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Abstract

It has long been accepted that immunoglobulins (Igs) were produced by B lymphoid cells only. Recently Igs have been
found to be expressed in various human cancer cells and promote tumor growth. Recombination activating gene 1 (RAG1)
and RAG2, which are essential enzymes for initiating variable-diversity-joining segment recombination, have also been
found to be expressed in cancer cells. However, the mechanism of RAG activation in these cancer cells has not been
elucidated. Here, we investigated the regulatory mechanism of RAG expression in four human cancer cell lines by analyzing
transcription factors that induce RAG activation in B cells. By RT-PCR, Western blot and immunofluorescence, we found that
transcription factors E2A, FOXO1 and FOXP1 were expressed and localized to the nuclei of these cancer cells. Over-
expression of E2A, FOXO1 or Foxp1 increased RAG expression, while RNA interference of E2A, FOXO1 or FOXP1 decreased
RAG expression in the cancer cells. Chromatin immunoprecipitation experiments showed acetylation of RAG enhancer
(Erag) and E2A, FOXO1 or FOXP1 were bound to Erag in vivo. These results indicate that in these cancer cells the
transcription factors E2A, FOXO1 and FOXP1 regulate RAG expression, which initiates Ig gene rearrangement much in the
way similar to B lymphocytes.
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Introduction

It has long been accepted that immunoglobulins (Igs) can only be

expressed in mature B lymphocytes and plasma cells. However,

recently several groups reported that Igs could also be produced by

non-lymphoid lineage cells [1], including human cancer cells [2,3],

soft tissue tumor cells [4], neurons and glial cells of the central and

peripheral nervous system [5], ocular epithelial and ganglion cells

[6], mouse testicular spermatogenic cells and epididymal epithelial

cells [7] and mouse lactating mammary gland epithelial cells [8].

Most of the research has thus far focused on Ig expression in cancer

cells. The Recombination activating gene (RAG) has also been found

expressed in cancer cells both at the mRNA and the protein levels

and it is assumed to play a significant role in the synthesis of Igs by

these cancer cells [2,3,9]. However, the regulatory mechanism of

RAG expression in cancer cells has not yet been determined.

The variable regions of Ig genes are composed of one variable

(V), one diversity (D), and one joining (J) gene segment, the

arrangement of which results from V(D)J recombination [10]. RAG

endonuclease is required for the initiation of the cleavage phase of

V(D)J recombination [11]. RAG consists of two adjacent genes,

RAG1 and RAG2, that synergistically induce V(D)J recombination

[12]. Previous studies have shown that mice deficient in either

RAG1 or RAG2 failed to initiate V(D)J rearrangement [13,14].

RAG1 and RAG2 proteins together were found to be sufficient to

cleave recombination substrates in cell free systems [15,16]. In

murine B cell development RAG expression occurs in two waves

and is regulated by a network of transcription factors, including

E2A, Ikaros, Pax5b, Foxo1, Foxp1, and NF-kB [17]. The first wave

results in the rearrangement of the immunoglobulin heavy chain in

pro-B cells. And the second wave of RAG expression leads to the

assembly of immunoglobulin light chain in pre-B cells.

In addition to the RAG1 and RAG2 promoters, the RAG gene

has also other regulatory elements, such as the proximal enhancer

(Ep), the distal enhancer (Ed) and the RAG enhancer (Erag)

[17,18,19,20,21,22]. It is thought that the aforementioned

transcription factors regulate RAG expression by binding to their

corresponding regulatory sequences in B cells. Erag is the strongest

enhancer regulating RAG expression. Targeted deletion of Erag in

the mouse germline resulted in a 5-fold to 10-fold decrease in

RAG expression and a partial block at the pro-B to pre-B

transition [22]. E2A, Ikaros, Foxo1, Foxp1 and NF-kB were all

shown to activate RAG expression by binding to Erag in murine B

cells [22,23,24,25,26]. Pax5b was reported to activate RAG2

promoter in immature B cells [27]. Whether these transcription

factors are also expressed in cancer cells and whether they have
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regulatory functions in the expression of RAG in such cells is

worthy of investigation.

