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Abstract

Very fast oscillations (VFO) in neocortex are widely observed before epileptic seizures, and there is growing evidence that
they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by
the spatio-temporal waves of activity recorded using electrocorticography (ECoG), and study the speed of activity
propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable
cellular automata (CA) on random (Erdös-Rényi) networks of special type, with spatially constrained connections. From the
cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by
the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic) PDE is suggested, which provides adequate
wave speed v(SkT) that saturates with network degree SkT, in agreement with intuitive expectations and CA simulations.
We further show that the maximum length of connection is a much better predictor of the wave speed than the mean
length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio
of network moments Sk2T=SkT rather than on mean degree SkT, which is explained by general network theory. The wave
speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions,
supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically
coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of
epidemics through spatial networks.
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Introduction

Different types of networks are found across many scales, from

metabolic networks in a single cell, to neural networks in brain, up

to social and technological global networks. The theory of

networks receives increasing attention since the pioneering works

that formulated random graphs [1], and the recently discovered

ubiquity of small-world networks [2] and scale-free networks [3].

Reviews on general theory of networks can be found in [4–6]. A

comprehensive up-to-date review of spatial networks is given in

[7].

Since its first formulation [1], the Erdös-Rényi (ER) graph

became a cornerstone of network theory. An ER graph GNM

consists of N nodes and M links (edges), and each link connects

two nodes which are selected randomly. In a sufficiently large

network, the number of links emanating from a node (degree) is a

random variable with Poisson distribution P(k)~SkTke{SkT=k!,
where SkT is the network mean degree, SkT~2M=N . Despite its

advantages, the ER graph is not suitable for studying spatial

phenomena because it is spatially homogeneous. However, in most

real-world networks the connections are spatial and variable in

length. Also, the maximum length of connection is usually limited

by the available resources or other natural restrictions. To address

this problem, spatial generalizations of the ER graph were

suggested. For example, two nodes can be connected only if the

distance between them is below threshold rc [8]. This model was

used to simulate spatio-temporal activity in networks of electrically

coupled neurons [9]. Another example is the Waxman model, in

which the probability that two nodes are connected is a decreasing

function of distance between the nodes [10]. The latter model was

used to simulate the Internet [11].

In many networks the nodes are excitable, meaning that active

state can arise and propagate from one node to another if they are

connected. In this way, action potentials propagate through neural

networks, computer viruses spread in the Internet, and diseases are

transmitted through transport networks. If the nodes are excitable,

dynamical states propagate through a network both temporally

and spatially, leading to waves and more complex patterns.

A case study in our work is the emergence of spatiotemporal

patterns with very fast oscillations (VFO, w80 Hz) measured by

electrocorticography [9], recorded in neocortex of patients prior to

epileptic seizures (Figure 1A). There is growing experimental and

theoretical evidence that VFO are caused by electrically coupled

pyramidal neurons which are connected by gap junctions, thus

providing direct excitation from one to another, which does not

require synaptic transmission [9,12,13].
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Nodes in such a network are dynamical excitable units.

Although their intrinsic behavior can be complex and require

detailed multi-compartment model of each neuron [14–16],

understanding of the neural network spatiotemporal oscillations

requires highly reduced models, such as cellular automata which

capture three main states (resting, firing, refractory) with a

minimal set of parameters [13]. The system can be described by

a network version of Greenberg-Hastings cellular automaton

(GHCA), a discrete model of an excitable medium [17]. Variations

of GHCA have been used in many studies, including collective

oscillations of pyramidal cells in the hippocampus [8,13,18],

sensory networks [19,20], and the evolution of HIV infection [21].

In the network version of GHCA that we use, cellular

interactions can be distant rather than next-neighbor [8]. The

cells are connected into Erdös-Rényi random graph with spatially

constrained connections (hereafter SCC), so the distance between

connected nodes is not greater than connectivity radius rc. Under

random spontaneous activation of some of the resting cells, large

networks demonstrate oscillatory dynamics with complex spatio-

temporal activity driven by many interacting waves. Traub and

coauthors [9] have recently demonstrated these patterns to be

strikingly similar to those observed in ECoG recordings

(Figure 1B). In the model, the complex patterns of activity arise

when multiple waves are born from spontaneously activated cells

and they grow and coalesce in time and space.

