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Abstract

Background: Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this
makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes.
IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases
PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular
mechanisms are involved in amyloidogenesis and induction of cell death.

Methodology/Principal Findings: We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and
the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression
driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed
a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP
expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the
dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules
that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to
consist of 15.8 nm thick pentagonal rod-like structures.

Conclusions/Significance: These findings point to a potential for Drosophila melanogaster to serve as a model system for
studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology.
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Introduction

Today, there are 27 proteins that have been identified as main

component of amyloid deposits in human [1]. Of these proteins, 14

form amyloid fibrils with a deposition restricted to a single tissue or

organ, and these diseases are referred to as localized amyloidosis.

There is no biochemical relationship between these amyloid

proteins, but interestingly, five of those are polypeptide hormones,

recognized to be stored in the secretory granules at high

concentration, a known risk factor for aggregation. Some of the

local forms of amyloid diseases are connected to severe maladies,

such as type 2 diabetes where IAPP misfolds and deposits as amyloid

in the islet of Langerhans [2,3], and Alzheimer’s disease where the

Ab protein is deposited in the CNS [4].

In recent years, the role for hIAPP in the development of type 2

diabetes has gained a lot of attention. In particular, the formation

of cell toxic oligomers as a cause for the observed reduction of

insulin producing cells, detected in these patients are believed to be

important [5]. IAPP is produced by the beta cells [6] and co-

secreted with insulin upon stimulation [7]. IAPP acts as a

modulator for insulin release and reduces voltage-gated calcium

channel activation and insulin secretion [8]. IAPP is synthesized as

a 67 residues prohormone, and undergoes posttranslational

processing to become biologically active. This is performed by

the prohormone convertases PC1/3 and PC2 and takes place in

the secretory granules [9]. Deficiency in processing of hproIAPP

into hIAPP is associated with an increase in amyloidogeneity [10].

Expression of human preproIAPP in cell lines deficient of PC2

(GH3, American type culture collection, Manassas, VA) and/or

PC1/3 (GH4C1, AtT-20, American type culture collection)

increases the risk for amyloid formation [11] and cell death by

apoptosis [12]. It was also shown that hproIAPP and hIAPP both

spontaneously form amyloid like fibrils in vitro [13,14]. Little is

known about the mechanisms that cause a native protein to unfold

and misfold into amyloid [15]. Islet amyloid is present to some

degree in almost all individuals with type 2 diabetes [16,17]. The

amyloid load correlates to some degree with the severity of the

diabetes condition in that patients that demand insulin for

treatment of their disease have more amyloid deposited [18]. In

Asian populations a single point mutation in the IAPP gene

(IAPPS20G) [19] has been linked to an increased risk to develop

type 2 diabetes [20]. Islet amyloid develops also in old cats [21]
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and in non-human primates [22,23]. In baboons the amount of

islet amyloid correlates with fasting plasma glucose levels [24].

Mouse and rat do not develop islet amyloid; this is a difference that

depends on the amino acid sequence and especially three proline

residues present in the region 20–29 of rodent IAPP are thought to

be responsible for this [25]. Therefore, different transgenic strains

that express human IAPP have been created. Studies performed

with these animals support the importance of islet amyloid for

development of diabetes [26,27].

The present work aims to establish a new in vivo model for

expression of IAPP or proIAPP that could be used for elucidation

of intracellular events triggered by protein aggregation. We used

Drosophila melanogaster as model system which is already established

for several other amyloid related diseases, such as Alzheimer’s

disease [28], familial amyloidotic polyneuropathy (FAP) [29,30],

and the prion disease Gerstmann-Sträussler-Scheinker syndrome

[31].

Herein, we describe that hproIAPP expression reduces longevity

of Drosophila when expressed in the CNS, while longevity is not

influenced by hIAPP or mIAPP expression. Furthermore, we were

able to demonstrate that both hproIAPP and hIAPP are

successfully secreted from the neurons, and assemble into

aggregates with amyloid tinctorial characteristics. After secretion

the peptides can be taken up by cells in the fat body of the head. In

these cells the proteins form highly ordered protein aggregates

with a rod-like structure.

Results and Discussion

Transgenic Drosophila melanogaster
In human, IAPP together with calcitonin [32], calcitonin gene

related peptide (CGRP) [33], adrenomedullin [34], and interme-

din/adrenomedullin 2 [35] are all members of the calcitonin gene

family that are important for regulation of a diversity of

physiological functions. The Drosophila melanogaster genome was

searched for nucleotide or amino acid sequences similar to any of

these five polypeptide hormones, but without any success.

A large number of transgenic strains expressing hproIAPP,

hIAPP or mIAPP were successfully established, and the expected

DNA sequences of the different transgenes were verified after

sequencing. The amino acid sequence for hIAPP and mIAPP are

presented in Figure 1 A, and the posttranslational processing sites

for hproIAPP are presented in Figure 1 B. The survival of the

three hproIAPP lines hproIAPP#14.2, hproIAPP#18.5 and

hproIAPP#20.4 were compared to the survival of hemizygous

Gal4 expressing control flies, and all three hproIAPP transgenic

flies showed reduced survival when compared to the hemizygous

Gal4 control flies. HproIAPP#14.2 and hproIAPP#18.5 had

significantly reduced survival with p-values of ,0.0001 and

0.0175, while flies from line 20.4 did not reach a significant

reduction (p-value = 0.0577) (Figure S1). The relative amounts of

hproIAPP mRNA was determined by QT-PCR. When the values

were normalized against the mRNA levels for hproIAPP#14.2,

the levels for hproIAPP#18.5 and hproIAPP#20.4 lines were

determined to be 249% and 128%, respectively. A double

transgenic hproIAPP expressing fly were established by crossing

hproIAPP#20.4 and hproIAPP#14.2 flies. Survival analysis of

this double hproIAPP fly line showed a reduced survival

(p,0.0001) compared to hemizygous Gal4 expressing control

flies. Survival analysis were also carried out on four hIAPP lines

and four mIAPP lines, and neither of these lines revealed any

reduction in survival when compared to hemizygous Gal4

expressing control flies. The mRNA expression levels for the

hIAPP lines were normalized against hIAPP#6 and determined

to be 42% in hIAPP#1, 89% in hIAPP#2 and 110% in hIAPP#5

flies. The mRNA expression levels for mIAPP were normalized

against the mIAPP#9 and determined to be 435% in mIAPP#1,

110% in mIAPP#2 and 170% in mIAPP#3 flies.