In this study, we first analyzed the protein and mRNA

expressions of those transcription factors that have been found to

be essential for RAG activation in B cells, including E2A (E47 and

E12), FOXO1, FOXP1, Ikaros, NF-kB, and PAX5b, in four cancer

cell lines. We then studied the localization of a number of these

transcription factors (E2A, FOXP1, NF-kB and FOXO1) by

immunofluorescence (IF). We found that E2A, FOXO1 and

FOXP1 were expressed in cancer cells and localized to the nuclei

of these cells. Over-expression of these three transcription factors

significantly increased RAG expression. Functional inactivation of

the genes of any of these three transcription factors by RNA

interference decreased RAG expression. In vivo chromatin

immunoprecipitation (ChIP) assay showed that the histone H3 of

Erag was acetylated and that E2A, FOXO1, FOXP1 were bound to

Erag in these cancer cells. These results indicate that transcription

factors E2A, FOXO1 and FOXP1 activate the expression of RAG,

which is critical for V(D)J recombination, in cancer.

Materials and Methods

Ethics statement
We didn’t use any human or animal tissues in our study. So we

didn’t feel that ethics approval was necessary.

Cell culture
The human lung cancer cell line A549, prostate cancer cell line

PC3, breast cancer cell lines MCF-7, MDA-MB-231 and Burkitt

lymphoma cell line Raji were obtained from the American Type

Culture Collection (ATCC). A549, PC3, MCF-7 and MDA-MB-

231 cells were cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM) with 10% FBS (Hyclone/Thermo Fisher Scientific Inc.,

Waltham, MA). Raji cells were cultured in RPMI 1640

(Invitrogen, Carlsbad, CA) with 10% FBS at 37uC in a humidified

atmosphere with 5% CO2.

RNA extraction and RT-PCR
Total RNA was extracted from the tumor cells using Trizol

reagent (Invitrogen, Carlsbad, CA) and treated with RNase Free

DNase (Invitrogen) to remove genomic DNA. Reverse transcrip-

tion of the RNA was performed using the SuperscriptTM III First

Strand Synthesis System (Invitrogen, Carlsbad, CA) following the

manufacturer’s instructions. For the negative control, the reverse

transcriptase was not added to the reaction mixture. Conventional

or nested PCR was performed and the primers used in this study

were listed in Table 1. For Ikaros, which has several different

isoforms, nested PCR was used to increase the sensitivity and to

better characterize the specific Ikaros isoforms [28]. The two

isoforms of E2A, E47 and E12 were both amplified by PCR.

Table 1. Oligonucleotides used in this study.

Gene name RT-PCR primers Primer sequence 5’-3’ product size (bp)

