
Epigenetic Dysregulation in Mesenchymal Stem Cell
Aging and Spontaneous Differentiation
Zhilong Li1,2., Chenxiong Liu1,2., Zhenhua Xie1., Pengyue Song1, Robert C. H. Zhao3, Ling Guo1,

Zhigang Liu2*, Yaojiong Wu1*

1 Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China, 2 State Key Laboratory of Respiratory Disease for Allergy at Shengzhen

University, School of Medicine, Shenzhen University, Shenzhen, China, 3 Center of Excellence in Tissue Engineering, Department of Cell Biology, Institute of Basic Medical

Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China

Abstract

Background: Mesenchymal stem cells (MSCs) hold great promise for the treatment of difficult diseases. As MSCs represent a
rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue
engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular
mechanisms involved have been poorly understood.

Methodology/Principal Findings: Human MSCs in early and late passages were examined for their expression of genes
involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved
in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and
hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic
differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic
genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and
Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic
dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of
most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with
corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes.

Conclusions/Significance: Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals,
plays a key role in regulating MSC aging and differentiation.
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Introduction

Mesenchymal stem cells (MSCs) are self-renewing and expandable

stem cells [1,2,3]. In order to compare and contrast study outcomes

from different research groups, the Mesenchymal and Tissue Stem

Cell Committee of the International Society for Cellular Therapy

proposed a minimal criterion to define human MSCs. First, MSCs

must be plastic-adherent when maintained in standard culture

conditions. Second, MSCs must be lineage-negative and express

CD105, CD73 and CD90. Third, MSCs must differentiate to at least

osteoblasts, adipocytes and chondroblasts ex vivo [3].

Increasing evidence has suggested profound therapeutic poten-

tial of MSCs for a variety of diseases such as myocardial infarction

[4,5,6,7], neural diseases [8,9] strokes [10], and wound healing

[11,12]. Moreover, allogeneic MSCs have shown low immunoge-

nicity and immunosuppressive properties [13,14,15]. Due to

encouraging preclinical results, numerous clinical trials for a

variety of diseases are underway [16,17,18,19,20].

MSCs represent as a rare cell population in the bone marrow

(BM) and other tissues. BM is the major source of MSCs, where

they represent only approximately 0.001% to 0.01% of the

nucleated cells, about 10-fold less abundant than hematopoietic

stem cells (HSCs). Therefore, ex vivo expansion of MSCs is an

indispensable procedure to obtain sufficient amounts of cells for

MSC-based therapies and tissue engineering. MSCs are capable of

proliferating in culture [1,2], and they are genetically stable when

undergoing limited ex vivo expansion [21]. However, recent studies

suggest MSCs age rapidly in culture and undergo considerable

property changes. This has raised concerns over the effect and

safety of MSC-based therapies [22,23]. More importantly, the

molecular mechanisms underlying phonotypical changes of MSCs

during culture expansion are unclear.

In this study, we found that MSCs underwent considerable

epigenetic and gene expressional alterations during culture

expansion, even though the morphological changes are modest.

The expression of osteogenic genes increased progressively with
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successive passages of MSCs, while the expression of ‘‘stemness’’

genes such as Oct4 and Sox2 declined markedly. In accordance

with these changes were epigenetic dysregulations, with histone

H3 acetylation in particular. Basic fibroblast growth factor (bFGF)

modulated histone H3 acetylation in telomerase reverse transcrip-

tase (TERT), Oct4, Sox2, Runx2 and alkaline phosphatase (ALP)

genes, promoted MSC proliferation and suppressed its spontane-

ous osteogenic differentiation. Ex vivo culture of MSCs also caused

changes in methylation levels in CpG islands in the promoter and

exon 1 regions in most of these genes, but the changes did not

coincide with expressional changes of the corresponding genes.

Therefore, our results suggest that acetylation of histone H3

modulates the expression of critical genes in MSCs, thereby

regulating their behavior.

Results

Characterization of MSCs
Fluorescence activated cell sorting (FACS) analysis of our MSCs

showed that they were negative for lineage cell markers such as

CD34 and CD45, and were strongly positive for CD105, CD73 and

CD90, exhibiting typical immunophenotypic features of MSCs

(Fig. 1). The cells also expressed CD51 and CD61 (Fig. 1). After

induction in appropriate media, MSCs differentiated into adipo-

cytes (Fig. 2B), osteoblasts (Fig. 2D) and chondrocytes (Fig. 2F).

