powerful method for statistically predicting

protein subcellular localization according to the sequence

information, one of the most important things is to formulate

the protein sequences with an effective mathematical expression

that can truly reflect the intrinsic correlation with their subcellular

localization [14]. However, it is by no means an easy job to realize

this because this kind of correlation is usually deeply ‘‘buried’’ or

hidden in piles of complicated sequences.

Figure 1. Illustration to show the 8 subcellular locations of
Gram-negative bacterial proteins. The 8 locations are: (1)
cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, (5) inner
membrane, (6) nucleoid, (7) outer membrane, and (8) periplasm. Note
that in prokaryotic life forms, the nucleoid region is the part of the cell
that contains the DNA molecule; unlike the true nucleus of eukaryotes,
it is not delimited by a membrane.
doi:10.1371/journal.pone.0020592.g001
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The most straightforward method to formulate the sample of a

query protein P was just using its entire amino acid sequence, as

can be generally written by

P~R1R2R3R4R5R6R7 � � �RL ð2Þ

where R1 represents the 1st residue of the protein P, R2 the 2nd

residue, …, RL the L-th residue, and they each belong to one of

the 20 native amino acids. In order to identify its subcellular

location(s), the sequence-similarity-search-based tools, such as

BLAST [16,17], was utilized to search protein database for those

proteins that have high sequence similarity to the query protein P.

Subsequently, the subcellular location annotations of the proteins

thus found were used to deduce the subcellular location(s) for P.

Unfortunately, although it was quite intuitive and able to contain

the entire information of a protein sequence, this kind of

straightforward sequential model failed to work when the query

protein P did not have significant sequence similarity to any

location-known proteins.

Thus, various non-sequential or discrete models to formulate

protein samples were proposed in hopes to establish some sort of

correlation or cluster manner by which the prediction quality

could be improved.

Among the discrete models for a protein sample, the simplest

one is its amino acid (AA) composition or AAC [18]. According to

the AAC-discrete model, the protein P of Eq.2 can be formulated

by [19,20]

P~ f1 f2 � � � f20½ �T ð3Þ

where fi(i~1,2, � � � ,20) are the normalized occurrence frequen-

cies of the 20 native amino acids in protein P, and T the

transposing operator. Many methods for predicting protein

subcellular localization were based on the AAC-discrete model

(see, e.g., [19,21,22,23,24]). However, as we can see from Eq.3, if

using the ACC model to represent the protein P, all its sequence-

order effects would be lost, and hence the prediction quality might

be limited.

To avoid completely lose the sequence-order information, the

pseudo amino acid composition (PseAAC) was proposed to

represent the sample of a protein, as formulated by [25]

P~ p1 p2 � � � p20 p20z1 � � � p20zl½ �T ð4Þ

where the first 20 elements are associated with the 20 elements in

Eq.3 or the 20 amino acid components of the protein P, while the

additional l factors are used to incorporate some sequence-order

information via a series of rank-different correlation factors along a

protein chain. For a brief introduction about PseAAC, please see a

Wikipedia article at http://en.wikipedia.org/wiki/Pseudo_ami-

no_acid_composition.

According to [14], the PseAAC for a protein P can be generally

formulated as

P~ y1 y2 � � � yu � � � yV½ �T ð5Þ

where the subscript V is an integer, and its value as well as the

components y1, y2, … will depend on how to extract the desired

information from the amino acid sequence of P (cf. Eq.2). As a

general form, Eq.5 can cover various different modes of PseAAC.

For example, when its elements are given by

yu~

fuP20

i~1

fizw
Xl

j~1

hj

, (1ƒuƒ20)

whu{20P20

i~1

fizw
Xl

j~1

hj

, (20z1ƒuƒ20zl~V; lvL)

8>>>>>>>><
>>>>>>>>:

ð6Þ

Table 1. Breakdown of the Gram-negative bacterial protein
benchmark dataset S taken from [11].