Ikaros External sense primer CACATAACCTGAGGACCATG 255-945

External antisense primer AGGGCTTTAGCTCATGTGGA

Internal sense primer ATGGATGCTGATGAGGGTCAAGAC

Internal antisense primer GATGGCTTGGTCCATCACGTGG

PAX5b Sense primer CCCGATGGAAATACACTGTAAGCAC 203

Antisense primer TTTTGCTGACACAACCATGGCTGAC

P65 Sense primer TCAATGGCTACACAGGACCA 308

Antisense primer CACTGTCACCTGGAAGCAGA

E47 Sense primer AGCAGTACGGACGAGGTGCTGTCCCTGG 162

Antisense primer CGCTTTGTCCGACTTGAGGTGCAT

E12 Sense primer ACCAGCCCAGACGAGGACGAGGACGACC 173

Antisense primer GGGCTTCTCGCTGTTGAGGTGCAG

FOXO1 Sense primer GCAGATCTACGAGTGGATGGTC 325

Antisense primer AAACTGTGATCCAGGGCTGTC

FOXP1 Sense primer TCAGTGGTAACCCTTCCCTTA 255

Antisense primer GTACAGGATGCACGGCTTG

18S Sense primer AAACGGCTACCACATCCAAG 155

Antisense primer CCTCCAATGGATCCTCGTTA

RNAi sequence

E2A GGCGCAGUUCGGAGGUUCATT

FOXP1 GCAGCAAGUUAGUGGAUUATT

FOXO1 GCCCUGGCUCUCACAGCAATT

ChIP PCR primers

Erag1 Sense primer GCACTGCAAATGGCCTGTGAAC 197

Antisense primer TAGAGACCAGAGGGCTTAACATT

Erag3 Sense primer AAGCCTCTCTTTGCACCCTCAT 201

Antisense primer TTGAGTTGTCATTTCAGCCAAA

doi:10.1371/journal.pone.0020475.t001
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SDS-PAGE and Western blot
Cell lysates were prepared using RIPA buffer. About 40 mg of

total cellular protein was separated on 5% to 10% SDS-PAGE gel.

After electrophoresis, the separated proteins were transferred to a

polyvinylidene difluoride membrane. The primary antibodies used

included RAG1 (K-20), RAG2 (D-20), GAPDH (0411), E2A

(Yae), FOXP1 (D35D10), NF-kB p65 (F-6), and FOXO1 (H-128).

FOXP1 antibody was obtained from Cell Signaling Technology

and the other antibodies were purchased from Santa Cruz

Biotechnology. After incubation with the secondary antibodies

(goat anti-mouse IgG-HRP or goat anti-rabbit IgG-HRP, Santa

Cruz), the immunoblots were developed using Super ECL Plus

Detection Reagent (Applygen Technologies, Beijing) and exposed

to X-ray film according to the manufacturer’s protocol.

Immunofluorescence
Cells were grown on slides in 6 well plates and fixed in 4%

paraformaldehyde for 15 min at room temperature. Then the

slides were incubated with 0.5% Triton X-100 for 10 min, and

blocked for 1 hour in PBS containing 4% bovine serum albumin

(BSA). The primary antibodies included E2A (Yae), FOXP1

(D35D10), NF-kB p65 (F-6) and FOXO1 (H-128). The detailed

information for these antibodies were shown in table 2. Isotype

controls were performed using normal mouse or rabbit IgG at the

same concentration as the primary antibodies. After incubation at

4uC overnight and washing, the slides were incubated with the

secondary antibody goat anti-mouse IgG-FITC (green signal) or

goat anti-rabbit IgG-TRITC (red signal) at room temperature for

1 hour. After a final wash, slides were mounted with mounting

media with DAPI (Vector Laboratories, Burlingame, CA) and

examined under a fluorescence microscope (Carl Zeiss).

Plasmids construction and transfection
The human E47 and E12 fragments were cloned into a pIRES2-

EGFP plasmid by restriction enzyme Bgl II and EcoR I from

plasmids MigR1-hE47 and MigR1-hE12, respectively, which were

kind gifts from Dr. Barbara Kee of the University of Chicago. The

pCDNAI/NEO-5’HA-Foxp1A plasmid which encoded murine

Foxp1A protein was generously provided by Dr. Philip Tucker of

the University of Texas at Austin [29]. The FOXP1 protein was

very conserved between human and murine species (more than 90%

identities), so we used this plasmid for our study. The pcDNA3-

GFP-FOXO1;AAA plasmid was obtained from Addgene and it was

prepared in Dr. William Sellers’ laboratory as described previously

[30]. This plasmid contained a phosphosite mutation of FOXO1,

which as a result hereof was no longer phosphorylated by Akt and

could still localize to the nucleus and activate transcription in

Figure 1. Gene transcript expression of Ikaros, PAX5b, NF-kB,
E2A, FOXO1 and FOXP1 in cancer cell lines. 18S was used as an
internal control. Raji was used as a positive control. DNase treated RNA
without adding reverse transcriptase was used as a negative control.
doi:10.1371/journal.pone.0020475.g001

Figure 2. Western blot showing NF-kB p65, E2A, FOXO1,
FOXP1, RAG expression in epithelial cancer cells. Raji cell was
used as a positive control. GAPDH was used as an internal control.
doi:10.1371/journal.pone.0020475.g002

Table 2. Antibodies for immunofluorescence.