Spontaneous differentiation and downregulation of
pluripotent genes in MSCs during culture expansion

Cultured in growth medium, MSCs underwent modest but

progressive morphological changes with successive passages. The

cells became larger and fatter in general (Fig. 3A and B).

Meanwhile, a small portion of cells became extremely larger and

flatter, which were similar to osteoblasts in morphology and positive

for ALP stain (Fig. 3C), indicating the presence of spontaneous

differentiation of MSCs into osteoblasts. In accordance with

changes in morphology, the expression of genes associated with

osteogenesis such as collagen type I, ALP, bone sialoprotein (BSP),

osteocalcin (OCN) and osteopontin (OPN) increased progressively

with successive cell passages (Fig. 3D), while the expression of genes

associated with stem cell pluripotency and proliferation decreased

markedly, which included Oct4, Sox2, Nanog, REX1, CD133 and

TERT (Fig. 4A and C; Fig. 5B and E).

Epigenetic dysregulation of MSCs
Previous studies have shown that MSCs are genetically stable after

limited expansion [21]. So we investigated whether MSCs underwent

epigenetic changes during culture expansion, with an emphasis on

promoter DNA methylation and histone H3 acetylation. We found

dramatic alterations in histone H3 acetylation in K 9 and K14 in

TERT, Sox2, Oct4, Runx2 and ALP genes in replicating MSCs when

comparing passage 1 with passage 6 MSCs (Fig. 4B; Fig. 5A, 5D,

6A and 6D). Downregulation in the expression of TERT, Sox2 and

Oct4 genes were closely associated with decreases in H3 acetylation

levels in the promoter regions of the corresponding genes (Fig. 4B and

4C; Fig. 5A, B, D and E). Meanwhile, upregulated expression of

Runx2 and ALP genes was accompanied by increases in H3

acetylation levels in the promoter of the corresponding genes

(Fig. 6A, B, D and E). We also examined DNA methylation in CpG

islands in the promoter and exon 1 regions of these genes in parallel.

Our results showed alterations in methylation levels in most of these

genes in MSCs undergoing culture expansion, but they did not

correlate to expressional changes of the corresponding genes except for

ALP (Fig. 4C and D; Fig. 5B, C, E and F; Fig. 6 B, C, E and F).

bFGF promotes MSC proliferation, suppresses MSC
spontaneous differentiation and regulates histone
acetylation

We proposed that alterations in MSC properties were largely

caused by extrinsic signals and tested whether bFGF helped maintain

the primitive features of MSCs. We found that MSCs grown in

growth medium supplemented with bFGF had a 10 fold increase in

cumulative cell number by passage 4 compared to MSCs grown in

growth medium alone (Fig. 7A). When passage 6 MSCs grown in

growth medium or in growth medium supplemented with bFGF were

modestly induced in osteogenic induction medium for 3 days, the

later had significantly less mineral deposition than the former (Fig. 7B

and C), indicating that bFGF suppressed spontaneous differentiation

of MSCs towards osteoblasts, but retained the potency of

osteogenesis.

We then analyzed the influence of bFGF on epigenetic

regulation in MSCs. We found that bFGF significantly suppressed

alterations in histone H3 acetylation caused by ex vivo culture in

TERT, Sox2, Oct4, Runx2 and ALP genes (Fig. 4 to 6), and this

effect highly coincided with the effects of bFGF on MSC

proliferation and spontaneous differentiation (Fig. 7). Meanwhile,

we also examined DNA methylation in CpG islands in the

promoter and exon 1 regions of these genes in parallel. Our results

showed evident influences of bFGF on DNA methylation levels in

Oct4, Runx2 and ALP, but not in TERT and Sox2 (Fig. 4 to 6).

But these changes in DNA methylation did not correlate to

expressional changes of the genes.