Subset Subcellular location Number of proteins

S1 Cell inner membrane 557

S2 Cell outer membrane 124

S3 Cytoplasm 410

S4 Extracellular 133

S5 Fimbrium 32

S6 Flagellum 12

S7 Nucleoid 8

S8 Periplasm 180

Total number of locative proteins N(loc) 1,456a

Total number of different proteins N(seq) 1,392b

None of proteins included here has §25% sequence identity to any other in a
same subcellular location.
aSee Eqs.36–38 of [2] for the definition about the number of locative proteins,
and its relation with the number of different proteins.

bOf the 1,392 different proteins, 1,328 have one subcellular location, 64 have
two locations, and none have three or more locations.

doi:10.1371/journal.pone.0020592.t001

Table 2. A comparison of the jackknife success rates by
Gnec-mPLoc [11] and the current iLoc-Gneg on the
benchmark dataset S (cf. Supporting Information S1) that
covers 8 location sites of Gram-negative bacterial proteins in
which none of the proteins included has §25% pairwise
sequence identity to any other in a same location.

Code Subcellular location Success rate by jackknife test

Gneg-mPLoca iLoc-Gnegb

1 Cell inner membrane 525/557 = 94.3% 539/557 = 96.8%

2 Cell outer membrane 105/124 = 84.7% 103/124 = 83.1%

3 Cytoplasm 357/410 = 87.1% 367/410 = 89.5%

4 Extracellular 79/133 = 59.4% 115/133 = 86.5%

5 Fimbrium 28/32 = 87.5% 30/32 = 93.8%

6 Flagellum 0/12 = 0.0% 12/12 = 100%

7 Nucleoid 0/8 = 0.0% 4/8 = 50%

8 Periplasm 154/180 = 85.6% 161/180 = 89.4%

Overallc 1248/1456 = 85.7% 1331/1456 = 91.4%

aThe predictor from [11].
bThe predictor proposed in this paper.
cNote that instead of 1,392 (the number of total different Gram-positive
bacterial proteins), here we use 1,456 (the number of total different locative
proteins) for the denominator. This is because some of the Gram-negative
bacterial proteins in S may have more than one location site. See footnotes a
and b of Table 1 for further explanation.

doi:10.1371/journal.pone.0020592.t002
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we immediately obtain the formulation of PseAAC as originally

introduced in [25], where the meanings for w, hj , and l were

clearly elaborated and hence there is no need to repeat here.

Below, let us use the general form of PseAAC (Eq.5) to find the

formulations to reflect the core and essential features of protein

samples that are closely correlated with their subcellular localization.

1. GO (Gene Ontology) Formulation
GO database [12] was established according to the molecular

function, biological process, and cellular component. Accordingly,

protein samples defined in a GO database space would be

clustered in a way better reflecting their subcellular locations

[2,26]. However, in order to incorporate more information,

instead of only using 0 and 1 elements as done in [11], here let us

use a different approach as described below.
Step 1. Compression and reorganization of the existing GO

numbers. The GO database (version 74.0 released 30 July 2009)

contains many GO numbers. However, these numbers do not

increase successively and orderly. For easier handling, some

reorganization and compression procedure was taken to

renumber them. For example, after such a procedure, the

original GO numbers GO:0000001, GO:0000002, GO:0000003,

GO:0000009, GO:00000011, GO:0000012, GO:0000015, …,

GO:0090204 would become GO_compress: 00001, GO_

compress: 00002, GO_compress: 00003, GO_compress: 00004,

GO_compress: 00005, GO_compress: 00006, GO_compress:

00007, ……, GO_compress: 11118, respectively. The GO

database obtained thru such a treatment is called GO_

compress database, which contains 11,118 numbers increasing

successively from 1 to the last one.
Step 2. Using Eq.5 with V~11,118, the protein P can be

formulated as

PGO~ yG
1 yG

2 � � � yG
u � � � yG

11118

� �T ð7Þ

where yG
u u~1,2, � � � ,11118ð Þ are defined via the following steps.

Step 3. Use BLAST [27] to search the homologous proteins

of the protein P from the Swiss-Prot database (version 55.3), with

the expect value Eƒ0:001 for the BLAST parameter.
Step 4. Those proteins which have §60% pairwise sequence

identity with the protein P are collected into a set, S
homo
P , called

the ‘‘homology set’’ of P. All the elements in Shomo
P can be deemed

as the ‘‘representative proteins’’ of P, sharing some similar

attributes such as structural conformations and biological

functions [28,29,30]. Because they were retrieved from the

Swiss-Prot database, these representative proteins must each

have their own accession numbers.
Step 5. Search each of these accession numbers collected in

Step 4 against the GO database at http://www.ebi.ac.uk/GOA/

to find the corresponding GO numbers [31].
Step 6. Based on the results obtained in Step 5, the elements

in Eq.7 can be written as

yG
u ~

PNhomo
P

k~1
d(u,k)

Nhomo
P

(u~1,2, � � � ,11118) ð8Þ

where Nhomo
P is the number of representative proteins in Shomo

P ,

and

d(u,k)~

1, if the k-th representative protein hits

the u-th GO compress number

0, otherwise

8><
>: ð9Þ

As we can see from Eq.7, the GO formulation derived from the

above steps consists of 11,118 real numbers rather than only the

elements 0 and 1 as in the GO formulation adopted in [11].