A single active node may generate an expanding circular wave

of excitation, if the mean network connectivity is high enough.

The wave maintains its shape and travels with constant speed,

which is an important characteristic of system’s excitability and

depends on network topology. Knowledge of wave speed in

excitable networks allows prediction of how fast the active state

(neuronal activity, viral infection) propagates and invades the rest

of the network. Although simulations can be done in each

particular case, it is important to have a basic mean field theory

Figure 1. Neural network activity in experiments and in the cellular automaton model. A. A snapshot of electrocorticographic (ECoG) data
of brain activity, measured by 866 subdural array of electrodes. Data is interpolated between nodes, white areas correspond to high activity. B. A
snapshot of activity from a cellular automaton model in an 4006400 network. The network is subject to noisy input from spontaneously activating
cells (rate 1:25|10{5). Active cells are white, refractory and excitable are black (simplified color code). C. Snapshot of activity in a 10610 sub-network
with detailed color code: red for active, blue for refractory, black for excitable nodes. Lines show links between nodes. D. Rules of the CA model:
excitable node (black) may become active (red), if activated by a neighbor. After being activated, the node becomes refractory (blue) for a period of
time tr, after which it becomes excitable again. Data in A is a courtesy of Miles Whittington, recorded in Patient B of [29].
doi:10.1371/journal.pone.0020536.g001
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(MFT) to understand and predict the network dynamics without

simulations.

In this paper we derive an MFT to predict wave speed in a

random (Erdös-Rényi type) network with spatially constrained

connections (SCC), for given connectivity radius rc and mean

degree SkT. The results are generalized to Erdös-Rényi type

networks with various radii distributions, and further to non-

Erdös-Rényi networks with various degree distributions, suggest-

ing universality of our mean field theory.

Results

The system
In the following section we describe the system and its dynamic

properties, along with simulations that demonstrate its typical

behavior.

2D network. We study a 2D network of excitable cells (nodes),

which are are set on a uniform Nx|Ny grid, with unit space between

adjacent nodes (Figure 1C). Connections (links) are bidirectional, i.e.

activity can be transmitted in both directions. Links can be long but

limited by rc: within a circle of radius rc (network with round

‘footprint’) or within a square with side rc (network with square

‘footprint’) [8]. Generally, the connectivity radius rc is much larger

than 1, but much smaller than array dimensions Nx(Ny). The

number of links per node (degree) follows the Poisson distribution

P(k)~SkTke{SkT=k!, whereas the distribution of link lengths is

uniform in (1, . . . ,rc), unless stated otherwise.

Quasi-1D network. To treat the system analytically, we

reduce it to a quasi one-dimensional network: the length of links is

limited only along X but may be unlimited in the Y coordinate. In

other words, it is a 2D network which has an interval footprint

(Dx{x0Dƒrc). A quasi-1D network provides the same wave speed

along X as the 2D network with square footprint (with same rc),

which is also consistent with 2D network with round footprint

(simulations not shown).

Cellular automaton model. A node in excitable state (E)
becomes firing (F ) if one or more of its connected neighbors in the

network are firing. After one time step Dt the firing node becomes

refractory (R1, . . . ,Rtr
) for a relatively long period tr, after which it

becomes excitable again. Thus each node rests in (E) or undergoes

a sequence of states (E,F ,R1, . . . ,Rtr
,E) if activated by a neighbor

(Figure 1D). Initially all nodes are in excitable state, except a small

number of firing nodes that initiate the wave. Node states are

updated simultaneously at each time step.

Initiation of wave in a small 2D network is shown in Figure 2 (first

four time steps). Although directions of links are random, activity

propagates outwards from the initial point because it is followed by

refractory state, prohibiting backward propagation. Propagation of

waves in large 2D networks is shown in Figure 3A–C. Waves in

networks with round and square footprint do not differ qualitatively

(not shown), because neighbors of each node are chosen as random

lattice points from round or square neighborhood (respectively),

which differ only in relatively small corner areas.

In the rest of the paper, we work with quasi-1D networks,

because they allow transparent mean field analysis, and yet behave

almost identically to 2D networks, with the only difference that

wave fronts are linear rather than circular (Figure 3B vs. A). Next,

we start from simpler case where all links have maximum length

(r~rc), and then analyse the case where links are distributed

randomly (0vrƒrc).

