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Abstract

To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel
Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single
nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The
discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic
analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to
the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and
the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In
conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA.
Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study
strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have
replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis
toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing
showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which
recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The
widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis.
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Introduction

Whooping cough or pertussis, caused by the Gram-negative

bacterium Bordetella pertussis, is an infection of the human

respiratory tract and most severe for young, unvaccinated, infants

[1,2]. Vaccination against whooping cough, introduced in most

countries in the 1950s and 1960s, has been highly successful in

controlling the disease [2]. However, whooping cough resurged in

the 1980s and in many developed countries it has become the most

prevalent vaccine preventable disease [1,2,3]. Several causes for

the increase in whooping cough have been proposed, most

prominently waning immunity and pathogen adaptation [2,4,5,6].

Initially, pathogen adaptation involved antigenic divergence

between clinical isolates and vaccines strains [7,8,9,10,11,12,

13,14,15]. More recently strains emerged with increased pertussis

toxin (Ptx) production which harbored a novel allele for the Ptx

promoter, ptxP3 [16]. In the Netherlands, ptxP3 strains have

largely replaced the resident strains which carry the ptxP1 allele

and the emergence of ptxP3 strains was closely associated with the

increase in notifications [16]. The ptxP3 strains have been found in

several European countries, Japan and the Americas, suggesting a

worldwide distribution [16].

Reliable methods to type bacterial pathogens are important

tools in infectious disease control. Strain typing can be used to

identify successful clones, to establish genetic relationships, to

study pathogen evolution and may serve as an early warning

system for epidemics [17]. Mainly three typing methods have been

used to study B. pertussis populations, Multi-Locus Antigen

Sequence Typing (MAST), Pulsed-Field Gel Electrophoresis

(PFGE) [18] and Multiple-Locus Variable-Number Tandem

Repeat Analysis (MLVA) [17].MAST has been very useful to

reveal antigenic divergence between circulating strains and

vaccine strains [2,4]. However, the discriminative power of MAST

is limited and it is not suitable to establish genetic relationships as it

targets genes subjected to immune selection. PFGE is used most

widely for typing of B. pertussis strains and has a high resolving
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power [19]. However, it is laborious and because it is difficult to

standardize, interlaboratory comparisons of PFGE patterns are

problematic. MLVA results in digital profiles allowing accurate

interlaboratory comparisons [13,17,20,21] [www.mlva.net]. Fur-

ther, compared to PFGE it is much less laborious. Unfortunately,

the resolving power of MLVA is lower compared to PFGE.

Another issue concerning PFGE and MLVA, addressed in this

work, is their ability to reveal genetic relationships between strains.

Typing of B. pertussis strains based on single nucleotide

polymorphisms (SNPs) has not been widely used due to the

monomorphic nature of B. pertussis [22]. However, recently the

genomes of several B. pertussis strains have been sequenced,

identifying hundreds of novel SNPs and potentially providing the

tools for SNP typing [23,24,25]. Based on the genome of seven B.

pertussis strains, we selected 87 SNPs to type strains from Europe

and Africa. The results were compared to those of PFGE and

MLVA typing. Further, we used SNP typing to extend our studies

on the evolution of the ptxP3 strains.

Materials and Methods

Strains and culturing
Strains were selected to form a geographically and temporally

diverse collection. Strains were isolated in three European

countries, Finland (n = 7), the Netherlands (n = 26) and Sweden

(n = 34) and in two African countries, Kenya (n = 39) and Senegal

(n = 18). Strains were isolated in the period 1971 to 2005 (Table

S1). Strain 18323 (B1121, ATCC number 9797) was isolated in

the USA in 1947 and used to root the phylogenetic trees. All

strains were grown on Bordet Gengou agar supplemented with

15% sheep blood and incubated for 3 days at 35uC.

Allele typing
The alleles for ptxP were determined by DNA sequencing as

described before [16]. Briefly, bacterial cells were lysed in Tris

EDTA buffer (Sigma-Aldrich, Zwijndrecht, Nl, 1.0 M Tris-HCl,

containing 0.1 M EDTA) at 95uC for 5 minutes, centrifuged for

1 min at 13000 rpm after which the supernatant was used for PCR.