Note that the GO formulation of Eq.6 may become a naught

vector or meaningless under any of the following situations: (1) the

protein P does not have significant homology to any protein in the

Swiss-Prot database, i.e., Shomo
P ~1 meaning the homology set

Shomo
P is an empty one; (2) its representative proteins do not

contain any useful GO information for statistical prediction based

on a given training dataset.

Under such a circumstance, let us consider using the sequential

evolution formulation to represent the protein P, as described

below.

2. SeqEvo (Sequential Evolution) Formulation
Biology is a natural science with historic dimension. All

biological species have developed continuously starting out from

a very limited number of ancestral species. It is true for protein

sequence as well [30]. Their evolution involves changes of single

residues, insertions and deletions of several residues [32], gene

doubling, and gene fusion. With these changes accumulated for a

long period of time, many similarities between initial and resultant

amino acid sequences are gradually eliminated, but the corre-

sponding proteins may still share many common attributes, such as

having basically the same biological function and residing in a

same subcellular location.

To incorporate the sequential evolution information into the

PseAAC of Eq.4, here let us use the information of the PSSM

(Position-Specific Scoring Matrix) [27], as described below.

Step 1. According to [27], the sequential evolution

information of protein P can be expressed by a 20|L matrix as

given by

PSSM~

E0
1?1 E0

2?1 � � � E0
L?1

E0
1?2 E0

2?2 � � � E0
L?2

..

. ..
.

P
..
.

E0
1?20 E0

2?20 � � � E0
L?20

2
666664

3
777775 ð10Þ

where L is the length of P (counted in the total number of its

constituent amino acids as shown in Eq.1), E0
i?j represents the

score of the amino acid residue in the i-th position of the protein

sequence being changed to amino acid type j during the

evolutionary process. Here, the numerical codes 1, 2, …, 20 are

used to denote the 20 native amino acid types according to the

alphabetical order of their single character codes. The 20|L

scores in Eq.10 were generated by using PSI-BLAST [27] to

search the UniProtKB/Swiss-Prot database (Release 2010_04 of

23-Mar-2010) through three iterations with 0.001 as the E-value

cutoff for multiple sequence alignment against the sequence of the

protein P. However, according to the formulation of Eq.10,

proteins with different lengths will correspond to column-different

matrices causing difficulty for developing a predictor able to

uniformly cover proteins of any length. To make the descriptor

become a size-uniform matrix, let us consider the following steps.

Step 2. Use the elements inPSSM of Eq.10 to define a new

matrix M as formulated by

M~

E1?1 E2?1 � � � EL?1

E1?2 E2?2 � � � EL?2

..

. ..
.

P
..
.

E1?20 E2?20 � � � EL?20

2
66664

3
77775 ð11Þ
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with

Ei?j~
E0

i?j{
�EE0

j

SD �EE0
j

� � (i~1,2, � � � ,L; j~1,2, � � � ,20) ð12Þ

where

�EE0
j ~

1

L

XL

i~1

E0
i?j (j~1,2, � � � ,20) ð13Þ

is the mean for E0
i?j(i~1,2, � � � ,L) and

SD �EE0
j

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

i~1
E0

i?j{
�EE0

j

h i2
�

L

s
ð14Þ

is the corresponding standard deviation.
Step 3. Introduce a new matrix generated by multiplying M

with its own transpose matrix MT; i.e.,

MMT~

PL
i~1 Ei?1Ei?1

PL
i~1 Ei?1Ei?2 � � �

PL
i~1 Ei?1Ei?20PL

i~1 Ei?2Ei?1

PL
i~1 Ei?2Ei?2 � � �

PL
i~1 Ei?2Ei?20

..

. ..
.

P
..
.