Figure 1. Fluorescence-activated cell sorting (FACS) analysis of MSCs. Passage 3 MSCs were analyzed by FACS after staining with FITC- or
PE-conjugated control isotype IgG (gray peaks) or antibodies against indicated cell surface proteins (filled red or green peaks).
doi:10.1371/journal.pone.0020526.g001

Histone Acetylation in MSC Aging

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e20526



Discussion

Due to encouraging effects of MSCs in tissue repair/regeneration

demonstrated in animal studies, numerous clinical studies on MSC-

based therapies for diverse diseases are underway. However, concerns

over the consequences of altered properties of MSCs after ex vivo

expansion remain. In this study, we found that MSCs underwent

progressive spontaneous differentiation towards osteoblasts in MSCs

undergoing regular culture expansion.

The molecular mechanisms underlying MSC spontaneous differ-

entiation and aging are unclear. Previous studies have indicated that

limited expansion of MSCs does not cause alterations in gene

sequences [21], implying that alterations of MSCs ex vivo are probably

not due to genetic instability. Therefore, in this study, we examined

epigenetic changes in histone H3 acetylation and gene promoter DNA

methylation. We found marked changes in histone H3 acetylation in

K9 and K14 in TERT, Soc2, Oct4, Runx2 and ALP genes in late

passage (P6) MSCs compared to early passage (P1) MSCs, and H3

acetylation levels coincided closely with gene expressional levels and

MSC aging and spontaneous osteogenic differentiation, suggesting that

histone H3 acetylation is an important mechanism in regulating MSC

aging and differentiation. It has been known that posttranslational

histone modifications participate in modulating the structure and

function of chromatin and are critical in regulating gene transcription.

Figure 2. Differentiation of MSCs. Cultured in appropriate induction media, (A & B) MSCs differentiated into adipocytes (after oil red staining, A
represents non-induced and B represents induced), (C & D) osteoblasts (after Alizarin Red S staining, C represents non-induced and D represents
induced), and (E & F) chondrocytes (after Alcian Blue staining, E represents non-induced and F represents induced).
doi:10.1371/journal.pone.0020526.g002

Histone Acetylation in MSC Aging
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Promoters of transcribed genes are enriched with hyperacetylation on

the N-terminal tail of histone H3 [24]. Acetylation of K9 and K14 in

histone H3 is required for the recruitment of TFIID [25], and TFIID

binding to the promoter causes DNA bending and downstream

translocation of the SWI/SNF-modified nucleosome, thus allowing the

initiation of transcription [26]. It has been found that increases in levels

of promoter histone H3 acetylation at lysine 9 in human hepatocellular

liver carcinoma cells are accompanied with increases in overall gene

expression levels [27]. In this study, we examined representative genes

to reflect behavioral changes in MSCs during culture expansion.

TERT enables cells to divide repeatedly and reduced expression of

TERT is associated with cell aging [28]. Sox2 and Oct4 have long

been known as key regulators of embryonic stem cell (ESC) self-

renewal [29]. Runx2 is a key transcription factor associated with

osteoblast differentiation, and the expression of Runx2 is a milestone

for mesenchymal cells’ commitment to osteoblasts [30,31]. ALP is a

characteristic gene expressed in osteoblasts [32].

Global histone acetylation levels have been examined in two

recent studies. While no significant age related changes were

detected in the global histone modification profiles of 4 histone

core proteins (H2A, H2B, H3, and H4) in monkey BM derived

MSCs in one study [33], genome-wide histone H3-K9 acetylation

levels at gene promoters in human BM-derived MSCs were found

to coincide well with overall mRNA expression levels in another

[34]. These results suggest that MSC aging appears not to be

associated with changes in global histone acetylation level but

likely in gene promoter histone acetylation level. Indeed, in this

study, we identified critical genes in which evident histone H3

modulations occurred in promoters in accordance with MSC

aging, self-renewal and osteogenic differentiation. Our findings

may facilitate the development of novel markers for early detection

of MSC aging and spontaneous differentiation, thereby to ensure

the quality of MSCs for clinical uses.