Since the mRNA expression levels of hIAPP and mIAPP did not

affect the survival the transgenic lines hIAPP#6, mIAPP#9 and

hproIAPP#14.2 were selected for the further work. All lines had

red eyes with the same intensity.

The expression levels for the hproIAPP#14.2, hIAPP#6 and

mIAPP#9 transgenes were analyzed by QT-PCR, and levels for

hIAPP and mIAPP were determined to be 72% and 62% of

hproIAPP, respectively.

Generation of transgene expressing flies and control flies
Transgenic flies were generated by crossing male flies from an

UAS-stock with female virgin flies from the respective Gal4 driver

line. The female offspring used for the study was therefore,

hemizygous for the Gal4 driver (Figure 2 A). For generation of

control flies, male w1118 flies were crossed with female virgin flies

of the respective Gal4 driver. W1118 flies are used for control

crosses since the P-element insertion of the UAS-transgenes was

done in w1118 flies (Figure 2 B).

Survival assay
In order to select an optimal expression system we compared

the survival of flies expressing hproIAPP in different cell

populations. Five commercially available Gal4 driver lines were

used: the pan-neuronal Gal4 driver P(GawB)elavC155 [36], the

motor neuron Gal4 driver P(GawB)D4 [37], the mushroom body

Gal4 driver P(GawB)7B [38], the glia cell Gal4 driver P(Gal4)repo

[39], and the photoreceptor Gal4 driver line P(Gal4-ninaE.GMR)

[40]. Male flies from the UAS-hproIAPP transgenic line were

crossed with female virgin flies of the respective Gal4 driver and

the survival of the female progeny expressing hproIAPP was

monitored, and compared with the longevity of the control flies

(female progeny derived from crosses of male w1118 flies with

female virgin flies hemizygous for the respective Gal4 driver (Gal4/

+)). These survival assays were performed, at 26uC. HproIAPP

expression driven by the pan-neuronal Gal 4 driver elavC155 lead

to a reduced longevity when compared with the appropriate Gal4

control (elavC155, Gal4/+) (n = 100, p,0.001) (Figure 1 C, green

and black, respectively). The survival of hemizygous UAS-hproIAPP

flies (UAS-hproIAPP transgenic flies backcrossed with w1118 flies,

UAS-hproIAPP/+) was also monitored. These flies had a significant

increased lifespan compared to flies expressing hproIAPP driven

by elavC155 (n = 100, p,0.001), (Figure 1 C, grey), but they lived

also longer than elavC155,Gal4/+ control flies.

It is known that the metabolism in Drosophila is influenced by

temperature. To evaluate how temperature affects the longevity of

hproIAPP expressing flies, male UAS-hproIAPP flies were mated

with female virgin elavC155,Gal4 flies at 26uC and the survival of

hatched female flies was monitored, at 18uC and 29uC. The

significant reduction in lifespan persisted also for flies expressing

hproIAPP at 18uC and 29uC compared to Gal4/+ control flies (in

both cases: n = 100, p,0.001 (Figures S2 B and C).

When expression of hproIAPP was induced by any other of the

Gal4 drivers, the flies transgenic for proIAPP had a prolonged

survival in comparison to their respective Gal4/+ control flies

(Figures S3 A–D, right panel). To confirm the expression patterns

for the different Gal4 driver lines, flies from each line were mated

with flies from a UAS-nlsGFP line. Whole-mount brains from

progeny flies were stained for GFP and the reaction was visualized

by a secondary antibody labelled with Alexa 488. At the same time

the brains were counter-stained with an antibody reactive against

Islet Amyloid Polypeptide in Drosophila
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Figure 1. One letter code for human and mouse IAPP residues 1–37. Amino acid identity is shown in green and residue substitutions are
shown in black, except for the three proline residues substitutions present in mouse IAPP that are shown in red (A). Proline residues are known beta-
breakers and it is believed that these residues hinder IAPP-aggregation. ProIAPP processing. In man, proIAPP is synthesised as a 67 residue long
polypeptide that undergoes posttranslational cleavage at dibasic residues (red) performed by the prohormone convertases PC2 and PC1/3. The two
basic residues that remain at the C-terminus after PC1/3 processing are removed by carboxypeptidase E. Thereafter, the remaining C-terminal glycine
residue is used for C-terminal amidation. A disulphide-bond is formed between residues 2 and 7 (B). Survival curve for flies expressing hproIAPP
shows a reduction in life span. Expression of proIAPP was directed to neurons by the elavC155,Gal4 driver (C). This expression resulted in a significant
reduction of lifespan (green), when compared to control flies (elavC155,Gal4, black) or flies containing UAS-proIAPP only (grey). These latter flies contain
the inserted DNA, but do not express the corresponding protein due to absence of Gal4. (D) Comparison of the survival of hIAPP (brown) and
elav C155,Gal4, (black) expressing flies shows that hIAPP expression does not reduce the survival (p.0.05). The hproIAPP (green) expressing flies
showed a significant shorter lifespan than hIAPP (brown, p,0.001). (E) Comparison of the survival of mIAPP (blue) with control flies elavC155, Gal4,
(black) showed that mIAPP expression does not reduce the survival of the flies (p.0.05). Flies expressing mIAPP (blue) lived longer than hproIAPP

Islet Amyloid Polypeptide in Drosophila
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the neuropil specific protein bruchpilot and visualized by a

secondary antibody labelled with Alexa 546. The result thereof

verified that all Gal4 lines had the expected expression pattern

(Figures S2 A and S3 A–D, left panel).