PL
i~1 Ei?20Ei?1

PL
i~1 Ei?20Ei?2 � � �

PL
i~1 Ei?20Ei?20

2
666664

3
777775ð15Þ

which contains 20|20~400 elements. Since MMT is a
symmetric matrix, we only need the information of its 210
elements, of which 20 are the diagonal elements and
(400{20)=2~190 are the lower triangular elements, to
formulate the protein P; i.e., the general PseAAC form of

Eq.5 can now be formulated as

PEvo~ yE
1 yE

2 � � � yE
u � � � yE

210

� �T ð16Þ

where the components yE
u (u~1,2, � � � ,210) are respectively taken

from the 210 diagonal and lower triangular elements of Eq.15 by

following a given order, say from left to right and from the 1st row

to the last as illustrated by following equation

(1)

(2) (3)

(4) (5) (6)

..

. ..
. ..

.
P

(191) (192) (193) ::: (210)

2
66666664

3
77777775

ð17Þ

where the numbers in parentheses indicate the order of elements

taken from Eq.15 for Eq.16.

3. The Self-consistency Formulation Principle
Regardless of using which formulation to represent protein

samples, the following self-consistency principle must be observed

during the course of prediction: if the query protein P was defined

in the form of PGO (see Eq.7), then all the protein samples used to

train the prediction engine should also be expressed in the GO

formulation; if the query protein was defined in the form of PEvo

(see Eq.16), then all the training data should be expressed in the

SeqEvo formulation as well.

Below, let us consider the algorithm or operation engine for

conducting the prediction.

4. Multi-Label KNN (K-Nearest Neighbor) Classifier
In this study, let us introduce a novel classifier, called the multi-

label KNN or abbreviated as ML-KNN classifier, to predict the

subcellular localization for the systems that contain both single-

location and multiple-location proteins.

Suppose the m-th subset Sm of S (Eq.1) contains Nm Gram-

negative proteins, and P(m,j) is thej-th one in that subset. Thus,

we have

P(m, j)~
PGO(m, j), in GO space

PEvo(m, j), in SeqEvo space

(

(m~1,2, � � � ,8; j~1,2, � � � ,Nm)

ð18Þ

where PGO(m,j) and PEvo(m,j) have the same forms as

PGO(Eq.7), and PEvo(Eq.16), respectively; the only difference is

that the corresponding constituent elements are derived from the

amino acid sequence of P(m,j) instead of P.

In sequence analysis, there are many different scales to define

the distance between two proteins, such as Euclidean distance,

Hamming distance [33], and Mahalanobis distance [18,34,35]. In

[11], the distance between P(m,j) and P was defined by

1{cos{1 P,P(m,j)½ �. However, we have observed that when the

GO descriptor was formulated with real numbers, better outcomes

would be resulted by using the Euclidean metric; i.e., the distance

between P and P(m,j) should be defined here by

D P,P(m,j)f g~ P{P(m,j)k k ð19Þ

where P{P(m,j)k k represents the module of the vector difference

between P and P(m,j) in the Euclidean space. According to

Eq.19, when P:P(m,j) we have D P,P(m,j)f g~0, indicating the

distance between these two protein sequences is zero and hence

they have perfect or 100% similarity.

Suppose P�1,P�2, � � � ,P�K are the K nearest neighbor proteins to

the protein P that forms a set denoted by S
P
K , which is a subset of

S; i.e.,SP
K(S. Based on the K nearest neighbor proteins in SP

K , let

us define an accumulation-layer (AL) scale, given by

Q(P,K)~ rK
1 rK

2 � � � rK
m � � � rK

8

� 	
ð20Þ

where

rm~

PK
i~1 d(P�i ,m)

N�K
(m~1,2, � � � ,8) ð21Þ

where

d(P�i ,m)~
1, if P�i belongs to the m-th location

0, otherwise



ð22Þ

and

N�K~
X8

m~1

XK

i~1
d(P�i ,m) ð23Þ

Note that N�K§K because a protein may belong to one or more

subcellular location sites in the current system.

Now, for a query protein P, its subcellular location(s) will be

predicted according to the following steps.