Mean field theory
Links of maximum length. In order to treat the system

analytically, we assume that the network is regular (all nodes have

same degree k), and all links have same length (r~rc). Later we

will show that these crude assumptions provide a good

approximation for more general cases.

We assume that each excitable cell can become firing by one

(and only one) of its neighbors that is firing, which is true for wave

front where firing cells are rare. Each firing cell is surrounded by

excitable cells, and may produce at maximum (k{1) firing

neighbors. One of k links is missing because it points to a cell from

which firing has come. In other words, if a cell is excitable

(probability E), it can be activated by one of its neighbors

(probability SFT, spatial average of F ). Otherwise, if a cell is

already firing (F ) and there are excitable neighbors (prob. SET), it

produces (k{1) firing cells. These relations can be written as

F (x,tzDt)~E(x,t)SFTz(k{1)F (x,t)SET ð1Þ

where F and E are the probabilities of a cell to be in firing or

excitable state, respectively, SFT and SET are spatially averaged F
and E in the neighborhood of x. This equation holds only for

wave front, where firing cells are scarce, excitable cells are

abundant, and there are no refractory cells yet.

With the notion that most cells are excitable (F&0,
E~1{F&1), the E-terms become unitary (linearized equation).

In the quasi-1D system, SFT~
1

2
(F (x{r,t)zF (xzr,t)), and the

equation simplifies to

F (x,tzDt)~
1

2
(F (x{r,t)zF (xzr,t))z(k{1)F (x,t) ð2Þ

Taylor’s expansion in x at the right hand side gives

F (tzDt)~(Fz
r2

2
Fxx)z(k{1)F ð3Þ

Taylor’s expansion in t at the left hand side gives

FzDtFtz
1

2
Dt2Ftt~(Fz

r2

2
Fxx)z(k{1)F ð4Þ

Parabolic (Fisher-Kolmogorov) equation. Taking into

account only the first time derivative, we arrive at a linearized

version of Fisher-Kolmogorov equation

Ft~DFxxz
k{1

Dt
F ð5Þ

where D~
r2

2Dt
is a diffusion coefficient [22],

k{1

Dt
is the growth

rate, and the second-order extinction term is omitted for wave

speed analysis. The well-known [23] formula for Fisher-

Kolmogorov wave speed vFK~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D(k{1)=Dt

p
~

rc

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(k{1)

p
gives infinite growth of speed with mean degree k (Figure 4, upper

line). Taking high-order terms into account in the right hand side

of the PDE does not alter the principal behavior of wave speed

(simulations not shown), demonstrating that parabolic PDEs are

not suitable for wave speed prediction.

Hyperbolic equation. Keeping both first and second time

derivatives in the left part of Eqn. 4, we obtain a hyperbolic

equation for firing node density

Wave Speed in Random Networks
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Ftz
Dt

2
Ftt~DFxxz

(k{1)

Dt
F ð6Þ

Wave speed can be found by marginal stability analysis [24].

Substituting variable z~x{vt, we obtain the equation

(D{
Dt

2
v2)F ’’zvF ’z

(k{1)

Dt
F~0. Solution in the form F~e{lz

yields a characteristic equation (D{
Dt

2
v2)l2{vlz

(k{1)

Dt
~0.

The roots of the characteristic equation must be real, which gives

the minimum wave speed

v(k)~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D(k{1)

Dt(1z2(k{1))

s
~

rc

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(k{1)

1z2(k{1)

s
ð7Þ

We put the time step Dt~1 as in the CA model, and k~SkT. This

wave speed demonstrates qualitative agreement with the CA model

on an ER SCC network (Figure 4, lower line). Most importantly,

v(k) gradually saturates to the maximum possible speed v(k)?rc for

high k&1, in agreement with CA simulations and intuitive

expectations.

The wave speed v(k) is shown in more detail in Figure 5 (upper

solid line). One can see that v(k) falls near to CA simulations on

networks where all links have maximum length rc (Figure 5,

triangles), as expected. Surprisingly, v(k) also approximates well

the CA simulations on networks where links have random length

0vrƒrc (Figure 5, circles), which is our primary model. This

phenomenon is explained in the next section.