Primary antibody Type Concentration or dilution Manufacturer

E2A (Yae) Mouse, monoclonal 4 mg/ml Santa Cruz Biotechnology, CA, USA

FOXO1 (H-128) Rabbit, polyclonal 4 mg/ml Santa Cruz Biotechnology, CA, USA

FOXP1 (D35D10) Rabbit, monoclonal 1:50 Cell Signaling Technology, MA, USA

NF-kB p65 (F-6) Mouse, monoclonal 4 mg/ml Santa Cruz Biotechnology, CA, USA

doi:10.1371/journal.pone.0020475.t002
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transfected cells [31]. Transient transfection assays of A549 and

MCF-7 cancer cells were done using Fugene HD Transfection

Reagent (Roche) according to the manufacturer’s instructions.

RNA interference
Small interfering RNA (siRNA) directed against FOXO1 [32],

FOXP1, E2A and nonspecific control siRNA (GenePharma, Shang-

hai, China) were transfected into A549 and MCF-7 cancer cells using

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

instructions. The siRNA sequences were listed in Table 1.

ChIP
Chromatin crosslinking and immunoprecipitation were performed

as described previously [23]. The anti-acetyl-histone H3 (06-599,

Upstate Biotechnology), E2A (Yae), E47 (N-649), FOXP1 (D35D10)

or FOXO1 (H-128) was used. Both the E2A (Yae) and E47 (N-649)

antibody were used in ChIP for E2A. Normal rabbit IgG (sc-2027,

Santa Cruz) or normal mouse IgG (sc-2025, Santa Cruz) was used as

a negative control. Immunoprecipitated DNA sequences were

analyzed with PCR and the primers were listed in Table 1.

Results

E2A, FOXO1, FOXP1 and NF-kB were expressed in cancer
cell lines

RT-PCR results showed that FOXO1, FOXP1, NF-kB subunit

p65 and both of the two isoforms of E2A (E47 and E12), were

expressed in the cancer cells A549, PC3, MCF-7 and MDA-MB-

231 (Figure 1). However, neither Ikaros nor PAX5b was detected

in these cancer cell lines, whereas they could both be amplified

from Raji cells. At the protein level, E2A, FOXO1, FOXP1 and

NF-kB subunit p65 were all detected in the cancer cells with

Western blot assay (Figure 2). Based on the molecular weight, the

full length FOXP1 was found to be the main isoform of FOXP1

expressed in the cancer cells. We also confirmed the expression of

RAG1 and RAG2 in these cancer cell lines (Figure 2).

E2A, FOXO1 and FOXP1 were localized to the nuclei of
cancer cells

To study the localization of E2A, FOXO1, FOXP1 and NF-kB

in cancer cells, IF was performed using the corresponding

antibodies on the four cancer cell lines. The results showed that

E2A and FOXP1 were predominantly localized to the nucleus,

whereas NF-kB was exclusively localized to the cytoplasm of the

cancer cells (Figure 3). FOXO1 was found to translocate between

the nucleus and cytoplasm, with the location depending on the

culture and growth conditions. When the cells were confluent,

FOXO1 was mainly located in the nucleus, while it was mainly

present in the cytoplasm when the cells were sparse. Since

transcription factors need to be localized in the nucleus in order to

regulate gene expression, we just focused on E2A, FOXO1 and

FOXP1 in the second part of our study.

Over-expression of E2A, FOXO1 or Foxp1 up-regulated
RAG expression

To explore the effect of transcription factors E2A, FOXO1 and

FOXP1 on RAG expression, A549 and MCF-7 cells were

transfected with the expression vector for E47, E12, Foxp1A or

FOXO1. The empty vector was used as a negative control. Forty-

eight hours after transfection, total protein was extracted for

analysis of E2A, FOXP1, FOXO1 and RAG expression by

Western blot assay. The results showed that transfection with the

expression vector for E47, E12, Foxp1A or FOXO1 increased

both RAG1 and RAG2 expressions (Figure 4). This data indicate

that over-expression of E2A, FOXO1 or Foxp1 up-regulated the

expression of RAG1 and RAG2 in MCF-7 cells. Similar results

were obtained using the A549 cell line (data not shown).