Step 1. The number of how many different subcellular

locations it belongs to will be determined by its nearest neighbor
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protein in S. For example, suppose P� is the nearest protein to P
in S. If P� has only one subcellular location, then P will also have

only one location; if P� has two subcellular locations, then P will

also have two locations; and so forth. In general, if P� belongs to

different location sites, then P will be predicted to have the same

number, , of subcellular locations as well, as can be formulated

by

~Num P�[Lf g~Num P[Lf g ð24Þ

where is an integer (ƒ8), Num P�[Lf g represents the number

of different subcellular locations to which P� belongs, and

Num P[Lf g the number of different subcellular locations to

which P belongs.

Step 2. However, the concrete location site(s) to which P
belongs will not be determined by the location site(s) of P�, but by

the element(s) in Eq.20 that has (have) the highest score(s), as can

be expressed by ‘f g, the subscript(s) of Eq.1. For example, if P is

found belonging to only one location ( ~1) in Step 1, and the

highest score in Eq.20 is rK
3 , then P will be predicted as ‘f g~3

meaning that it belongs to S3 or resides at ‘‘cytoplasm’’ (cf.

Table 1). If P is found belonging to two locations ( ~2), and the

first two highest scores in Eq.20 are rK
1 and rK

8 , then P will be

predicted as ‘f g~(1, 8) meaning that it belongs to S1 and S8 or

resides simultaneously at ‘‘cell inner membrane’’ and ‘‘periplasm’’.

And so forth. In other words, the concrete predicted subcellular

location(s) can be formulated as

‘f g~Max4Sub rK
1 rK

2 � � � rK
m � � � rK

8

� 	
( ƒ8) ð25Þ

where the operator ‘‘Max4Sub’’ means identifying the highest

scores for the elements in the brackets right after it, followed by

taking their subscripts.

The entire classifier thus established is called iLoc-Gneg, which

can be used to predict the subcellular localization of both

singleplex and multiplex Gram-negative bacterial proteins. To

provide an intuitive picture, a flowchart is provided in Fig. 2 to

illustrate the prediction process of iLoc-Gneg.

5. Protocol Guide
For user’s convenience, a web-server for iLoc-Gneg was

established. Below, let us give a step-by-step guide on how to use it

to get the desired results.

Step 1. Open the web server at site http://icpr.jci.edu.cn/

bioinfo/iLoc-Gneg and you will see the top page of the predictor

on your computer screen, as shown in Fig. 3. Click on the Read

Me button to see a brief introduction about iLoc-Gneg predictor

and the caveat when using it.

Step 2. Either type or copy and paste the query protein

sequence into the input box at the center of Fig. 3. The input

sequence should be in the FASTA format. A sequence in FASTA

format consists of a single initial line beginning with a greater-than

symbol (‘‘.’’) in the first column, followed by lines of sequence

data. The words right after the ‘‘.’’ symbol in the single initial line

are optional and only used for the purpose of identification and

description. All lines should be no longer than 120 characters and

usually do not exceed 80 characters. The sequence ends if another

line starting with a ‘‘.’’ appears; this indicates the start of another

sequence. Example sequences in FASTA format can be seen by

clicking on the Example button right above the input box. For

more information about FASTA format, visit http://en.wikipedia.

org/wiki/Fasta_format. Different with Gneg-mPLoc [11], where

only one query protein sequence at a time is allowed for each

submission, now the maximum number of query proteins for each

submission can be 10.

Step 3. Click on the Submit button to see the predicted result.

For example, if you use the three query protein sequences in the

Example window as the input, after clicking the Submit button,

you will see Fig. 4 shown on your screen, indicating that the

predicted result for the 1st query protein is ‘‘Cell outer
membrane’’, that for the 2nd one is ‘‘Cytoplasm;
Periplasm’’, and that for the 3rd one is ‘‘Cell inner
membrane; Cytoplasm’’. In other words, the 1st query

protein (P0A3N8) is a single-location one residing at ‘‘cell outer

membrane’’ only, the 2nd one (Q05097) can simultaneously reside

in two different sites (‘‘cytoplasm’’ and ‘‘periplasm’’), and the 3rd

one (P61380) can also simultaneously reside in two different sites

(‘‘cell inner membrane’’ and ‘‘cytoplasm’’). All these results are

exactly the same as observed by experiments as shown in the

Supporting Information S1. It takes about 10 seconds for the

above computation before the predicted results appear on your

computer screen; the more number of query proteins and longer of

each sequence, the more time it is usually needed.