MFT for links with random length
The case where links have random length 0vrƒrc is derived

similarly to the maximum-length case shown above. Recall that

the spatial scale between nodes is unity, rc&1 and r~1 . . . rc. Let

all lengths be equally probable, P(r)~1=rc. All nodes have degree

k, so the fraction of nodes with at least one link of length r is

kP(r)~
k

rc

. The evolution of firing nodes density in time is given by

k

rc

F (x,tzDt)~E(x,t)
k

2rc

(F (x{r,t)zF (xzr,t))

z(k{1)
k

rc

F (x,t) ð8Þ

Integration over 0vrƒrc and omitting E*1 gives

F (tzDt)~
1

2rc

ðrc

{rc

F (xzr)drz(k{1)F ð9Þ

Figure 2. Initiation of wave in a CA model on a random network. The first 4 time steps of wave initiation are shown for an 11611 network. A.
t = 0; B. t = 1; C. t = 2; D. t = 3. Colorcode: red for active, blue for refractory, black for excitable cells. Lines show links between cells, red square shows
the connectivity footprint of the central cell (shown only in A). Parameters: SkT = 4, rc~3 (small for demonstration purposes).
doi:10.1371/journal.pone.0020536.g002
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Taylor’s expansion up to second derivative of the function under the

integral gives the equation

F(tzDt)~(Fz
r2

c

6
Fxx)z(k{1)F ð10Þ

The latter equation is equivalent to Eqn. 3, with the only

difference being a reduced radius (r~
rcffiffiffi

3
p ). Therefore, the wave

speed for the random-length links would be simply scaled by
ffiffiffi
3
p

relatively to v(k): vrand (k)~
v(k)ffiffiffi

3
p &0:58v(k).

However, this naive scaling based on uniform radii distribution

underestimates the wave speed of CA roughly by a factor of two

(Figure 5, lower solid line, compare to circles). This happens

because cells in the wave front have actually non-uniform

distribution of links from which they have received their activation

(Figure 6A). The distribution is strongly biased towards the longest

links. A wave front generates a new wave front at the next time

step by sending activity through the longest links out of available k.

To support this notion, we generated sets of k i.i.d. discrete

random variables r uniformly distributed in (1, . . . ,rc) and

computed their mean maxima Smax(r1, . . . ,rk)T as a plausible

estimate of wave speed, that is a contribution of activity

propagation from each single node to a global propagation of

wave per unit time. As one can see in Figure 6B (broken line), the

mean maxima of k random radii gives a good measure of CA wave

speed (circles), especially for high k. These numerical calculations

are supported by analytic formula for the expected mean of

maxima (black solid line), Smax(r1, . . . ,rk)T~rc2{1=k, derived for

a uniform continuous distribution r [ (0,rc). This formula gives a

very good prediction of CA wave speed at high k, demonstrating

that the wave propagation is indeed mainly determined by the

mean maximum of k radii, which converges in the limit (k??) to

the maximum possible radius rc. In other words, it is not the

average, but rather the maximum link length that determines the

wave speed in a random network with random radii distribution.

Role of link length distribution. To study the effects of

other possible radii distributions, we simulated networks with five

distributions (Figure 7A): the uniform radii distribution, the fixed-

value distribution (r:rc), a bell-shaped and two exponential

distributions (increasing and decreasing, respectively). The speeds

of wave propagation in resulting random networks are

qualitatively similar and always significantly higher than the

average value of the corresponding distribution (Figure 7B).

Broken lines in Figure 7B are mean maxima of k radii generated

from each distribution, which served as a good estimate of wave

speed in four out of five distributions. Note that the distribution for

which our maximum link hypothesis works the least is the one with

Figure 3. Traveling waves of activity in random networks. Traveling waves emerging in the CA model on random networks with A. square, B.
quasi-1D connectivity footprint. The cell which initiates the wave is shown by a red asterisk. Active cells are white, refractory and excitable cells are
black. Directions of wave propagation are shown by arrows. C. A snapshot of wave (t~25) with spatial profiles of all three states: grey for excitable,
bold red for active, light blue for refractory cell density. In the center, the wake of excitable cells (grey) grows by recovering from the refractory state
(blue). D. Profiles of the active state at four time steps, showing two traveling waves emerged from a single active cell. Once formed, the speed and
width of a wave remain constant. Profiles were calculated by averaging active cell counts over 100 bins along X. Parameters SkT~3,tr~10, rc~10
(rc is shown in the bottom right corners in A,B).
doi:10.1371/journal.pone.0020536.g003
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an exponentially small probability of reaching the maximum link

length rc (see the purple line in Figure 7A).