RNA interference of E2A, FOXO1 or FOXP1 down-
regulated RAG expression

To further study the regulatory function of E2A, FOXO1 and

FOXP1 on the expression of RAG, the siRNA sequences for E2A,

FOXO1 or FOXP1 were transfected into A549 and MCF-7 cells.

The nonspecific siRNA was used as the negative control. 48 hours

after transfection, total protein was extracted for analyzing E2A,

FOXP1, FOXO1 and RAG expression by Western blot assay.

Transfection with siRNA sequence for E2A, FOXP1 or FOXO1

was found to decrease the expressions of both RAG1 and RAG2

(Figure 5), suggesting that silencing E2A, FOXO1 or FOXP1

genes down-regulates RAG1 and RAG2 expressions in MCF-7

Figure 3. Immunofluorescence showing NF-kB p65, E2A, FOXO1 and FOXP1 localization in the MCF-7 cell line. A, normal mouse IgG
was used instead of the primary antibody. B, the primary antibody was mouse anti-E2A. C, the primary antibody was mouse anti-NF-kB p65. A to C,
the secondary antibody was goat anti-mouse IgG-FITC. D, normal rabbit IgG was used instead of the primary antibody. E, the primary antibody was
rabbit anti-FOXO1. F, the primary antibody was rabbit anti-FOXP1. D to F, the secondary antibody was goat anti-rabbit IgG-TRITC. Similar results were
obtained for the A549, PC3 and MDA-MB-231 cell lines (data not shown).
doi:10.1371/journal.pone.0020475.g003

Figure 4. Transient over-expression of E47, E12, FOXO1 or
Foxp1A increased RAG expression in MCF-7 cells. MCF-7 cells
were transfected with the empty vector or transcription factor
expression vector pIRES2-EGFP-hE47, pIRES2-EGFP-hE12, pcDNA3-GFP-
FOXO1;AAA or pCDNAI/NEO-5’HA-Foxp1A. 48 hours later total protein
from MCF-7 cells was collected and analyzed by Western blot. GAPDH
was shown as a loading control. Experiments were repeated three times
with similar results. Similar results were obtained for the A549 cell line
(data not shown).
doi:10.1371/journal.pone.0020475.g004
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cells. Similar results were obtained when using the A549 cell line

(data not shown).

E2A, FOXO1 and FOXP1 bound to Erag in vivo
In murine B cells transcription factors E2A, Foxo1 and Foxp1

regulate RAG expression through binding to Erag, the enhancer

regulating RAG gene expression. In order to investigate whether

these transcription factors behave similarly in cancer cells, ChIP

was performed on A549 and MCF-7 cells. The Erag region 1

contains three binding sites for E2A and one binding site for

FOXO1 or FOXP1, whereas the Erag region 3 contains no

binding site for E2A and one binding site for FOXO1 or FOXP1

[25]. ChIP results showed that histone H3 of both Erag region 1

and 3 was acetylated, indicating that Erag was in an open or

activated state. In addition, transcription factors E2A, FOXO1

and FOXP1 were demonstrated to be bound to Erag region 1

but not to region 3 (Figure 6). For both cell lines similar results

were obtained.

Discussion

Recently several research groups reported that V(D)J recombi-

nation and RAG expression occurred in cancer cells. However,

the mechanism controlling these phenomena in epithelial cells is

currently unknown. In this study, in analogy with the molecular

mechanism of RAG expression in B cells, we explored the

regulatory mechanism of RAG expression in cancer cells by

analyzing the transcription factors E2A, Ikaros, PAX5b, FOXO1,

FOXP1 and NF-kB. Similar to their role in the activation of RAG

expression in B cells, we found that E2A, FOXO1 and FOXP1

regulated RAG expression in cancer cells by binding to Erag.