Step 4. As shown on the lower panel of Fig. 3, you may also

choose the batch prediction by entering your e-mail address and

your desired batch input file (in FASTA format) via the ‘‘Browse’’

button. To see the sample of batch input file, click on the button

Batch-example. The maximum number of the query proteins for

each batch input file is 50. After clicking the button Batch-submit,

you will see ‘‘Your batch job is under computation; once the

results are available, you will be notified by e-mail.’’ Note that if

you submit a batch input file from an Apple computer, although it

looks like in the FASTA format, your input might change to non-

FASTA format in the server end and cause errors. Under such a

circumstance, the safest way is to submit your input file with a pdf

format.

Step 5. Click on the Citation button to find the relevant

papers that document the detailed development and algorithm of

iLoc-Gneg.

Step 6. Click on the Data button to download the benchmark

datasets used to train and test the iLoc-Gneg predictor.

Caveat. To obtain the predicted result with the expected

success rate, the entire sequence of the query protein rather than

its fragment should be used as an input. A sequence with less than

50 amino acid residues is generally deemed as a fragment. Also, if

the query Gram-negative protein is known not one of the 8

locations as shown in Fig. 1, stop the prediction because the result

thus obtained will not make any sense.

Results and Discussion

In statistical prediction, it would be meaningless to simply

report a success rate of a predictor without specifying what

method and benchmark dataset were used to test its accuracy

[14]. As is well known, the following three methods are often used

to examine the quality of a predictor: independent dataset test,

subsampling test, and jackknife test [36]. Owing to that

subsampling test and jackknife test can be performed with one

benchmark dataset and that independent dataset test can be

treated as a special case of subsampling test, one benchmark

dataset would suffice to serve all the three kinds of cross-

validation. However, as demonstrated by Eq.1 of [37] and

elucidated in [2], among the three cross-validation methods, the

jackknife test is deemed the least arbitrary that can always yield a

unique result for a given benchmark dataset and hence has been

widely recognized and increasingly used to examine the power

of various predictors (see, e.g., [38,39,40,41,42,43,44,45,46,
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47,48,49,50,51,52,53,54,55,56]). Accordingly, in this study, the

jackknife test will be adopted to evaluate the power of iLoc-
Gneg as well.

However, even if using the jackknife test to examine the

accuracy, a same predictor may still yield obviously different

success rates when tested by different benchmark datasets. This is

Figure 2. A flowchart to show the prediction process of iLoc-Gneg.
doi:10.1371/journal.pone.0020592.g002

Figure 3. A semi-screenshot to show the top page of the iLoc-Gneg web-server. Its website address is at http://icpr.jci.edu.cn/bioinfo/iLoc-
Gneg.
doi:10.1371/journal.pone.0020592.g003
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because the more stringent of a benchmark dataset in excluding

homologous sequences, the more difficult for a predictor to

achieve a high success rate. Also, the more number of subsets

(subcellular locations) a benchmark dataset covers, the more

difficult to achieve a high overall success rate, as elaborated in a

recent review [14].

As mentioned in the Materials section, the benchmark dataset

used in this study is S (cf. Supporting Information S1), which is the

same benchmark dataset constructed in [11] for Gneg-mPLoc.

Actually, for such a dataset containing both single-location and

multiple-location Gram-negative proteins distributed among 8

subcellular location sites, so far only one existing predictor, i.e.,

Gneg-mPLoc [11], had the capacity to deal with it. Therefore, to

demonstrate the power of the current predictor, it would suffice to

just compare iLoc-Gneg with Gneg-mPLoc [11].

Listed in Table 2 are the results obtained with Gneg-mPLoc
[11] and iLoc-Gneg on the aforementioned benchmark dataset S

by the jackknife test. As we can see from Table 2, for such a

stringent and complicated benchmark dataset, the overall success

rate achieved by iLoc-Gneg is over 91.4%, which is about 6%

higher than that by Gneg-mPLoc [11].

Note that during the course of the jackknife test by Gneg-
mPLoc and iLoc-Gneg, the false positives (over-predictions) and

false negatives (under-predictions) were also taken into account to

reduce the scores in calculating the overall success rate. As for the

detailed process of how to count the over-predictions and under-

predictions for a system containing both single-location and

multiple-location proteins, see Eqs.43–48 and Fig. 4 in a

comprehensive review [2].