Although we can not provide an analytic estimate of the

effective radius in each distribution, these simulations support the

notion that wave speed is predominantly determined by the

maximum rather than average radius, with maximum taken out of

SkT radius realizations.

High-order analysis
The use of Taylor’s approximation in the PDE derivation could

potentially bring unwanted errors because Dt and r are in fact not

small. We use a high-order analysis to estimate wave speed in

exact terms, by looking for a traveling wave solution in the form

F (x,t)~e{l(x{vt) without using Taylor’s expansion. See Methods

and Algorithms for details. Figure 5 shows that wave speed v�

(upper dashed line) obtained by this method is close to v(k)
obtained from a hyperbolic PDE (upper solid line). This confirms

that considering derivatives of order above 2 (in time and space)

will not affect the wave speed qualitatively. Therefore, the

hyperbolic PDE is both necessary and sufficient for qualitative

wave speed prediction.

Role of degree distribution
The variation of node degrees depends on degree distribution of a

network and strongly affects the wave speed. To ultimately simplify

the network and add the variance in stages, we simulated the CA

model on spatial networks the following degree distributions:

N regular network (each node has same degree k),

N fk{1,k,kz1g distribution: a node’s degree is chosen

randomly from fk{1,k,kz1g,k§2,

N Poisson distribution (ER graph), P(k)~SkTke{SkT=k!

N exponential distribution P(k)~e{k=l,l~0:75 . . . 5,

N power-law distribution with exponential cutoff P(k)~
Ck{te{k=l and parameters:

1. t~2,l~2 . . . 100;

2. t~2:5,l~3 . . . 800:

In all networks, the lengths of links between nodes were

uniformly distributed in (0vrƒrc). As one can see in Figure 8A,

the wave speed profiles vary widely when plotted against network

mean degree SkT. However, they merge into nearly the same

shape when plotted against Sk2T=SkT (Figure 8B, inset). The key

role of Sk2T=SkT ratio is evident from general network theory. For

a randomly chosen link, the degree of a node on its end follows the

nearest-neighbor distribution Pnn(k)~
k

SkT
P(k), where P(k) is

the original network degree distribution [6]. The mean degree of a

connected node SkTnn is therefore different from a randomly picked

node: SkTnn~
P

kPnn(k)~
Sk2T
SkT

, so our ratio is merely the

nearest-neighbor mean degree. In other words, when activation

travels from one node to another, the degree of a node in the end

of a link follows the nearest-neighbor distribution Pnn(k), which

has a mean of SkTnn~
Sk2T
SkT

and gives the actual branching ratio

of the activation in the new node.

For an ER graph, SkTnn~SkTz1. Substitution of SkT~

SkTnn{1 into wave speed (7) gives us a more general formula for

fitting wave speeds

v(SkTnn)~rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(SkTnn{2)

1z2(SkTnn{2)

s
ð11Þ

Figure 4. Wave speed predicted by the parabolic and
hyperbolic PDEs compared to simulations of CA on random
networks. The parabolic (Fisher-Kolmogorov) PDE gives wave speed
vFK that indefinitely grows with network degree (red line and
diamonds). In contrast, the suggested hyperbolic PDE (given in text)
provides a reaso‘nable wave speed v(k) (given in text, shown by green
line and diamonds). The v(k) grows moderately and saturates to the
maximum possible speed (rc=Dt), in agreement with CA simulations
(blue circles) and intuitive expectations. The solid lines show analytic
formulae, the diamonds show simulations of corresponding full PDE
systems.
doi:10.1371/journal.pone.0020536.g004

Figure 5. Wave speed derived from the hyperbolic PDE
compared to CA simulations. The wave speed v(k) (red line, high)
is derived assuming all links have maximum length. CA simulations are
shown in two variants, with maximum-length links (red triangles) and
generic random-length links (blue circles). The naive speed scaling
v(k)=

ffiffiffi
3
p

(blue line, low) is derived assuming that link lengths are
uniformly distributed. This discrepancy is explained in Results, showing
that maximum-length link is a better predictor of wave speed. The
dashed lines show the high-order analysis, proving that the hyperbolic
PDEs capture the wave behavior sufficiently well, and derivatives of
order above 2 are not necessary.
doi:10.1371/journal.pone.0020536.g005
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where SkTnn~
Sk2T
SkT

as before. As shown in (Figure 8, inset), this

formula gives a good estimate of wave speeds in a variety of

network degree distributions.