Single nucleotide polymorphism (SNP) typing
SNPs were identified using the complete genome sequences of the

Tohama I strain and of six Dutch B. pertussis isolates [23,26]. Based

on the seven genome sequences, a set of 120 informative SNPs was

selected. For SNP typing, chromosomal DNA was isolated using the

GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich, Zwijn-

drecht, Netherlands) following the manufacture’s instructions for

Gram-negative bacteria. SNPs were determined using the iPLEXH
Gold assay (Sequenom Inc, Hamburg, Germany). This assay is

based on a multiplex PCR followed by a single primer extension

reaction which results in allele-specific differences in mass between

primer extension products. The primer extension products were

analyzed using MALDI-TOF mass spectrometry. SNPs that were

ambiguous in a large number of strains were removed which

resulted in a final selection of 87 SNPs which were used in this study

(Table S2). For each strain, the 87 SNPs were concatenated to

generate a contiguous DNA sequence which was used as character

data for clustering (Table S1). The Maximum Parsimony algorithm

was applied for clustering using Bionumerics version 6.1 (Applied

Maths, Sint-Martens-Latem, Belgium).

Pulsed-field gel electrophoresis (PFGE)
PFGE was performed as described before [18,27]. Most strains

were typed by PFGE in previous studies [19,28] while the strains

from Africa were analyzed in this study. Band matching was

performed with an optimization of 1% and a position tolerance of

1%. The binary character data was used for clustering with the

Maximum Parsimony algorithm in Bionumerics version 6.1

(Applied Maths, Sint-Martens-Latem, Belgium).

Multiple-locus variable-number tandem repeat analysis
(MLVA)

For MLVA, the number of repeats in 6 loci (VNTR1, VNTR3A,

VNTR3B, VNTR4, VNTR5 and VNTR6) was determined as

described previously [17,21]. MLVA profiles were clustered as chara-

cter data using the Maximum Parsimony algorithm in Bionumerics

version 6.1 (Applied Maths, Sint-Martens-Latem, Belgium).

Data analysis
To investigate genetic relationships based on SNPs, PFGE and

MLVA, Maximum Parsimony trees were constructed in Bionu-

merics version 6.1 (Applied Maths, Sint-Martens-Latem, Belgium)

and strain 18323 was used to root the trees. For all trees, a

bootstrap analysis was performed with 1000 iterations. Corre-

spondence between the SNP, PFGE and MLVA typing with,

respectively, the ptxP alleles and geographic origin of strains, was

determined by calculating the Wallace coefficients using EpiCom-

pare version 1.0 (Ridom GmbH, Wurzburg, Germany) [29]. A

high Wallace coefficient, for e.g. SNP typing and ptxP alleles,

implies that the SNP type accurately predicts the ptxP type. In

addition, EpiCompare version 1.0 was used to calculate the

Discriminatory Index (DI) for each typing method [30]. To

explore the relationship between the genetic distances to the root

and the isolation year of strains, a linear regression was performed

and the R-squared value (R2) was determined.

Results

Genetic relationships between B. pertussis strains based
on 87 SNPs

A Maximum Parsimony tree was constructed by concatenating

all 87 SNPs of the analyzed strains (Figure 1). B. pertussis strain

18323, which harbors the ptxP4 allele, was used to root the tree as

we found that this strain was most closely related to B. bronchiseptica

in this set of strains (data not shown), consistent with previous studies

using multi-locus enzyme electrophoresis and comparative genomic

hybridization [31,32,33]. In 125 strains, 14 different SNP types

(STs) could be distinguished which resulted in a discriminatory

index (DI) of 0.85 (Table 1). Bootstrap values ranged from 63% to

100% (average 89%). Five STs (ST3, ST6, ST7, ST11 and ST12)

predominated, representing 14%, 24%, 12%, 11% and 22% of the

strains, respectively. Six STs were found only once. The

predominance of certain STs may have been caused by phyloge-

netic discovery bias which leads to collapsing of branches [34,35].

Our collection contained strains from two African (Kenya and

Senegal) and three European (Finland, Netherlands and Sweden)

countries. A high Wallace coefficient (0.95) (Table 1) was found

between ST and the continent of origin of strains. Three STs (ST2-

ST4, 21%) were unique for African strains; eight STs (ST7-ST14,

50%) were found only in Europe, while two STs (ST5 and ST6, 28%)

were found in both continents (Figure 1). Of the five STs found in

Africa, only one (24%) was found in both Kenya and Senegal,

suggesting distinct populations. Alternatively, the lack of overlap in

STs may be related to the different sampling years, as discussed below.

Since divergence increases over time due to the accumulation of

SNPs, a relationship between isolation year and position in the tree

is to be expected. Indeed, such a relationship was found, when the

number of SNPs relative to the root was plotted against the

isolation year of strains (R2 = 0.65, P,0.005) (Figure 2)

A SNP-Based Typing Method for Bordetella pertussis
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A high Wallace coefficient (1.0) (Table 1) was found between ST

and ptxP allele, as each ST was associated with a single ptxP allele.