E2A belongs to the class I helix-loop-helix (HLH) proteins, also

known as E proteins because of their capacity to bind with relative

high affinity to the palindromic DNA sequence CANNTG,

referred to as an E box site [33,34]. The E2A gene encodes for

two E proteins, E12 and E47, which arise through alternative

splicing of the exon encoding for the HLH domain [35]. E12 and

E47 are primary transcription activators that function, in part, by

recruiting the co-activator protein p300/CBP, which in turn

recruits histone acetyltransferases and RNA polymerase II to the

promoter or enhancers of target genes [36,37]. E2A is believed to

be a key regulator of B cell differentiation by activating the

expression of RAG and other B lymphoid genes [34]. Over-

expression of E47 has previously been found to activate RAG1

expression and IgH germ-line transcription in fibroblasts [38].

Ectopic expression of E2A, together with RAG1 and RAG2

promoted both IgH and IgL gene rearrangements in a non-

lymphoid embryonic kidney cell line [39,40]. Our finding that

both RAG and E2A proteins were expressed in cancer cells

contributes to the understanding of the mechanism of V(D)J

recombination in neoplastic cells.

FOXO1 and FOXP1 belong to the family of Forkhead box

proteins, which contain a common DNA-binding domain (DBD)

termed the forkhead box or winged helix domain [41]. FOXO1

can translocate from the nucleus to the cytoplasm after being

phosphorylated by Akt. Murine Foxp1 has four alternatively

spliced isoforms, Foxp1A–Foxp1D [29]. Deregulation of FOXO1

and FOXP1 had been shown in many cancer types [41,42].

Recently two studies showed that Foxo1 and Foxp1 regulated

RAG expression in murine B cells [24,25]. Here we have shown

Figure 6. ChIP results showed histone H3 acetylation and E2A,
FOXO1, FOXP1 binding of Erag in MCF-7. A, cross-linked
chromatin isolated from MCF-7 cells was immunoprecipitated either
with isotype control IgG or anti-acetyl-histone H3 antibody. The
associated chromosomal DNA fragments were amplified with primers
for Erag region 1 and 3. B, the antibody for the immunoprecipitation
was anti-E2A, FOXO1 or FOXP1. Experiments were repeated three times
with similar results. Similar results were obtained for A549 cell line (data
not shown).
doi:10.1371/journal.pone.0020475.g006

Figure 5. RNA interference of E2A, FOXO1 or FOXP1 decreased
RAG expression in MCF-7 cells. MCF-7 cells were transfected with
nonspecific control siRNA or siRNA sequence for E2A, FOXO1 or FOXP1.
48 hours later total protein from MCF-7 cells was collected and
analyzed by Western blot. GAPDH was shown as a loading control.
Experiments were repeated three times with similar results. Similar
results were obtained for the A549 cell line (data not shown).
doi:10.1371/journal.pone.0020475.g005

Regulation of RAG Expression in Cancer Cells

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e20475



that FOXO1 and FOXP1 also have regulatory function in RAG

expression in cancer cells.

In this study, we focused on a selected number of transcription

factors and found that E2A, FOXO1 and FOXP1 regulated RAG

expression in cancer cells. Whether there are additional transcrip-

tion factors involved in RAG expression remains to be explored.

In addition, whether there are more similarities in gene expression

between B cells and cancer cells could be found using high

throughput techniques. Previously, it was reported that Ig

expression promoted tumor growth and progression [2,43,44].

In view of our results on regulatory factors activating RAG

expression, Ig expression in cancer cells might be controlled by

targeting the upstream transcription factors to eventually prevent

tumor progression.

Acknowledgments

We thank Dr. Philip Tucker for providing the pCDNAI/NEO-5’HA-

Foxp1A plasmid, Dr. Barbara Kee for the MigR1-hE47 and MigR1-hE12

plasmids, and Dr. William Sellers for the pcDNA3-GFP-FOXO1; AAA

plasmid.

Author Contributions

Conceived and designed the experiments: ZC JG. Performed the

experiments: ZC YX JZ J. Li YL YZ CM J. Luo YQ GH. Wrote the

paper: ZC CK JG. Review and final approval of manuscript: ZC JG.

References

1. Chen Z, Qiu X, Gu J (2009) Immunoglobulin expression in non-lymphoid
lineage and neoplastic cells. Am J Pathol 174: 1139–1148.