Discussion

In summary, we have analysed behavior of excitable random

networks with spatially constrained connections (SCC), and

derived a mean field theory of the activity propagation. We

conclude that the hyperbolic PDE

Ftz
Dt

2
Ftt~DFxxz

(k{1)

Dt
F ð12Þ

is necessary and sufficient to capture the wave speed in random

(uncorrelated) networks with spatially constrained connections.

The wave speed is mainly determined by the longest possible

connection between the firing node and a node it can activate, so

the mean maximum of SkT random radii Smax(r1, . . . ,rk)T serves

as a good predictor of wave speed in Erdös-Rényi SCC networks

with various radii distributions.

We have derived formula (7) for wave speed v(SkT), which

agrees with simulated behavior of CA on Erdös-Rényi SCC

networks. Simulations of CA on networks with other (non-Poisson)

degree distributions suggest a more general formula (11) for wave

speed, which depends on SkTnn~
Sk2T
SkT

, the nearest-neighbor

mean degree. So, our mean field theory extends to networks with

various degree distributions, provided that
Sk2T
SkT

is used as a more

universal measure of network’s average branching, rather than

simple SkT, which is explained by general network theory.

The original [8,9,13] cellular automaton model of very fast

brain oscillations assumed that pyramidal neurons are connected

via gap junctions into an Erdös-Rényi SCC network. Our results

show that wave speed (hence network excitability) will scale with

radius rc and degree SkTnn the same way even if the network

Figure 6. Role of maximum link lengths in wave propagation. A. The distribution of link lengths between the cells at the wave front, and the cells
which triggered their firing. The front cells (top 1 or 5 %) were selected by their positions in a wave. The mean distances are given in the legend,
parameters rc~10, SkT~3. B. Estimate of the wave speed by numerical estimate of mean maxima of k i.i.d radii taken from uniform distribution
r [ (1, . . . ,rc) (broken line). The formula rc2{1=k is the expected value of the mean maxima (solid line). The CA simulations of wave speed are shown by
circles. As seen, the mean maxima give a good wave speed estimate, in contrast to naive scaling v(k)=

ffiffiffi
3
p

derived earlier from the PDE (dotted line).
doi:10.1371/journal.pone.0020536.g006

Figure 7. Effect of link lengths (radii) distribution on wave speed. A. The radii distributions between nodes in the random networks: black o -
fixed value, cyan x - uniform, red (blue) triangles - exponentially increasing (decreasing), green squares - bell-shaped distribution (see Methods for
detailed formulae). B. Wave speeds in the networks with corresponding radii distributions (markers are consistent with panel A). Broken lines are
computed mean maxima out of SkT radii samples from each distribution, used as a plausible estimates of the true wave speeds (solid lines).
Networks are Erdös-Rényi SCC, so the degree distribution (links per node) is Poissonian.
doi:10.1371/journal.pone.0020536.g007
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topology is different. This has experimental implications: account-

ing for the wave speed does not require reconstruction of full gap

junction network topology. Rather, determining the mean SkT
and variance (s2~Sk2T{SkT2) of the gap junctions per cell, and

the maximum inter-neuronal distance (rc) for coupled cells should

suffice. Also, our simulations show that wave speed is primarily

driven by the longest of SkT connections emanating from an

average node. Therefore knowledge of the longest axoaxonal

connections is more important than recovering their full range.

Our present knowledge of wave speed will facilitate a detailed

analysis of waves interaction and coalescence, which generate

complex oscillatory dynamics in large networks shown in [9].

In general perspective, the fact that wave speed depends on

Sk2T
SkT

shows that variation in node degree plays an important role

in wave propagation. High variation of node degrees provides high

wave speed, presumably due to presence of highly-connected

nodes (hubs).