From the result of the survival assay it can be concluded that the

observed decrease in survival of elavC155,Gal4.proIAPP flies relates

to the expression of hproIAPP and it is not just a consequence due to

changes in the genetic background, caused by insertion of the UAS-

hproIAPP into the fly genome (Figure 1 C, green and grey). The

unaltered or increased survival of flies detected after hproIAPP

expression driven by the Gal4 driver to motor neurons, mushroom

body, glia cells or photoreceptors is not easily explained (Figure S3

E). Surprising was the finding that when hproIAPP expression was

driven to the photoreceptors by GMR-Gal4 the median survival was

markedly increased compared to the GMR-Gal4 controls. When the

amyloid protein transthyretin (TTR) was expressed in the

photoreceptors this reduced the survival of the files [30]. In addition,

TTR expression lead to a distortion of the eye morphology [30], a

finding also reported by Berg et al. [29] and by Crowther et al. after

Ab expression driven to the same cellular location [41]. We have

looked for morphological changes of the eye structure after

hproIAPP expression, but neither TEM analysis of ommatidia nor

SEM analysis of external eye structure showed any morphological

deviations. As verified by the GMR driven nlsGFP expression

(Figure S3 D, left panel), cells localized to the photoreceptor region

synthesize the protein. The variation of median survival days

observed in controls (49, 47, 56, 51, and 34, in Figure S3 E) could

depend on a variation in genetic background including the degree of

Gal4 expression that most likely exists between Gal4 driver lines.

Gal4 itself is known to exert neurotoxic effects and it has been

reported that expression of high amounts of Gal4 in the eye is

associated with apoptotic neuronal loss in Gal4 expressing neurons

Figure 2. Generation of transgene expressing flies. Males from an UAS-transgene stock were mated with female virgins from the Gal4 line of
interest. Female progeny hemizygous for the transgene and Gal4 were selected and used (A). Generation of control flies. Males from w1118 were
mated with female virgins from the Gal4 line of interest. Female progeny hemizygous for the Gal4 were selected and used. W1118 flies are used for
control crosses since the P-element insertion of the UAS-transgenes was done in w1118 flies (B).
doi:10.1371/journal.pone.0020221.g002

expressing flies (green, p,0.001). (F) The median survival for control flies (black), hproIAPP (green), hIAPP (brown) and mIAPP (blue) are 49, 37, 48 and
42 days, respectively, and the survival of hproIAPP flies is significantly reduced when compared to flies from the control, hIAPP and mIAPP strains
(p,0.001).The survival for hIAPP flies is not reduced when compared to mIAPP or control flies. The survival studies were performed in an incubator
with 70% humidity, at 26uC.
doi:10.1371/journal.pone.0020221.g001

Islet Amyloid Polypeptide in Drosophila
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and accumulation of insoluble Gal4 [42,43]. The earlier reported

reduced longevity observed in response to TTR and Ab GMR

driven expression could depend on a general amyloid mechanism.

That is that amyloid fibril formation is a self-driven process, and if

initiated the process will continue as long as the precursor is present.

This pathway includes also the formation of small cell toxic protein

species, known as oligomers. The absence of detectable pathology

after hproIAPP expression with 4 out of 5 Gal4 drivers could depend

on that aggregation was not initiated. This in turn could depend on

low protein expression levels or a rapid clearance of hproIAPP.

To elucidate if the toxic phenotype was restricted to hproIAPP

we crossed UAS-hIAPP and UAS-mIAPP with elavC155,Gal4, and

survival was monitored at 26uC. It was shown that the survival of

flies expressing hIAPP and mIAPP did not differ from that of

elavC155,Gal4 control flies (p.0.05), and both lived longer than flies

expressing hproIAPP p,0.001 (Figures 1 D and E). Median

survival days of flies expressing mIAPP (42 days), hIAPP (48 days)

or elavC155,Gal4/+controls (49 days), did not show any significant

difference (for each comparison: n = 100, p.0.05) (Figure 1 F).

The absence of reduced survival in flies expressing hIAPP and

mIAPP when compared to hproIAPP expressing flies is not related

to the level of transgene expression since no significant variation

between the four hIAPP lines or between the four mIAPP lines was

observed (p.0.05 for hIAPP and p.0.05 for mIAPP).

Immunological detection of expressed protein
Based on the results from the lifespan assay we selected the

elavC155,Gal4 driver for our model system. The median age for

elavC155,Gal4.hproIAPP and elavC155,Gal4.hIAPP flies were 37 and

48 days respectively (Figure 1 F), and we know from human that the

incidence of amyloid increases with age. Therefore, transgenic flies

were aged for 40 days, at 26uC. Immunofluorescence analysis was

performed on brain sections of elavC155,Gal4.hproIAPP and

elavC155,Gal4.hIAPP flies. The investigated area is indicated in

Figure 3 A and areas of interest are highlighted in the cartoon in

Figure 3 B. Immunolabeling was performed with a rabbit polyclonal

antibody raised against human IAPP, and simultaneous detection of

Gal4 positive neurons was performed with an anti-elav specific

antibody. IAPP reactivity was detected in some neuronal cells, at site

of expected expression as judged by anatomic localization (Figures 3

C and D). In addition to neurons, IAPP reactivity was also detected in

the fat body in elavC155,Gal4.proIAPP and elavC155,Gal4.IAPP flies

(Figures 3 F and G). No IAPP labelling occurred at any site in sections

from elavC155,Gal4/+ control flies (Figure 3 E and H). The head fat

body tissue is present outside the humoral-brain-barrier, and no

expression of the transgene was expected to take place at this location.

This shows that the signal peptide containing transgenic protein was

secreted from the neurons and accumulated in the fat body tissue. We

would like to point out that the positive staining of the cells in the head

fat body in our hproIAPP and hIAPP expressing flies was widespread

and not limited to a certain cell population.

In contrast to the advanced labelling of the head fat body, only a

subset of neurons was found to be immunolabelled for proIAPP

and IAPP. It is possible that visible immunoreactivity occurs at

sites where proIAPP or IAPP is accumulated while the general

absence of reactivity depends on synthesis below the detection

level and rapid secretion. The expression of hproIAPP, hIAPP and

mIAPP was also studied in younger flies, 5 and 15 days old flies,

aged at 26uC. Immunofluorescence analysis was performed on

brain sections from elavC155,Gal4.hproIAPP, elavC155,Gal4.

hIAPP and elavC155,Gal4.mIAPP flies with a mouse monoclonal

antibody reactive against human IAPP. Compared to 40 days old

flies, the number of IAPP reactive neurons was higher in 5 days

old flies expressing hproIAPP (Figure 4 A), hIAPP (Figure 4 B),

and mIAPP and remained increased also in15 days old flies

(Figures 4 E–J). No staining could be detected in elavC155,Gal4/

+control flies (figure 4 C and D).