2. Qiu X, Zhu X, Zhang L, Mao Y, Zhang J, et al. (2003) Human epithelial
cancers secrete immunoglobulin g with unidentified specificity to promote

growth and survival of tumor cells. Cancer Res 63: 6488–6495.

3. Zheng H, Li M, Ren W, Zeng L, Liu HD, et al. (2007) Expression and secretion
of immunoglobulin alpha heavy chain with diverse VDJ recombinations by

human epithelial cancer cells. Mol Immunol 44: 2221–2227.
4. Chen Z, Huang X, Ye J, Pan P, Cao Q, et al. (2010) Immunoglobulin G is

present in a wide variety of soft tissue tumors and correlates well with
proliferation markers and tumor grades. Cancer 116: 1953–1963.

5. Huang J, Sun X, Mao Y, Zhu X, Zhang P, et al. (2008) Expression of

immunoglobulin gene with classical V-(D)-J rearrangement in mouse brain
neurons. Int J Biochem Cell Biol 40: 1604–1615.

6. Geng LY, Shi ZZ, Dong Q, Cai XH, Zhang YM, et al. (2007) Expression of
SNC73, a transcript of the immunoglobulin alpha-1 gene, in human epithelial

carcinomas. World J Gastroenterol 13: 2305–2311.

7. Huang J, Zhang L, Ma T, Zhang P, Qiu X (2009) Expression of
immunoglobulin gene with classical V-(D)-J rearrangement in mouse testis

and epididymis. J Histochem Cytochem 57: 339–349.
8. Zhang S, Mao Y, Huang J, Ma T, Zhang L, et al. (2010) Immunoglobulin gene

locus events in epithelial cells of lactating mouse mammary glands. Cell Mol Life

Sci 67: 985–994.
9. Chen Z, Gu J (2007) Immunoglobulin G expression in carcinomas and cancer

cell lines. Faseb J 21: 2931–2938.
10. Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control

of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev
Immunol 24: 541–570.

11. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG (2000) The RAG

proteins and V(D)J recombination: complexes, ends, and transposition. Annu
Rev Immunol 18: 495–527.

12. Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2,
adjacent genes that synergistically activate V(D)J recombination. Science 248:

1517–1523.

13. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, et al. (1992)
RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68: 869–877.

14. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, et al. (1992) RAG-2-
deficient mice lack mature lymphocytes owing to inability to initiate V(D)J

rearrangement. Cell 68: 855–867.
15. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, et al. (1995)

Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2

proteins and occurs in two steps. Cell 83: 387–395.
16. van Gent DC, McBlane JF, Ramsden DA, Sadofsky MJ, Hesse JE, et al.

(1995) Initiation of V(D)J recombination in a cell-free system. Cell 81:
925–934.

17. Kuo TC, Schlissel MS (2009) Mechanisms controlling expression of the RAG

locus during lymphocyte development. Curr Opin Immunol 21: 173–178.
18. Lauring J, Schlissel MS (1999) Distinct factors regulate the murine RAG-2

promoter in B- and T-cell lines. Mol Cell Biol 19: 2601–2612.
19. Fuller K, Storb U (1997) Identification and characterization of the murine Rag1

promoter. Mol Immunol 34: 939–954.
20. Wei XC, Kishi H, Jin ZX, Zhao WP, Kondo S, et al. (2002) Characterization of

chromatin structure and enhancer elements for murine recombination activating

gene-2. J Immunol 169: 873–881.
21. Wei XC, Dohkan J, Kishi H, Wu CX, Kondo S, et al. (2005) Characterization of

the proximal enhancer element and transcriptional regulatory factors for murine
recombination activating gene-2. Eur J Immunol 35: 612–621.

22. Hsu LY, Lauring J, Liang HE, Greenbaum S, Cado D, et al. (2003) A conserved

transcriptional enhancer regulates RAG gene expression in developing B cells.
Immunity 19: 105–117.

23. Reynaud D, Demarco IA, Reddy KL, Schjerven H, Bertolino E, et al. (2008)
Regulation of B cell fate commitment and immunoglobulin heavy-chain gene

rearrangements by Ikaros. Nat Immunol 9: 927–936.