Recent studies suggest that DNA methylation is an important

mechanism in regulating self-renewal and multipotency of HSCs

and leukemia stem cells by silencing the expression of genes in

differentiation [35]. In this study, we compared DNA methylation

levels in CpG islands in promoter and exon 1 regions of genes

Figure 3. Morphological changes and spontaneous estrogenic differentiation of MSCs. Cultured in growth medium, (A & B) MSCs became
larger and fatter upon expansion, (C) A few cells became extremely larger and flatter and were positive (in red) for alkaline phosphatase (ALP) stain.
(D) Real-Time PCR analysis showed that the expression of genes associated with osteogenesis such as collagen type I (Col I), alkaline phosphatase
(ALP), bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN) increased progressively with cell passages. P1 to P10 represents MSC
passage number. Induction indicates MSCs after incubation with osteogenic induction medium for 14 days.
doi:10.1371/journal.pone.0020526.g003

Figure 4. Gene expression, histone acetylation and DNA methylation in early and late passage MSCs. (A) Real-Time PCR analysis of the
expression of Nanog, REX1 and CD133 in culture passage (P) 1, passage 6 MSCs cultured in growth medium or passage 6 MSCs growth medium
supplemented with bFGF (P6-bFGF). bFGF treatment started from passage 1 cells. (B) TERT histone H3 acetylation (** P,0.01 versus P1 and P6 in
bFGF-supplemented culture). (C) TERT gene expression (Real-Time PCR analysis) and, (D) DNA methylation in CpG islands in the promoter region of
TERT in passage 1 and 6 MSCs cultured in growth medium versus passage 6 MSCs cultured in growth medium supplemented with bFGF (P6-bFGF).
doi:10.1371/journal.pone.0020526.g004

Histone Acetylation in MSC Aging
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involved in self-renewal including Sox2 and Oct4, proliferation

and aging such as TERT and osteogenic differentiation including

Runx2 and ALP in early versus late passage MSCs. To our

surprise, though dysregulations in promoter DNA methylation

exist in most of these genes, only changes in ALP gene coincided

with gene expression levels. We obtained similar results in MSCs

derived from cord tissues (data not shown). Some of our data are

consistent with results published in a previous study, in which

Runx2 was found hypermethylated in MSCs after long term

culture [36]. Moreover, in the same study, a comparative

methylation BeadChip microarray analysis in combination with

cDNA microarray analysis did not reveal a clear correlation

between the degrees of global CpG methylation and the levels of

mRNA expression in long-term culture or aging MSCs [36].

Taken together, these results and ours suggest that dysregulations

in promoter DNA methylation occur to aging MSCs, but may not

coincide with gene expressional changes.

Previous studies suggest that aging and spontaneous differenti-

ation of MSCs ex vivo are likely caused by inappropriate culture

conditions [37,38,39,40]. The physiological niche of MSCs is

Figure 5. Multipotent gene expression, histone acetylation and DNA methylation in early and late passage MSCs. Gene expression,
histone acetylation and DNA methylation. (A) Sox2 and (D) Oct4 histone H3 acetylation (** P,0.01); (B) Sox2 and (E) Oct4 gene expression (Real-Time
PCR analysis), and (C) DNA methylation in CpG islands in the promoter region and exon 1 region of Sox2 and (F) Oct in passage (P) 1 and 6 MSCs
cultured in growth medium versus passage 6 MSCs cultured in growth medium supplemented with bFGF (P6-bFGF).
doi:10.1371/journal.pone.0020526.g005

Histone Acetylation in MSC Aging
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proposed to suppress spontaneous differentiation of MSCs into

osteoblasts and facilitate their self-renewal. We proposed that

potent extrinsic signals that alter MSC behavior will change the

epigenetic status of corresponding genes. As a proof of concept, we

examined the influence of bFGF, a potent cytokine that has been

used as a supplement to MSC culture [41], on the histone

acetylation and DNA methylation levels in MSCs. We found that

supplementation of bFGF to the growth medium significantly

promoted MSC proliferation and suppressed their spontaneous

differentiation towards osteoblasts. Moreover, in accordance with

these changes, bFGF treatment delayed the downregulation of

TERT, Sox2 and Oct4, and suppressed the upregulation of

Figure 6. Osteogenic gene expression, histone acetylation and DNA methylation in early and late passage MSCs. (A) Runx2 and (D)
ALP histone H3 acetylation (** P,0.01), (B) Runx2 and (E) ALP gene expression (Real-Time PCR analysis), and (C) DNA methylation in CpG islands in
the promoter region of Runx2 and (F) in the in the promoter region and exon 1 region of ALP in passage (P) 1 and 6 MSCs cultured in growth medium
versus passage 6 MSCs cultured in growth medium supplemented with bFGF (P6-bFGF).
doi:10.1371/journal.pone.0020526.g006