The result raised the question if levels of Gal4 expression

change over time. Males from the, UAS-nlsGFP line were mated

with female virgins from the elavC155,Gal4 line. The expression

pattern was studied in dissected whole-mount brains immunola-

belled with a primary antibody against GFP and Alexa 488-

labelled secondary antibody, at time points 1, 5, 15 and 30 days.

The result of this study showed that the elav driven expression of

nlsGFP varied over time. Only a limited reactivity was detected in

one day old flies. The highest number of reactive cells was present

at day 5, and already at day 15 was the number of reactive cells

reduced. In brains from 30 days old flies the numbers of reactive

cells was almost comparable to that found in 1 day old flies (Figure

S4). With this result in mind is the detected low immunolabeling in

brains of older flies not surprising.

To determine if IAPP reactivity in neurons was present

extracellularly and/or intracellularly the cell nuclei of Gal4

containing cells were labelled with GFP. This was obtained by

the Gal4 dependent expression of UAS-nlsGFP where the

nuclear leading sequence (nls) transfers expressed GFP to the

cell nucleus (Figure 5 A). In a parallel setup these cells also

expressed hproIAPP or hIAPP. After immunolabeling, extra-

cellular IAPP reactivity was detected in both hproIAPP and

hIAPP expressing flies (Figures 5 B and D). This reactivity was

indicative for aggregates, since non-aggregated peptide would

be expected to diffuse. Intracellular IAPP was also present in

both hproIAPP and hIAPP flies (Figures 5 C and D).

Intracellular IAPP reactive material was sometimes extensive

and replaced the main portion of the cytosol, while extracellular

aggregates were occational localized to areas free of cell nuclei.

This is similar to the pattern seen in hIAPP transgenic mice

where intracellular aggregates could replace the cytosol and

cause cell death by apoptosis [44].

Processing of hproIAPP in Drosophila Melanogaster
Amontillado is the Drosophila melanogaster homologue to the

mammalian prohormone convertase 2 (PC2). In mammals, PC2

processing of proIAPP results in the removal of the N-terminal

flanking peptide (Figure 1 A). To investigate if hproIAPP was

processed in Drosophila, we performed immunofluorescence analysis

with two different antibodies on head sections from flies with

hproIAPP expression driven by the elavC155,Gal4 driver. Antibody A-

169 is reactive against the N-terminal processing site of proIAPP

(Figure 6 A), an epitope only present when the N-terminal flanking

peptide is linked to IAPP. This antibody is therefore specific for the N-

terminal part of proIAPP [11]. Antibody A-142 reacts with the C-

terminal flanking peptide of proIAPP [44] (Figure 6 A), and its

reactivity is independent of IAPP. Antibody A-142 and antibody A-

169 show reactivity on both sides of the humoral-brain-barrier

(Figures 6 B and C). This pattern is comparable to that observed for

IAPP (Figures 3 C, D, F and G). The presence of antibody A-169

reactivity in the cytoplasm of head fat body cells proves that proIAPP

is not cleaved by Amontillado at the N-terminal processing site

(Figures 6 C and D). The reactivity with antibody A-142 in the head

fat body region suggests that the C-terminal flanking peptide

translocates to the same location as the rest of the molecule and

this supports absence of processing.

Deposited hproIAPP and hIAPP was recognized by Congo
red and FTAA

To examine if amyloid was formed in Drosophila we stained

brain sections of aged flies (40 days) with Congo red. As shown in

Islet Amyloid Polypeptide in Drosophila
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Figure 3. Expressed hproIAPP and hIAPP driven by elavC155,Gal4 are secreted from the neurons. (A) The green section highlights the
studied area and the carton in (B) is an overview of the most important histological features present in this region. (C, D, E) Inside the humoral-brain-
barrier, elav positive neurons are shown (green-light blue) and hIAPP (red) is localized to this area (C, D). (F, G, H) cover an area including both sides of
the blood-brain-barrier where the neurons (green-light blue) are present at the bottom part and the fat body in the top part. In (F, G) are the cells in
the fat body recognized by IAPP antibodies (red). Immunolabeling of IAPP in the fat body cells demonstrates that hproIAPP (F) and hIAPP (G) are
secreted from the neurons, transferred over the humoral-brain-barrier and taken up by cells in the fat body. Cell nuclei are labelled with TOPRO-3 and
visualized as blue. Flies were 40 days old.
doi:10.1371/journal.pone.0020221.g003

Islet Amyloid Polypeptide in Drosophila
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Figures 7 B and C, upper panel, material stained with Congo red

was mainly present in the fat body in both hproIAPP and hIAPP

expressing flies, with possible minute staining of aggregates in the

neuronal area. In addition to Congo red, brain sections were

stained for amyloid with pFTAA (lower panel), a recently

described amyloid binding luminescent conjugated oligothiophene

[45,46]. Results obtained from pFTAA staining were similar to

those obtained with Congo red and with both, aggregates made up

by hproIAPP and hIAPP were mainly detected in the fat body

region (Figures 7 B and C, lower panel). Though, pFTAA staining

was more frequent than Congo red. This may depend on the

possible ability of pFTAA to recognize morë immaturë aggregates

in addition to amyloid [47,48]. No amyloid like staining could be

detected in sections from elavC155,Gal4 control flies or mIAPP

Figure 4. Transgene expression is increased in young flies. The hIAPP, hproIAPP and mIAPP expression driven by the elavC155, Gal4 driver was
analysed in 5 days (A, B) and 15 days (C–J) old flies. Immunolabeling of whole brain mounts from these younger flies revealed more neuronal
immunoreactivity than detected in 30 and 40 days old flies. The depicted immunoreactivity is within the humoral-brain-barrier, the expected site of
expression. Immunolabeling was performed with a monoclonal antibody that reacts with human and mouse IAPP. Arrows indicates reactivity.
doi:10.1371/journal.pone.0020221.g004

Islet Amyloid Polypeptide in Drosophila
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expressing flies. However, both Congo red and pFTAA show high

affinity to the chitin in the exoskeleton, a binding described by

Cohen, in 1993 [49].