24. Amin RH, Schlissel MS (2008) Foxo1 directly regulates the transcription of

recombination-activating genes during B cell development. Nat Immunol 9:
613–622.

25. Hu H, Wang B, Borde M, Nardone J, Maika S, et al. (2006) Foxp1 is an essential

transcriptional regulator of B cell development. Nat Immunol 7: 819–826.

26. Verkoczy L, Ait-Azzouzene D, Skog P, Martensson A, Lang J, et al. (2005) A

role for nuclear factor kappa B/rel transcription factors in the regulation of the
recombinase activator genes. Immunity 22: 519–531.

27. Kishi H, Jin ZX, Wei XC, Nagata T, Matsuda T, et al. (2002) Cooperative

binding of c-Myb and Pax-5 activates the RAG-2 promoter in immature B cells.

Blood 99: 576–583.

28. Iacobucci I, Lonetti A, Messa F, Cilloni D, Arruga F, et al. (2008) Expression of
spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic

leukemia patients treated with tyrosine kinase inhibitors: implications for a new

mechanism of resistance. Blood 112: 3847–3855.

29. Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression
and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol

Chem 278: 24259–24268.

30. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, et al. (2000)
Forkhead transcription factors are critical effectors of cell death and cell cycle

arrest downstream of PTEN. Mol Cell Biol 20: 8969–8982.

31. Coffer PJ, Burgering BM (2004) Forkhead-box transcription factors and their

role in the immune system. Nat Rev Immunol 4: 889–899.

32. Alikhani M, Roy S, Graves DT (2010) FOXO1 plays an essential role in
apoptosis of retinal pericytes. Mol Vis 16: 408–415.

33. de Pooter RF, Kee BL (2010) E proteins and the regulation of early lymphocyte
development. Immunol Rev 238: 93–109.

34. Quong MW, Romanow WJ, Murre C (2002) E protein function in lymphocyte

development. Annu Rev Immunol 20: 301–322.

35. Sun XH, Baltimore D (1991) An inhibitory domain of E12 transcription factor

prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell
64: 459–470.

36. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of

transcription in eucaryotic organisms. Mol Cell Biol 20: 429–440.

37. Kee BL, Arias J, Montminy MR (1996) Adaptor-mediated recruitment of RNA

polymerase II to a signal-dependent activator. J Biol Chem 271: 2373–2375.

38. Choi JK, Shen CP, Radomska HS, Eckhardt LA, Kadesch T (1996) E47
activates the Ig-heavy chain and TdT loci in non-B cells. Embo J 15: 5014–5021.

39. Romanow WJ, Langerak AW, Goebel P, Wolvers-Tettero IL, van Dongen JJ,

et al. (2000) E2A and EBF act in synergy with the V(D)J recombinase to generate

a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 5: 343–353.

40. Goebel P, Janney N, Valenzuela JR, Romanow WJ, Murre C, et al. (2001)
Localized gene-specific induction of accessibility to V(D)J recombination

induced by E2A and early B cell factor in nonlymphoid cells. J Exp Med 194:
645–656.

41. Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in
cancer. Nat Rev Cancer 7: 847–859.

42. Banham AH, Beasley N, Campo E, Fernandez PL, Fidler C, et al. (2001) The

FOXP1 winged helix transcription factor is a novel candidate tumor suppressor
gene on chromosome 3p. Cancer Res 61: 8820–8829.

43. Deng YQ, Zheng J, Li GH, Zhu XH, Zhang P, et al. (2006) [Immunoglobulin
expression in colon cancer cell line HT-29 and its biological activities].

Zhonghua Zhong Liu Za Zhi 28: 88–91.

44. Zheng H, Li M, Liu H, Ren W, Hu DS, et al. (2007) Immunoglobulin alpha
heavy chain derived from human epithelial cancer cells promotes the access of S

phase and growth of cancer cells. Cell Biol Int 31: 82–87.

Regulation of RAG Expression in Cancer Cells

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e20475