Further, the predominant ptxP alleles, ptxP1 and ptxP3, were

separated into distinct clusters. The ptxP6 allele was identified in

African strains only. The ptxP6 strains were placed close to the root

suggesting they represent an ancient lineage. No evidence for

homoplasy was found for ptxP alleles in the SNP-based tree. The

tree indicated that the ptxP3 strains diverged from ptxP1 strains, as

suggested previously [16]. Further, the relative large genetic

distance between the ptxP3 branch and the root suggested that this

event occurred recently. Consistent with this, the earliest isolation

year for a ptxP3 strain in the Netherlands was 1988.

Genetic relationships between B. pertussis strains based
on PFGE

PFGE analysis of 125 strains revealed 37 unique PFGE types

which resulted in a DI of 0.95 (Figure 3, Table 1). Bootstrap values

were lower compared to the SNP-based tree and ranged from 0%

to 100% (average 14%). Nine PFGE types (SR3, SR10, SR11,

SR5, SR23, SR127, AFR1, AFR5 and FINR9) predominated,

representing 4%, 5%, 13%, 4%, 4%, 6%, 13%, 6% and 10% of all

strains, respectively. Fourteen PFGE types were found only once.

A high Wallace coefficient (0.99) (Table 1) was found between

PFGE typing and continent of origin of strains. Ten PFGE types

(42%) were specific for Africa, 25 types (53%) were found only in

Europe. One PFGE type (4%), SR23, was shared by the two

continents but was found only once in Europe (Sweden) [36]. Of

the ten African PFGE types, only one, FINR9, (10%) was found in

both Kenya and in Senegal which suggested two distinct

populations as mentioned above. In contrast to the SNP-based

tree, a negative relationship between isolation year and tip-to-root

distance was found (R2 = 0.29, P,0.005) (Figure S1).

A high Wallace coefficient (0.99) (Table 1) was found between

PFGE type and ptxP allele, as each PFGE type was associated with

a single ptxP allele, except for SR10, which was shared by both

ptxP1 and ptxP3 strains. The African ptxP6 lineage was represented

by one unique PFGE type, AFR5. In contrast to the SNP-based

tree, the ptxP1 and ptxP3 strains were not separated in distinct

clusters as the ptxP3 strains were interrupted by ptxP1 strains,

suggesting homoplasy. Further, the ptxP6 lineage was placed close

to the tip and root in the PFGE- and SNP-based trees,

respectively, suggesting that the ptxP6 lineage represented,

respectively, a recent and an ancient branch.

Genetic relationships between B. pertussis strains based
on MLVA

MLVA analysis revealed 21 unique MLVA types which resulted

in a DI of 0.83 (Figure 4, Table 1). Bootstrap values were lower

Figure 1. Maximum Parsimony tree of 125 B. pertussis isolates based on 87 SNPs. The ptxP alleles, continent of origin and the year of
isolation of the oldest isolate are indicated. The numbers refer the number of isolates for each ST. Bootstrap values are indicated in the tree.
Abbreviation, ST; SNP type.
doi:10.1371/journal.pone.0020340.g001

Table 1. Wallace coefficients and Discriminatory indices.1

Typing
method

Continent of
origin ptxP allele Discriminatory index

SNP typing 0.95 1.00 0.85 [0.83–0.88]

PFGE 0.99 0.99 0.95 [0.93–0.96]

MLVA 0.92 0.82 0.83 [0.78–0.88]

1The Wallace coefficient of the typing method was calculated versus,
respectively, continent of origin and ptxP allele. The confidence interval for the
Discriminatory index has been indicated.

doi:10.1371/journal.pone.0020340.t001
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compared to the SNP-based tree and ranged from 5% to 100%

(average 37%). Four MLVA types (MLVA29, MLVA10,

MLVA149 and MLVA27) predominated, frequencies were 16%,

9%, 14% and 34% respectively. Eleven MLVA types were found

only once.

Although, a high Wallace coefficient (0.92) (Table 1) was found

between MLVA type and continent of origin, separation of

African strains and European strains was less pronounced

compared to the trees based on SNPs. Seven MLVA types

(36%) were specific for Africa, ten (42%) were unique for Europe

and three MLVA types (21%) were shared by both continents. Of

the seven African MLVA types, only one, MLVA96, (5%) was

found in both Kenya and in Senegal which suggested two distinct

populations similar to trees based on SNPs and PFGE. Similar to

PFGE typing, a negative correlation was found between isolation

year and distance to the root (R2 = 0.31, P,0.005) (Figure S2).