The hyperbolic PDE (12) should not be confused with similar-

looking telegrapher’s equation, because the (k{1) term in Eqn 12

is positive and gives a self-sustaining wave in time, in contrast to

the decaying solution of telegrapher’s equation.

The special type of networks we study (with spatially

constrained connections) should not be confused with small-world

networks. The limited length of link is crucial for spatial

phenomena, whereas in conventional small-world networks the

‘‘short-cuts’’ are unlimited in length. This makes wave speed

infinite and destroys spatial coherence, but improves temporal

coherence [25,26]. However, small-world networks might be

constructed with spatially constrained shortcuts, which could be an

interesting system for analysis.

The CA model we use is similar to epidemiological SIRS model

(susceptible-infected-recovery-susceptible). Therefore, our theory

may help predict spatial spread of epidemics in large networks. For

example, it may be applied to predict spatial spread of SIR type

malware through a sufficiently large network of WiFi routers [27],

where the length of connections is limited by the router’s range.

We studied networks with degree distributions that cover a broad

spectrum of possible Sk2T versus SkT combinations (Figure 8B,

inset), suggesting that our MFT holds for uncorrelated networks of

arbitrary degree distribution (with spatially constrained connec-

tions). The degree distributions studied here appear in real-world

networks, such as the neuronal network of C. elegans, the power grid

network, acquaintance networks and the WWW (see [4] and

references therein). Our MFT apply to these and other networks,

provided there is a metric to measure connection length, and

connections are limited by some constant rc.

Methods

Cellular automaton model
A node in excitable state (E) becomes firing (F) if one or more

of its neighbours are (F ). After one time step Dt the firing (F) node

becomes refractory (R1, . . . ,Rtr
) for a relatively long period tr,

after which it becomes excitable (E) again. Thus each node rests in

(E) or undergoes a sequence of states (E,F ,R1, . . . ,Rtr
,E) if

activated by a neighbor. The formal rules of CA are as follows

1. excitable (E) ? firing (F) if any neighbor is (F)

2. F ? refractory (R1)

3. Ri?R(iz1)

4. Rtr
?E

The states of all nodes are updated simultaneously every time

step. Initially all nodes are in excitable (E) state, except a small

number of firing nodes that initiate the wave.

Network with spatially constrained connections
The network consists of excitable nodes, which are are set on a

uniform Nx|Ny grid, with unit space between adjacent nodes.

The network with defined degree distribution P(k) and connec-

tivity radius rc is constructed by a procedure similar to that for

spatially homogeneous networks [28]. Initially, each node is

assigned to a random number of ‘stubs’ k, which is picked from

distribution P(k). Next, the program picks nodes from a

randomized (shuffled) list of all nodes. The list of nodes must be

randomized to avoid artificial correlations imposed by node order.

For each picked node with nonzero number of stubs, the program

randomly picks one of its neighbor within distance rc. If the

neighbor has nonzero number of stubs, too, both nodes are linked.

Their numbers of stubs are decremented by -1, and their numbers

of links are incremented by +1. The procedure is repeated until all

stubs of the chosen node become links. To avoid infinitely long

search in a situation when all neighbors are already linked and

Figure 8. Wave speeds in networks with different degree distributions. Wave speeds in networks of six different degree distributions
(explained in legend) are plotted A. against mean degree SkT; B. against ratio of network moments Sk2T=SkT. Note the convergence of wave speeds
in B. The mean field formulae are shown in both panels by broken lines (Eqn. 7 in A; Eqn. 11 in B). Inset. The Sk2T versus SkT in the simulated
networks. Line markers are consistent with legend in panel A. Errorbars are smaller than symbols, due to simulations on many networks of large size
(100061000).
doi:10.1371/journal.pone.0020536.g008
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they have no more free stubs, the search of potential neighbors is

stopped after 104 unsuccessful attempts. The procedure is repeated

for each node.

The 2D network differs from the quasi-1D network only by the

way that the connectivity distance is measured. In 2D network,

connectivity of node (x0,y0) is ((x{x0)2z(y{y0)2)1=2
ƒrc (round

‘footprint’) or Dx{x0Dƒrc,Dy{y0Dƒrc (square ‘footprint’). In quasi

one-dimensional network, Dx{x0Dƒrc (interval footprint). In most

simulations rc~10, if not specified otherwise.