Histone Acetylation in MSC Aging
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Runx2 and ALP in culture MSCs. Along with expressional

changes of these genes were corresponding alterations in histone

H3-K9 and K14 acetylation levels, but not in promoter DNA

methylation levels. bFGF has been known as an essential

component of the regulatory niche in maintaining the pluripoten-

cy of ESCs, and inhibition of FGF signal pathway causes

differentiation of ESCs [42,43]. However, the mechanisms

underlying the effect of bFGF in stem cell self-renewal are not

fully understood. Our results show that bFGF regulates promoter

histone H3 acetylation and consequently the expression of genes

critical for stem cell self-renewal and osteogenic differentiation.

Materials and Methods

Cell isolation and culture
MSCs were isolated from human placenta as described

previously [44,45]. Briefly, term (38–40 weeks’ gestation) placentas

from healthy donors were harvested with written informed consent

and the procedure was approved by the Ethics Committee of Xili

Hospital. The placental tissue was washed several times with cold

phosphate-buffered saline (PBS) and then mechanically minced

and enzymatically digested with 0.25% trypsin-EDTA for

10 minutes at 37uC in a water bath. The digest was subsequently

pelleted by centrifugation and resuspended in growth medium

consisting of Dulbecco’s modified Eagle’s medium (DMEM,

Gibco-Invitrogen) supplemented with 10% fetal bovine serum

(FBS; Gibco-Invitrogen) and antibiotics. Cells were seeded on

uncoated polystyrene dishes and incubated in growth medium at

37uC with 5% CO2. Medium was replaced every 2 days to reach

80% confluence. The cells that were lifted by incubating with

0.25% trypsin/EDTA for 2 min at 37uC were collected. In some

cultures as indicated bFGF (R&D) at 5 ng/ml was added to the

growth medium.

Flow cytometry
MSCs were analyzed by flow cytometry analysis for immuno-

phenotype [11]. Passage 3 cells were resuspended in PBS

containing 1% bovine serum albumin (BSA) at 106/ml. 100 mL

cell aliquots were incubated with fluorescein isothiocyanate

(FITC)- or phycoerythrin (PE)-conjugated monoclonal antibodies

against CD73 (eBioscience), CD105 (endoglin), CD90, CD45,

CD51, CD61 and CD34 (BioLegend), or control isotype IgG on

ice for 30 minutes. 10,000 events were analyzed by flow cytometry

(Becton Dickinson) using Cell Quest software.

MSC differentiation assays
Passage 4 MSCs were incubated to differentiate into adipocytes,

osteoblasts and chondrocytes in corresponding induction medium

as previously described [1,11]. After 3 weeks of culture with

adipogenic induction medium containing 1026 M dexametha-

sone, 10 mg/mL insulin, and 100 mg/mL 3-isobutyl-L-methylxan-

tine (Sigma), cells were stained with Oil Red-O to detect lipid.

Osteogenic medium contained 1027 M dexamethasone, 50 mg/ml

ascorbic acid, and 10 mM b-glycerophosphate (Sigma). Cultures

at 3 weeks were stained using Alzarin Red for calcium deposition.

For chondrocyte differentiation, MSC were cultured in DMEM

(high glucose) containing 1027 M dexamethasone, 50 mg/ml

ascorbate-2-phosphate, 100 mg/ml pyruvate (Sigma), 10 ng/ml

TGF-b1 (R&D Systems) and 50 mg/ml ITS+Premix (BD

Biosciences, 6.25 mg/ml insulin, 6.25 mg/ml transferrin,

6.25 ng/ml selenious acid, 1.25 mg/ml bovine serum albumin,

and 5.35 mg/ml linoleic acid). Cultures at 3 weeks were fixed and

stained for alcian blue (Sigma).

RNA extraction and Real-Time PCR
Total RNA was extracted from MSCs with TRIzol (Invitrogen)

following the manufacturer’s instructions. First-strand cDNA was

prepared by reverse transcription with Superscript II reverse

transcriptase (Invitrogen) and oligo(dT) primers and stored at

220uC. Real-Time PCR was performed using SYBRH Premix Ex

TaqTM II (TaKaRa) on an ABI 7300 QPCR System. As an

internal control, levels of glyceraldehyde-3- phosphate dehydro-

genase (GAPDH) were quantified in parallel with target genes.