To ensure that pFTAA positive material was made up of IAPP-

reactive material, brain sections from flies expressing hproIAPP or

hIAPP were stained with pFTAA and immunolabelled with a

polyclonal antibody against IAPP. In hproIAPP and hIAPP flies,

co-localization of IAPP and pFTAA staining was frequently seen

in the fat body (Figures 8 A and B). Areas only labelled with anti

IAPP-antibodies represent the peptide in a non-amyloid structure.

No area showed pFTAA labelling only (except for the exoskele-

ton). Co-localization of IAPP and pFTAA staining was also seen

inside the humoral-brain-barrier and the reactivity was present

both intracellularly and extracellularly (Figure 8 C).

Ultrastructural analysis of the fat body
The detection of IAPP-immunoreactivity in the fat body of hIAPP

and hproIAPP expressing flies in addition to demonstration of

structures stained with Congo red, and pFTAA prompted us to have

a closer look at the ultrastructure of this tissue. We selected 16 days

old transgenic flies since this is before the drop in survival of proIAPP

expressing flies (Figure 1 C). Control flies on the other hand had yet

another 10 days before their survival started to decline. If alterations

occur we should be able to detect them at this stage, and avoid

structural changes that might be caused merely by ageing. Frozen

sections were treated with ethanol prior to IAPP and pFTAA staining

since this treatment solubilizes lipids. In these sections pFTAA

(Figure 8 A) and IAPP (Figure 8 B) staining was mainly surrounding

the cell nucleus and with thin rims of labelling present between areas

earlier occupied by lipid drops.

In semi thin sections (1 mm), post-fixed with OsO4 to

preserve lipids, we observed a difference in distribution of

lipid-drops between the different groups of flies. Control and

mIAPP expressing flies had several distinct droplets in each fat

body cell (Figure S5), while in hproIAPP or hIAPP expressing

flies these cells contained large clusters of lipid drops (Figures 9

A and S5). In sections from the latter flies the thickness of the fat

body region was slightly increased and could contain two layers

of cells and the integrity of the cell borders were lost. In ultra-

thin sections from proIAPP and hIAPP transgenic flies we

detected irregularly shaped aggregates surrounding the nucleus

together with ER and organelles and also between lipid

Figure 5. IAPP immunoreactivity is present both intra- and extracellularly in hproIAPP and hIAPP expressing flies. The nls-GFP (green)
expression was driven by elavC155,Gal4 and included to help to identify the cell nuclei in expressing cells. In control flies (A), IAPP-immunoreactivity is
absent as expected. In hproIAPP expressing flies, the IAPP-reactivity (red) is in (B) primarily present extracellularly, separated from the nls-GFP signal,
while in (C) the reactivity is intracellular and present adjacent to a nls-GFP labelled nucleus. In hIAPP expressing flies (D), IAPP-reactivity (red) is seen
both extra- and intracellularly. The study was performed on dissected whole mount fly brains. To enhance the intensity of the GFP-signal the brains
were also labelled with antibodies specific for GFP. The cell nuclei were labelled with TO-PRO-3 and visualized as blue. Flies were 30 days old.
doi:10.1371/journal.pone.0020221.g005
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aggregates throughout the cell. Two types of aggregates could

be distinguished; a commonly present electron dense (Figures 9

A–D) and a less frequent lighter aggregate (Figures 9 B and D).

The dense granules had a size ranging from a few hundred nm

to many um in width. Not all aggregates appeared to be

membrane encircled and the large difference in size could

depend on granule fusion. When viewed longitudinally the

aggregates consisted of non-branching straight rope-like struc-

tures with a thickness of 15.8 nm. These rods were aligned in

parallel with a distance of 5 nm (Figure S6 A). The rod length

differed between granules, but they did not exceed 1 mm. In

cross-section, each rod had a pentagonal shape with a diameter

Figure 6. ProIAPP is not processed into IAPP. Sections from hproIAPP flies with the expression driven by elavC155,Gal4 were used for
immunolabeling with two different antibodies. Antibody A142 is produced against the C-terminal flanking peptide of proIAPP, and antibody A169 is
produced against the N-terminal processing site. This antiserum will only bind to proIAPP, unprocessed at this region. The epitopes for A142 and
A169 are encircled in (A). Antiserum A142 labels cells inside the humoral-brain-barrier and in the head fat body (B). Antiserum A169 show the same
reactivity pattern (C, D). Antiserum-A169 reactivity within the head fat body supports that hproIAPP is not processed by amontillado.
doi:10.1371/journal.pone.0020221.g006
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of 15.8 nm distanced by 5.2 nm (Figure S6 A and B). Each