Compared to the SNP- and PFGE-based trees, a lower Wallace

coefficient (0.82) (Table 1) was found between MLVA type and

ptxP allele. The ptxP6 lineage was represented by two MLVA

types, MLVA49 and MLVA169, which were clustered together. In

contrast to the SNP-based tree, but similar to the PFGE-based

tree, the ptxP6 lineage showed a large distance to the root which

suggested a recent origin.

Eleven MLVA types (38%) were specific for ptxP1 strains, five

MLVA types (5%) were unique for ptxP3 strains and two MLVA

types, MLVA27 and MLVA29, were shared by both ptxP1 and

ptxP3 strains (frequencies, 34% and 16% respectively). MLVA27

and MLVA29 are currently the predominant types in Europe and

Australia [13,17,21]. The two MLVA types were much better

resolved by SNP and PFGE typing, resulting in a subdivision into,

respectively, 13 and 15 types for MLVA27 and 7 and 12 for

MLVA29.

The ptxP1 and ptxP3 strains were well separated in two distinct

clusters, except for the MLVA types, MLVA29 and MLVA27

which contained strains with both alleles. The presence of the

ptxP3 allele in the MLVA29 branch, which was mainly comprised

of ptxP1 strains and placed some distance from the main ptxP3

cluster, suggested homoplasy. Further, as observed for the SNP-

based tree, the MLVA-based tree indicated that most ptxP3 strains

represented a young branch in the tree which diverged from ptxP1

strains.

Global distribution of the ptxP3 strain
SNP typing was extended to include 179 ptxP3 strains from

diverse geographic locations; Asia (1.1%), Australia (2.3%),

Europe (86%), North America (8.9%) and South America (1.7%)

(Figure 5, Table S3). Bootstrap values ranged from 63% to 97%

(average 81%). Four new STs were identified (ST15-ST18). A

Wallace coefficient of 0.77 was found between ST and continent of

origin. Of the nine STs which were specific for the ptxP3 strains,

four (ST13, ST14, ST17 and ST18) were found in only one

continent (Europe). The remaining STs were found in strains from

two to four continents. Two SNP types, ST11 and ST12, were

found to be most prevalent.

Discussion

SNP typing has been used extensively to study the evolution,

spread and phylogeography of bacterial pathogens and can be

seen as the Gold Standard against which other methods can be

compared [37]. B. pertussis populations have been mainly studied

by PFGE and MLVA. Although these typing methods have been

useful for strain discrimination, it is not clear to what extent they

reflect genetic relationships. Here we compared the widely used

typing systems based on PFGE and MLVA with the newly

developed SNP typing.

The strains were isolated in Europe and Africa and the SNP-

based tree showed a striking consistency with geographic source.

This may reflect geographic isolation. However, the congruence

may also reflect the differences in isolation dates between the

strains from Europe and Africa (average isolation dates, respec-

tively, 1999 and 1980) or vaccination status of the populations.

Most of the European strains (88%) were isolated from Finland,

Sweden and the Netherlands in a period when the vaccination

coverage was high (.96%) [38]. In Finland and the Netherlands

mainly whole cell pertussis vaccines were used, while in Sweden

Figure 2. Relationship between year of isolation and the-root-to-tip distance in the SNP-based tree. The root-to-tip distance represents
the number of SNP differences between a particular clinical isolate and strain 18323, used to root the tree. Linear regression was performed and the
trend line and R-squared value (R2) are indicated. A significant increase of SNPs over time was found (R2 = 0.65, P,0.005).
doi:10.1371/journal.pone.0020340.g002
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acellular vaccines were used. The strains from Kenya were isolated

in a period when only approximately 20% of the children had a

record of receiving three doses of a pertussis whole cell vaccine,

while 10% received only two doses [39]. Strains from Senegal

were isolated in 1990 to 1992, three to five years after the

introduction of vaccination with a whole cell vaccine (i.e. in 1987)

[40]. The differences in vaccination status between Europe and

Africa may explain the distinct clustering of European and African

strains in the SNP-based tree.

In the strain collection used in this study, one ptxP allele, ptxP6,

was found only in the Kenyan strains (N = 7), isolated in 1975 [41].

Analysis of ptxP alleles in a larger collection of strains also revealed

the presence of ptxP6 in two Dutch strains, both isolated in 1977

(data not shown) and it is conceivable that these strains were

imported from Africa. Further studies are required to determine if

the ptxP6 allele is characteristic for African strains. No distinct

African alleles were found for the virulence factors Ptx, pertactin,

Fim2 and Fim3 (data not shown). In conclusion, at present we

cannot conclude that the African strains form a distinct population.