To provide a more intuitive and easier-to-understand mea-

surement, let us introduce a new scale, the so-called ‘‘absolute

true’’ success rate, to reflect the accuracy of a predictor, as

defined by

L~

PN
i~1 D(i)

N
ð26Þ

where L represents the absolute true rate, N the number of total

proteins investigated, and

D(i)~

1, if all the subcellular locations of the i-th protein are

correctly predicted without any overprediction

0, otherwise

8><
>: ð27Þ

According to the above definition, for a protein belonging to,
say, two subcellular locations, if only one of the two is
correctly predicted, or the predicted result contains a location
not belonging to the two, the prediction score will be counted
as 0. In other words, when and only when all the subcellular
locations of a query protein are exactly predicted without any
underprediction or overprediction, can the prediction be
scored with 1. Therefore, the absolute true scale is much more
strict and harsh than the scale used previously [2,11] in
measuring the success rate. However, even if using such a
stringent criterion on the same benchmark dataset by the
jackknife test, the overall absolute true success rate achieved
by iLoc-Gneg was 1252/1392 = 89.9%.

Why can iLoc-Gneg enhance the success rate so remarkably?

One of the key reasons is that the GO formulation for protein

samples in iLoc-Gneg contains more information than that in

Gneg-mPLoc [11], as elaborated as follows. For example, for the

protein with the access number ‘‘P0A8U0’’ as denoted by

P(P0A8U0), according to Steps 3 and 4 in the Section of ‘‘GO

(Gene Ontology) Formulation’’, we found 47 proteins that were

homologous to it; i.e., Nhomo
P(P0A8U0)~47. Each of the 47 homologous

Figure 4. A semi-screenshot to show the output of iLoc-Gneg. The input was taken from the three protein sequences listed in the Example
window of the iLoc-Gneg web-server (cf. Fig. 3).
doi:10.1371/journal.pone.0020592.g004
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proteins hit GO:0005886 (or GO_compress:00277) and

GO:0016020 (or GO_compress:00830), and hence the two GO

numbers were hit by a total of 47 times. Only one of the 47

proteins hit GO:0005737 (or GO_compress: 00269). Substituting

these data into Eqs.8–9, we have

yG
u P(P0A8U0)ð Þ~

1=47&0:0213, if u~269

47=47~1:0, if u~277

47=47~1:0, if u~830

0:0, otherwise

8>>>>><
>>>>>:

(u~1,2, � � � ,11118)

ð28Þ

In contrast, if the same protein was represented according to the

formulation in Gneg-mPLoc [11], it would be

yG
u P(P0A8U0)ð Þ~

1, if u~269

1, if u~277

1, if u~830

0, otherwise

8>>><
>>>:

(u~1,2, � � � ,11118)

It can be seen by a comparison of Eq.28 with Eq.29 that although

the elements in the 269th, 277th, and 830th components are all not

zero in both formulations, the differences of their weights are

completely ignored in Eq.29 as formulated in Gneg-mPLoc [11].

That is also why, when the sequence of P(P0A8U0) was inputted

into iLoc-Gneg and Gneg-mPLoc [11] as a query protein for

prediction, the former could accurately predict its both location

sites (‘‘cell inner membrane’’ and ‘‘cytoplasm’’), while the latter

could predict only one site (‘‘cell inner membrane’’) but miss the

site of ‘‘cytoplasm’’.

Conclusions
Prediction of protein subcellular localization is a challenging

problem, particularly when the system concerned contains both

singleplex and multiplex proteins. The reasons why iLoc-Gneg
can achieve higher success rates than Gneg-mPLoc are as

follows. (1) The GO formulation used to represent protein

samples in iLoc-Gneg is formed by the probabilities of hits (cf.

Eqs.8–9) and hence contains more information than that in Gneg-
mPLoc [11] where only the number ‘‘0’’ or ‘‘1’’ was used

regardless how many hits were found to the corresponding

component in the GO formulation. (2) The accumulation-layer

scale has been introduced in iLoc-Gneg that is more natural and

effective for dealing with proteins having both single and multiple

subcellular locations.

Supporting Information

Supporting Information S1 This benchmark dataset S

includes 1,456 locative protein sequences (1,392 differ-
ent proteins), classified into 8 Gram-negative subcellu-
lar locations. Among the 1,392 different proteins, 1,328 belong

to one location; and 64 to two locations. Both the accession

numbers and sequences are given. None of the proteins has $25%

sequence identity to any other in the same subset (subcellular

location). See the text of the paper for further explanation.

(PDF)
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