protein granule consisted of groups of rods with different

orientations aligned perpendicular to each other (Figures S6 A

and C). We performed immunolabeling with monoclonal anti-

IAPP antibodies and polyclonal anti-IAPP antiserum, but both

failed to react with the aggregates. Instead, only occasional

reactivity was detected at the border of the aggregates (Figure

S6 C). Since fixation in 2% paraformaldehyde with 0.25%

glutaraldehyde and embedding in epon or in hydrophilic resin

could block epitopes recognized by the antibodies we performed

antigenic retrieval with sodium metaperiodate or H2O2. This

pre-treatment was without success, but it is still most likely that

these aggregates arise from proIAPP or IAPP expression, this

because immunolabeling with the monoclonal anti IAPP

antibody on frozen sections and pFTAA labels the area

surrounding the cell nucleus (Figures 8 A and B), and in

TEM the highly ordered aggregates were the main structures

present at this location. Therefore, we believe that the compact

packaging of the molecules hinder recognition by antibodies. It

must be stressed that these aggregates were not present in

transgenic flies expressing the non–amyloid forming mIAPP or

in elavC155,Gal4/+ (control) flies. The detected structure is

different from what has been described earlier to be found in

the fat body cells e.g by Locke et al., [50] in the larvae of the

butterfly Calpodes ethlius or by Tojo et al., [51] in the pupae of

the silkmoth, Hyalophora cecropia, and they are also different from

the aggregates detected in fat body cells in Drosophila melanogaster

after expression of double mutant TTR (TTRV14N/V16E) by

the GMR driver [52]. In these flies, expression of mutant TTR

was driven to the photoreceptors and aggregates were detected

in fat body cells of the brain and thorax. These TTR-derived

aggregates were determined to have a spherule shape with a

20 nm diameter. The spherules were arranged in a hexagonal

pattern and only occasionally short non-branched filaments

were detected among the spherules [52]. No similar analysis

seems to have been performed on the fat body of Ab expressing

flies. It is possible that proteins are assembled differently in

Drosophila and mammals, since no amyloid like fibrils could be

detected in electron microscopical analysis of sections from 16,

20 or 30 days old flies. Instead, we proposed that the IAPP and

pFTAA staining seen in Figures 8 A and B are showing the

dense protein aggregate structures despite the absence of

immunolabeling in the EM specimens.

Changes of the nuclei morphological were seen in 40 days old

hproIAPP and hIAPP expressing flies (Figure S5 B). Here, in some

nuclei the normal pattern with heterochromatin and euchromatin

had disappeared and was replaced by an evenly dotted pattern.

The size of an individual dot exceeded the size of a single

nucleosome, but it points to a complete fragmentation of the DNA

and initiation of cell death. All studied nuclei in control (Figure S5

A) and mIAPP (Figure S5 C) transgenic flies exhibited unchanged

appearance. We did not detect any brain vacuolization in our

transgenic flies as it has been described to occur upon TTR

expression [29,30,41]. Neither of these changes appeared in our

flies where the hproIAPP expression was driven to the photore-

ceptors by the GMR driver.

Conclusion. HproIAPP expression driven by the

elavC155,Gal4 driver causes a significant reduction of the longevity

in Drosophila melanogaster. Expression of the amyloidogenic

hIAPP and non-amyloidogenic mIAPP did not shorten the

longevity and, instead their lifespan was comparable to control

flies expressing Gal4 only. Immunolabeling for IAPP revealed

reactivity associated with a low number of neurons, but IAPP

reactivity was present both intracellularly and extracellularly in

such cells. The occurrence of immunoreactivity outside cells

indicates presence of protein aggregates. The expression of Gal4

driven by elavC155 driver varies over time, and only few neurons

express Gal4 by day 30. This reduction of expression can be one

reason for the low toxicity experienced in flies expressing hIAPP.

The strong IAPP labeling of the head fat body in hproIAPP and

hIAPP expressing flies is indicative for accumulation of peptide at

this site. Reactivity in the head fat body of hproIAPP expressing

flies with an antibody specific for the N-terminal processing site of

hproIAPP show that hproIAPP is not processed by amontillado,

the mammalian PC2 homologue. After staining brain sections for

amyloid with Congo red and pFTAA, two amyloid specific dyes,

amyloid was found mainly in the fat body region with minor

deposits in the neurons. The expressed proteins contain a signal

peptide and they were expected to be secreted from the neurons.

Their accumulation in the cells of the fat body could be explained

Figure 7. The presence of amyloid deposits is demonstrated after staining with Congo red (upper panel) or with the polyelectrolyte
pFTAA (lower panel). Frozen brain sections from control flies and from hproIAPP, hIAPP and mIAPP expressing flies were stained for amyloid. No
amyloid could be detected in control flies (A) or in flies expressing the non-amyloid forming mIAPP (D). Amyloid was visualized in hproIAPP (B) and
hIAPP (C) transgenic flies in regions corresponding to the expressing neurons, but also to the fat body. Positive staining is indicated by arrows. Congo
red staining was viewed at 546 nm with a helium-neon laser and pFTAA staining was viewed at 488 nm with an argon laser. Green and red signal in
control and mIAPP expressing flies depends on chitin in the exocytoskeleton. Flies were 30 days old.
doi:10.1371/journal.pone.0020221.g007
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by transport with the hemolymph followed by sequestration in the

fat body cells. The dense granular aggregates present in fat body

cells had a rod-like appearance with a pentagonal shape in cross-

section. This structure was different from those earlier described,

and we suggest that packing of proteins is different in Drosophila

and mammals. The absence of amyloid or protein aggregates in

mIAPP expressing flies strengthens the link between hproIAPP or

hIAPP expression and the pathological findings.

Figure 8. IAPP immunoreactivity co-localizes in part with pFTAA staining. In the fat body region of hproIAPP (A) and hIAPP (B) expressing
flies IAPP (red) reactivity is detected in the cytoplasm of the cells in the fat body. The pFTAA (green) staining co-localized with IAPP immunoreactivity
is indicated by arrows. IAPP (red) labelled regions not recognized by pFTAA are expected to be in non-fibrilar configuration. These regions are
indicated by arrow heads. In the neurons, IAPP (red) and pFTAA (green) co-localize extracellularly (C). This assumption is based on the size of the cell
nuclei.
doi:10.1371/journal.pone.0020221.g008
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Materials and Methods

Transgenic constructs and Drosophila strains
cDNA of human preproIAPP with the human IAPP signal

peptide was cloned into the pUAST vector at the EcoRI/XhoI

multiple cloning site to generate UAS-proIAPP transgenes. UAS-

hIAPP and UAS-mIAPP transgenes were generated by cloning the

respective cDNA into a modified pUAST vector with the signal

peptide of human proinsulin. This signal peptide was codon

optimized for Drosophila. Germ-line transformants were generated

in flies with the w1118 background by standard technique [53]. The

sequence of the transgene was verified by DNA sequencing using

the forward primer 59- CCAGCAACCA AGTAAATCAA CTGC

-39 and the reverse primer 59- GGCATTCCAC CACTGCTCCC

ATT – 39. These primers bind to regions upstream respectively

downstream of the transgene.