Normalization and fold changes were calculated using the DDCt

method [11]. Primer sets are listed in Table 1.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assay was performed

using an Acetyl-Histone H3 Immunoprecipitation Assay Kit

(Millipore) following the manufacturer’s protocol [46]. 16106 cells

were used for each reaction. Histone acetylation was determined

using specific antibodies against acetylated histone H3 at lysines 9

(K9) and 14 (K14), respectively (included in the kit). After chromatin

immunoprecipitation, DNA was extracted with a standard procedure

(phenol/chloroform/isoamilic alcohol 25:24:1), and subsequently

measured by quantitative fluorescent PCR analysis using SYBRH
Premix Ex TaqTM II (TaKaRa) on an ABI 7300 QPCR System.

Primer targets were within 500 bp upstream of gene transcription

start site and primer sets were as follows: TERT forward 59-

GGCTCCCAGTGGATTCGC-39, reverse 59-GGAGGCGGAG-

CTGGAAGG-39; Sox2 forward 59-AGTTGGACAGGGAGAT-

GGC-39, reverse 59-AACCTTCCTTGCTTCCACG-39; Oct4 for-

ward 59-CTTCCACAGACACCATTGCC-39, reverse 59-AGTCC-

CACCCACTAGCCTTG-39; Runx2 forward 59-GCTTCAATCC-

TTTCCTACAAAG-39, reverse 59-CGTGTGCAGTTTCCGAC-

AG-39; ALP forward 59- TGTTGACAGACACAGAGACAGACG-

Figure 7. Effects of bFGF on MSC proliferation and spontaneous differentiation. (A) Growth curves of MSCs cultured in growth medium
(control) and in growth medium supplemented with bFGF (bFGF). (B) MSCs cultured in growth medium (control) or in growth medium supplemented
with bFGF (bFGF) for 3 days after Alizarin Red S staining. (C) Mean proportion of Alizarin Red S positive areas per field after quantification of 4
randomly selected fields (** P,0.01).
doi:10.1371/journal.pone.0020526.g007

Histone Acetylation in MSC Aging
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39, reverse 59- GTCGGCATCTTCCTTCTGCG-39. Data were

analyzed using Percent Input Method (Invitrogen) followed the

instruction.

Genomic DNA extraction and bisulfite sequencing
MSCs were lysed in a lysis buffer containing 0.5% SDS, 0.1 M

EDTA, 10 mM Tris–HCl, pH 8.0, and 100 ng/ml proteinase K,

and incubated at 55uC overnight. Genomic DNA was purified by

phenol/chloroform extraction. DNA (2 mg) from each sample was

bisulfite converted using an EZ DNA Methylation-GoldTM Kit

(Zymo research Corporation, Orange, CA, USA). To identify the

methylation pattern of the genes, primers were designed to amplify

the promoter and/or exon 1 region. The sequences of primers are

as follows. TERT forward 59- GGGATGTGATTAGATGTTC-

GGTT-39, reverse 59- ACCCAAAACTACCTCCAAAT-39 (cov-

er region 2891,2463); Sox2 forward 59- GATTTTAATAA-

GAGAGTGGAAGGAA-39, reverse 59- CAAAACCAACCCTA-

ACATTTT-39 (cover region 2421,+21); Oct4 forward 59-

GTTAGAGGTTAAGGTTAGTGGGTGGGAT-39, reverse AA-

CACTAACCCCACTCCAACCTAAAAC-39 (cover region 257-

,+311); Runx2 forward 59-GGGGTTAGAGTTTTTTTTTG-

TG-39, reverse 59- ACAAACACTAACCCCAAACC-39 (cover

region 2384,2101); ALP forward 59-GGTTGAATTTTAA-

TGGTAGGGT-39, reverse 59- CACCAAAAAAAACTCAATC-

A-39 (+240,+538). Touch down PCR was then carried out. The

amplified products were gel-purified, and cloned into pMD-18T

vectors (Takara). After that the recombinant plasmid was

transformed into E. coli JM109. Seven to eleven clones for each

gene were collected for sequencing [47].

Statistical analysis
All values are expressed as mean 6 SD. Student’s paired t test

was performed for comparison of data of paired samples and

ANOVA was used for multiple group comparisons. A probability

(P) value , 0.05 was considered significant.
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