Lan and coworkers have used a DNA tiling microarray-based

approach to detect SNPs and study the evolution of B. pertussis

[25,42]. In contrast to our study, which covered the complete

genome, Lan and coworkers targeted 34% (1.4 Mb) of the

genome. Using 65 SNPs, 42 STs were identified in 316 isolates

[42]. The DI obtained by Lan and coworkers was higher than the

DI obtained by us (respectively, 0.94 and 0.85) and this may be

due to the fact that their strain collection was more diverse with

respect to geographic origin and year of isolation. Similar to our

results with ptxP alleles, they found that surface protein alleles

correlated with evolutionary lineages as revealed by SNP-typing.

One branch (cluster I) identified by Lan and coworkers contained

strains with a worldwide distribution, and we speculate that this

branch contains ptxP3 strains. The results of Lan and coworkers

are consistent with vaccine-drive evolution of B. pertussis as first

proposed by us [2,6,14].

When we compared the resolving powers of SNP typing, PFGE

and MLVA, the highest DI was found for PFGE (DI 0.95)

followed by SNP typing (DI 0.85) and MLVA (DI 0.83). The

limitations of MLVA were illustrated by the inability to resolve

MLVA27 and MLVA29. These MLVA types represented 50% of

all analyzed strains. Both types have a worldwide distribution

[13,17,20,43] and in particular MLVA27 is associated with the

Figure 3. Maximum Parsimony tree of 125 B. pertussis isolates based on PFGE. See legends to Fig. 1 for further details.
doi:10.1371/journal.pone.0020340.g003

A SNP-Based Typing Method for Bordetella pertussis
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Figure 4. Maximum Parsimony tree of 125 B. pertussis isolates based on MLVA. See legends to Fig. 1 for further details.
doi:10.1371/journal.pone.0020340.g004

Figure 5. Maximum Parsimony tree of 179 ptxP3 strains found worldwide based on 87 SNPs. See legends to Fig. 1 for further details.
doi:10.1371/journal.pone.0020340.g005

A SNP-Based Typing Method for Bordetella pertussis
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ptxP3 allele [9,13,21]. The two MLVA types were resolved into,

respectively, six and five types by SNP-typing and 15 and 12 types

by PFGE. In contrast to the SNP-based tree, the PFGE- and

MLVA-based trees revealed several examples of homoplasies with

respect to ptxP alleles. Homoplasy with respect to ptxP3 was also

suggested by a previous study using PFGE [43]. The SNP analysis

indicated that these are false homoplasies, probably caused by

convergence of PFGE and MLVA types. Recombination between

insertion sequences and slipped strand mispairing, play an

important role in generating diversity in PFGE and MLVA types,

respectively. Both processes are reversible and may thus lead to

convergence and false genetic relationships. A linear regression

analysis of the root-to-tip distance against the year of isolation

showed a positive correlation for the SNP-based tree, reflecting the

gradual accumulation of point mutations. Interestingly, a negative

correlation was found for both PFGE and MLVA, implying that

estimation of the relative age of strains is not possible with these

methods. Overall, our comparison shows that in particular typing

based on PFGE did not reflect true genetic relationships and is

therefore less suitable for evolutionary studies of B. pertussis.

However, in view of its high resolving power PFGE remains a

useful tool for strain discrimination. Results obtained with MLVA

are more consistent with SNP typing. However, the resolving

power of MLVA is rather limited. It remains useful as a high

throughput, highly portable, typing method, however.

We used SNP typing to study the genetic relationships between

strains of the ptxP3 lineage which have been associated with the

increase in pertussis in the Netherlands [16]. The SNP-based tree

suggested that ptxP3 strains, isolated in Asia, the Americas,

Australia and Europe, formed a monophyletic group which

evolved from ptxP1 strains. The tree is consistent with the

assumption that a single clone spread globally and diversified. In

particular two ptxP3 STs (ST11 and ST12) were found to

predominate, suggesting fitness differences between ptxP3 strains.

It should be noted however that the predominance of STs may

have been caused by phylogenetic discovery bias which leads to

collapsing of branches [34,35]. The placement of the ptxP3 branch

at the tip of the tree suggested that ptxP3 strains evolved relatively

recently, possibly after the introduction of vaccination. Consistent

with this assumption, ptxP3 strains were first detected in the

Netherlands in 1988 and subsequently increased in prevalence to

$90% in 2002. The absence of ptxP3 strains from populations in

Africa with low vaccine coverage (Kenya), or where vaccination

was introduced recently (Senegal), also suggests that ptxP3 strains

evolved due to the introduction of vaccination.

In summary, the widespread use of SNP typing will enhance our

understanding of the evolution and global epidemiology of B. pertussis.
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