The Gal4 driver lines w1118; P(Gal4)repo/TM3,Sb, w1118

(GawB)elavC155, w1118; P(Gal4-ninaE.GMR) 12, y1w67c23;

P(GawB)7B, and w1118; P(GawB)D42 were obtained from

Bloomington Drosophila Stock Centre, Indiana University,

and the UAS-nlsGFP (nuclear leading sequence) line was

kindly provided by S. Thor, Linköping University. Expression

of the UAS-constructs was induced by crossing the UAS

transgenes with the respective Gal4 driver line [54]. Progeny

from crosses of the Gal4 lines with w1118 flies were used as

controls (Gal4/+).

All crosses and experiments were performed on flies kept in an

incubator (KBWF 720, Binder) with 70% relative humidity, at a

12-hour light/12-dark cycle, at 26uC unless otherwise stated. The

flies were cultured on standard food (yeast, syrup, corn meal, and

agar). Transgenic flies were transferred to new vials every 2–3 days.

Quantitative polymerase chain reaction
RNA was extracted from ten, 5 days old female flies from each

transgenic group by homogenization in QIAzol lysis reagent

(Qiagen, Hilden, Germany) and purification by RNeasy MinElute

cleanup columns (Qiagen) according to protocols supplied by the

manufacturer. RNA concentrations were determined and 1 mg

was used for first strand cDNA synthesis with oligo-dt primer

(Fermentas GmbH, St. Leon-Rot, Germany) and the incubation

condition 42uC for 1 hour. The reaction was terminated by

5 minutes incubation at 70uC. Real-time PCR reactions were

performed and hproIAPP and hIAPP were amplified with forward

primer 59-GCAGCGCCTGGCAAATT and reverse primer 59-

GGTAGATGAGAGAATGGCACCAA, mIAPP was amplified

with forward primer 59-CGCCGGCAAGTGCAA and reverse

primer 59-GCTGGAACGAACCAAAAAGTTT and RP49 (en-

dogenous control) was amplified with forward primer 59-

TGTCCTTCCAGCTTCAAGATGACCATC and reverse 59-

CTTGGGCTTGCGCCATTTGTG. The QT-PCR reaction

contained 20 ng cDNA, 300 mmol primer and 15 ml Cyber green

(Roche diagnostics GmbH, Mannheim, Germany) and was

Figure 9. Protein granules accumulate in 30 days old flies with hproIAPP expression driven by elavC155,Gal4. In (A, B) an accumulation of
electron dense aggregates can be seen. At higher resolutions (C, D) it is shown that these darker aggregated contain a defined pattern. The cell
nucleus is pseudo-stained blue (A, B).
doi:10.1371/journal.pone.0020221.g009
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performed on a Fast Real-Time PCR system (Applied biosystems,

Sweden) and the SDS 2.3 software. Relative expression of mRNAs

was calculated with the 22DDCT method, where DCt = Ct(target)

2Ct(endogenous control).

Life span analysis
Newly hatched flies were collected and females were separated

from male flies after 24 hours and divided in groups of 20 flies per

vial. Mated female flies, 100–150 from each genotype were aged on

standard food and the numbers of surviving flies were scored daily.

The flies were transferred to new vials every other day. Statistical

analysis was performed using GraphPad Prism 4 (GraphPad

Software Inc., La Jolla, CA). Kaplan-Meier survival curves were

compared separately for each experimental pair by log rank tests.

Immunohistochemistry
Aged transgenic flies were carefully decapitated, embedded in

Tissue-TekH O.C.T.TM Compound (Histolab, Gothenburg, Swe-

den) and stored at 280uC, until used. The embedded heads were

brought to 217uC, cut into 10-mm sections and were placed on

SuperFrostHPlus slides (Menzel-Gläser, Braunschweig, Germany).

The sections were fixed for 10 min in 4% (w/v) paraformaldehyde

(PFA) in 0.1 M phosphate buffer with 0.15 M NaCl, pH 7.4

(PBS), and treated in methanol-H2O2 (20% w/v) to eliminate

autofluorescence, as previously described [30]. Unspecific binding

was blocked by incubation in PBS with 0.2% Triton X-100 (PBT)

and 10% fetal calf serum (FCS) for 1 h, at room temperature.

Primary antibodies, monoclonal mouse anti-IAPP (SM1341, Acris

Antibodies, Herford, Germany) diluted 1:100, rat monoclonal

anti-elav (7E8A10, Developmental Studies Hybridoma Bank,

University of Iowa) diluted 1:20, polyclonal rabbit antibody

against the N-terminal processing site of proIAPP (A169, [11])

diluted 1:25, polyclonal rabbit antibody against the C-terminal

flanking peptide (A142, [44]) diluted 1:200, and polyclonal rabbit

antibody against human IAPP (A133, [11]) diluted 1:250 in

blocking solution were incubated overnight, at 4uC. The following

day, sections were rinsed three times 10 min in PBT and the

reactivity was detected by Alexa FluorH 488 (donkey anti-rat,

A21208, 1:1000, Molecular Probes) and Alexa FluorH 546 (goat

anti-rabbit, A11035, 1:500, Molecular Probes), respectively.

Finally, the sections were rinsed three times 10 min in PBT and

mounted with PBS/glycerol (1:1) containing 1 mM To-Pro-3

iodide (T3605, Molecular Probes).

Whole brains of adult Drosophila melanogaster were carefully

dissected in PBS and fixed in 4% PFA - PBS for 20 min on ice.

After fixation, brains were rinsed 365 min in PBT and unspecific

binding was blocked by incubation in PBT containing 5% FCS,

1 hour at room temperature. The brains were then incubated with

primary antibody diluted in blocking solution for 36 hour, at 4uC.

Primary antibodies were polyclonal rabbit anti-GFP (TP401,

Torrey Pines Biolab) diluted 1:2000, monoclonal mouse anti-IAPP

(SM1341, Acris) diluted 1:50, and monoclonal mouse anti-

bruchpilot (nc82, DSHB) diluted 1:20. After incubation with

primary antibodies, the brains were rinsed three times 40 minutes.

Secondary antibodies (Alexa FluorH 488 goat anti-rabbit, A11008,

1:500; Alexa FluorH 546 goat anti-mouse, A11030, 1:500;

Molecular Probes) were diluted in blocking solution and brains

were incubated for 24 hours at 4uC followed by 3640 minutes

rinses in PBT at room temperature. Finally, brains were mounted

with PBS/glycerol (1:1).