Single networks of size up to 400|400 were simulated in

Matlab. Large-scale simulations of multiple (64 to 128) networks of

size 1000|1000 with rc~20 (used in Figure 8) were carried out in

C/C++ MPI program on an IBM Blue Gene supercomputer.

High-order analysis
The use of Taylor’s approximation in space and time could

potentially bring unwanted errors because Dt and r are in fact not

small. Here we estimate wave speed in exact terms by looking for a

traveling wave solution in the form F (x,t)~e{l(x{vt) without using

Taylor’s expansion, thus taking all high-order terms into account. Both

cases of links with maximum and random length are analyzed below.
Maximum length. Substitution of F (x,t)~e{l(x{vt) into

Eqn. 2 gives

elvDt~
1

2
(e{lrzelr)z(k{1) ð13Þ

For convenience, we will change to new variables lr~lr and

v�~
vDt

r
. The equation then reads elrv�~

1

2
(e{lrzelr )z(k{1)

and can be solved numerically for marginal stability analysis.

In order to find the minimal wave speed, we need to find v�

such that the function in the left part f1(lr)~elrv
�

has a unique

common point with the function in the right part f2(lr)~
1

2
(e{lrzelr )z(k{1), for given k. This happens when f1~f2 and

f1’~f2’ (plots touch each other). Parameter v� is the minimal wave

speed, normalized to the radius r. Figure 5 shows that v� (upper

dashed line) obtained by this method is close to v(k) obtained from

a hyperbolic PDE (upper solid line), so considering derivatives of

order above 2 (in time and space) will not affect the wave speed

qualitatively. Therefore, the hyperbolic PDE is both necessary and

sufficient for qualitative wave speed prediction.
Random length. This case is analyzed in a similar way. Eqn.

2 linearized around the unstable steady state reads: F (tzDt)~

1

2rc

ðrc

{rc

F (xzr)drz(k{1)F. Substitution of F(x,t)~e{l(x{vt)

and changing to v� and lr gives

elrv�~
1

2lr

(e{lr{elr )z(k{1) ð14Þ

This equation is solved numerically in the same way as in the

maximum-length case. As one can see in Figure 5, the obtained

minimal wave speed v� (lower dashed line) is close to v(k) obtained in

hyperbolic PDE (lower solid line). However, as shown in Results, the

MFT for maximum link length provides better approximation of CA

simulations, so this case is shown here only for completeness of analysis.

Radii distributions
We studied five different radii distributions: uniform in 1 . . . 10,

fixed-value (always 10), bell-shaped f (x~kz1)~Ck
9 0:5n with

binomial coefficients Ck
9 ,k~0::9, and two exponentially shaped

distributions f1(x)*lelx,f2(x)*le{l(rc{x),x [ (0,rc�, both nor-

malized to compensate the cutoff of exponential tails.

Numerical integration of PDE system
Analytic formulas for wave speeds are supported by numerical

integration of corresponding PDE systems. In the hyperbolic case,

the closed nonlinear system reads

Ftz
Dt

2
Ftt~DFxxz(k{1)F (1{F{R)

Rt~F{
1

tr

R

8>><
>>: ð15Þ

By the normalization FzRzE~1 the equation for E is not

necessary. Parameters are Dt~1,r~1,D~
r2

2Dt
,tr~15. This

system was replaced by a system of three parabolic PDEs (by

introducing G~Ft), which was solved by a method of lines in

Matlab, with parameters dx~0:1, dt~0:002, mesh size

200|200, and explicit Euler scheme. Initial conditions were

F~R~0 in all points except the center line where F~1.

Simulations of traveling waves in the Fisher-Kolmogorov

equation were carried out similarly, with the first equation

changed to Ft~DFxxz(k{1)F (1{F{R).
Both systems demonstrate the effect of wave coalescence – two

waves cancel each other at the areas where they meet, while their

outer borders merge into one big circular wave. The main difference

between the two PDE systems is the speed of wave, which grows

infinitely with k in the Fisher-Kolmogorov system, but saturates to

unity for the hyperbolic PDE system, as discussed in the Results.
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