Congo red staining
Cryosections (10 mm) were dried onto plus slides and fixed in

95% ethanol for 18 hours, at 220uC, hydrated in 70% ethanol

and PBS, at room temperature. Sections were stained for amyloid

by 20 minutes incubation in solution A (NaCl-saturated 80%

ethanol with 0.01% NaOH) followed by 20 minutes incubation in

solution B (solution A saturated with Congo red) (Sigma,

Stockholm, Sweden) [55]. Slides were rinsed in absolute alcohol,

xylene and mounted with Mountex (Histolab).

Pentameric formic thiophene acetic acid staining
(pFTAA)

Cryosections (10 mm) were dried onto plus slides and fixed in

95% ethanol for 18 hours, at 220uC, hydrated in 70% ethanol

and PBS, at room temperature. Sections were stained for amyloid

by incubation with 7.5 mM pFTAA diluted in PBS for 20 minutes

[45,46,47] followed by a short rinses with PBS and water. Slides

were mounted with PBS/glycerol (1:1).

Confocal analysis
Sections and whole brain specimens were examined with a Nikon

eclipse E600 microscope connected to a Nikon C1 confocal unit

with argon 488 nm and HeNe 543 nm, and HeNe 633 nm lasers

(Nikon, Kawaski, Japan). Sections stained for amyloid with Congo

red were studied with confocal microscopy with a HeNe 543 nm

laser and sections stained for amyloid with pFTAA were studied

with confocal microscopy using an argon 488 nm laser. Pictures

were taken with an EZ-C1 digital camera. Images were processed

and analyzed with Volocity 4 imaging software (Improvision Inc.,

Waltham, USA) and Photoshop Elements 4.0 (Adobe).

Transmission Electron Microscopy (TEM)
Flies were carefully decapitated and the heads were fixed in 2%

PFA and 0.25% glutaraldehyde in PBS for 24 hours followed by

post-fixation in 2% OsO4 and embedded in EPON (Ladd

Research Industries, Burlington, USA). Ultrathin sections were

placed on nickel grids and contrasted with 2% uranyl acetate in

50% ethanol and Reynolds lead solution. The material was

studied at 100 kV in a Jeol 1230 electron microscope (Jeol,

Akishima, Japan). Electron micrographs were taken with a Gatan

multiscan camera model 791 using Gatan digital software version

3.6.4 (Gatan, Pleasanton, USA).

Supporting Information

Figure S1 The survival of four different hproIAPP
expressing lines is compared with the survival of control
flies, elavC155,Gal4/+. The single transgenic lines hproI-

APP#14.2 (green) and hproIAPP#18.5 (purple) showed signifi-

cant reduction in survival, p.,0.0001 and 0.0175, respectively,

while the survival of flies from the hproIAPP#20.4 (blue) was not

significantly reduced (p 0.0577). The double-transgenic (orange)

line was established by combining hproIAPP#14.2 with

hproIAPP#20.4. Flies from this strain show shorter lifespan than

control flies (p,0.0001).

(TIF)

Figure S2 A brain from Drosophila melanogaster where
nlsGFP (green) expression is driven by elavC155,Gal4. This

is done to visualize the areas for protein expression driven by this

driver. The neuropil is labelled with an antibody reactive against

the neuropil specific protein bruchpilot (red). Survival of hproIAPP

flies was also studied at 18uC (B) and 29uC (C). The expression of

hproIAPP shortened the survival at all temperatures, but an

increased temperature resulted in shorter lifespan. This is

independent of the transgene and it is in line with the knowledge

that flies live shorter at higher temperature. The survival of
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proIAPP expressing flies is presented in green and control flies are

shown in black.

(TIF)

Figure S3 In an initial study we investigated the effects
of hproIAPP expression driven by other drivers. In this

study, motor neurons, mushroom body, glia cells (repo-Gal4), and

photoreceptor cells (GMR-Gal4) were included. In the left panel of

(A, B, C, D), the respective driver was used for expression of

nlsGFP to visualize cell regions involved in expression. In the right

panel the survival curves are shown for each respective driver. It

can be noted that expression of hproIAPP did not cause any

reduction of the survival of the flies. With repo-Gal4 and GMR-

Gal4 it enhanced survival. The expression of hproIAPP is shown

in green and control flies in black. In (E), the median fly survival of

the different strains is shown in comparison to flies expressing

hproIAPP with the elavC155,Gal4 driver.

(TIF)

Figure S4 The GFP expression driven to neurons by the
elavC155,Gal4 driver was analysed in 1, 5 15 and 30 days
old flies. The pattern of nlsGFP expression changes over time

and only few cells express GFP at day 1. There is a dramatic

increase in GFP expression by day 5 and already at day 15 is the

GFP positive area decreased. In brains from 30 day old flies is the

GFP expression similar to that detected in 1 day old flies. The

nlsGFP expression pattern was studied in dissected whole brains

after immunolabeling with a primary antibody against GFP that

was visualised by an Alexa-488 labelled secondary antibody.

(TIF)

Figure S5 Electron micrographs of a 40 day old control
fly and transgenic hIAPP and mIAPP flies with expres-
sion driven by elavC155,Gal4. Shown areas are from the fat

body of the head. In addition to protein accumulation in the

cytoplasm (shown in Figure 9) a morphological alteration of some

nuclei occurs in flies expressing hIAPP (B). In these nuclei, the

euchromatin has lost its homogeneity and has instead adopted a

dotted pattern. This morphological change of the cell nucleus is

also present in flies expressing hproIAPP (not shown), but it is

absent in control flies (A) and in flies expressing the non-

amyloidogenic mIAPP (C).

(TIF)

Figure S6 Ultrathin sections from rod-like aggregates
present in fat body cells of hproIAPP expressing flies.
Rods with a thickness of 15.8 nm are aligned in parallel and

separated by an empty space of 5.2 nm. The individual aggregates

consist of both longitudinal and cross sectioned rods and these are

arranged perpendicular to each other (A). Cross-sectioned

filaments have a pentagonal shape (B). In (C) is IAPP

immunoreactivity indicated by arrow heads. The reactivity

appears in close association to ends of the rods.

(TIF)
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