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Abstract

Background: Like human speech, birdsong is a learned behavior that supports species and individual recognition.
Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the
role of norepinephrine in bird’s own song selectivity, a property thought to be important for auditory feedback processes
required for song learning and maintenance.

Methodology/Principal Findings: Using functional magnetic resonance imaging, we show that injection of DSP-4, a specific
noradrenergic toxin, unmasks own song selectivity in the dorsal part of NCM, a secondary auditory region.

Conclusions/Significance: The level of norepinephrine throughout the telencephalon is known to be high in alert birds and
low in sleeping birds. Our results suggest that norepinephrine activity can be further decreased, giving rise to a strong own
song selective signal in dorsal NCM. This latent own song selective signal, which is only revealed under conditions of very
low noradrenergic activity, might play a role in the auditory feedback and/or the integration of this feedback with the motor
circuitry for vocal learning and maintenance.

Citation: Poirier C, Boumans T, Vellema M, De Groof G, Charlier TD, et al. (2011) Own Song Selectivity in the Songbird Auditory Pathway: Suppression by
Norepinephrine. PLoS ONE 6(5): e20131. doi:10.1371/journal.pone.0020131

Editor: Melissa Coleman, Claremont Colleges, United States of America

Received January 19, 2011; Accepted April 19, 2011; Published May 23, 2011

Copyright: � 2011 Poirier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Francqui grant and a BOF-KP grant from the University of Antwerp to C.P., a grant from the NINDS (NS035467) to J.B.,
and grants from the Research Foundation - Flanders (FWO, project Nr G.0420.02), Concerted Research Actions (GOA funding) from the University of Antwerp, by
EC – FP6 project DiMI, LSHB-CT-2005-512146 and EC – FP6 project EMIL LSHC-CT-2004-503569 to A.VdL. T.D.C. was an FRS-FNRS Postdoctoral Researcher and T.B.
a doctoral fellow of the Research Foundation - Flanders (FWO). G.D.G. and C.P. are post-doctoral fellows of the Research Foundation - Flanders (FWO). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: colline.poirier@ua.ac.be

Introduction

The role of norepinephrine (NE) in the neurobiology of

birdsong has recently been the focus of multiple studies but still

remains poorly understood. Previous neuroanatomical and

neurochemical studies have identified a dense noradrenergic

innervation of the song control and auditory brain regions of

songbirds [1–5]. The presence of high concentrations of NE and

NE receptors in the song control and auditory nuclei, associated

with the observation that the development of the noradrenergic

innervation closely parallels song learning, have led to the

hypothesis that NE might be involved in the control of song

production, perception and learning (for a review, see [6]).

The songbird brain is able to discriminate between the bird’s

own song (BOS) and other conspecific (CON) songs [7–9]. Since

song is a learned behavior, the development of BOS selectivity

necessarily involves experience-dependent mechanisms, and brain

regions sensitive to self-generated vocalizations could mediate the

auditory feedback critical for song learning and song maintenance.

Electrophysiological evidence indicates that NE can suppress BOS

responsiveness in song control regions [10,11]. The main goal of

the present study was to further investigate the role of NE on BOS

selectivity.

The selective noradrenergic neurotoxin DSP-4 causes substan-

tial and long-lasting depletion of NE inputs in the mammalian and

avian telencephalon that derive from the locus coeruleus and the

nucleus subcoeruleus ventralis while leaving noradrenergic inputs

to the hypothalamus originating from other noradrenergic cell

groups relatively unaffected (see [12–15] for discussion). The

mechanisms controlling this differential impact of the drug have

not been identified to our knowledge. DSP-4 has been widely used

to lower brain NE in order to investigate the functions of the

central noradrenergic system in birds [14,16–22]. Using functional

Magnetic Resonance Imaging (fMRI), we assessed how DSP-4-

induced noradrenergic denervation affects BOS selectivity in the

telencephalic auditory and song control regions of anesthetized

male zebra finches, namely Field L, NCM, CMM, CML, HVC,

RA, LMAN and area X (see material and methods section for the

meaning of the abbreviations).

Results

Effects of DSP-4 on noradrenergic cells
The effect of the drug treatment was assessed by counting the

number of cells in the locus coeruleus and the nucleus

subcoeruleus ventralis expressing dopamine ß-hydroxylase
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(DBH), the rate-limiting enzyme in NE synthesis. The immuno-

histochemical staining revealed a prominent decrease in the

number of DBH-immunoreactive cells in the two nuclei (locus

coeruleus: t = 5.684, df = 5, p = 0.003; nucleus subcoeruleus

ventralis: t = 2.958, df = 6, p = 0.025) in the DSP-4 group as

compared to the saline group (Fig. 1). These decreases represented

an 88% loss of locus coeruleus cells and a 66% loss of ventral sub-

coeruleus immunoreactive cells.

Effects of DSP-4 on BOS selectivity
Three song stimuli were used in the fMRI experiment: the

BOS, a familiar conspecific song (CON) and a heterospecific song

(HET). BOS selectivity was assessed in each experimental group

by comparing the neural activation induced by the perception of

the BOS and the perception of the CON ([BOS minus CON]).

Potential DSP-4 effects were measured by comparing BOS

selectivity between the two experimental groups ([BOS minus

CON]dsp-4 vs. [BOS minus CON]saline). This analysis revealed a

significant difference in a cluster located in the dorsal part of the

left NCM extending to dorsal Field L (Fmax i.e. voxel presenting

the maximal F value among all significant voxels of the cluster

= 13.02, p = 0.008) (Fig. 2). A similar non-significant trend was

found in the right dorsal NCM/Field L region. The presence of

this trend argues against a lateralization of the effect but does not

allow excluding it. Post-hoc analyses of the significant cluster in

left NCM/Field L indicated a significantly higher activation

induced by BOS than by CON in the DSP-4 group (tmax i.e.

voxel presenting the maximal t value among all significant voxels

of the cluster = 3.52, p = 0.003). Spin-echo fMRI, as implement-

ed in the present study, can detect statistically significant

differential activations triggered by different stimuli at the group

level but not at the individual level [23]. Nevertheless, it is

noteworthy that BOS-induced activity in the cluster was higher

than CON-induced activity in all DSP-4 treated birds (N = 6).

This BOS selectivity was substantiated by the comparison [BOS

minus HET] (tmax = 3.7; p = 0.002), with HET being considered

as a natural complex auditory control stimulus. This significant

BOS selectivity of dorsal NCM/Field L was absent in the saline

group ([BOS minus CON]: tmax = 0.03; p = 0.71). A previous

study using the same stimuli and the same methodology in a

group of non-treated birds also failed to detect any BOS

selectivity in the same region [24]. Finally, the BOS selectivity

specifically observed in the DSP-4 group was found to result from

a significantly greater neural activity induced by BOS in the

DSP-4 group as compared to the saline group (tmax = 2.64;

p = 0.028). We did not find any significant DSP-4 effects on BOS

selectivity in the telencephalic song control nuclei. Nevertheless, a

non-significant trend was found in the border of right area X,

where BOS selective responses were already found in our

previous study [24]. This non-significant effect consisted of a

trend for increased BOS selective responses in the saline group

compared to the DSP-4 group. While the neural response

induced by each stimulus in the DSP-4 group seemed higher

compared to those in the saline group, the effect was greater for

CON and HET than for BOS, resulting in a lack of BOS

selectivity in the DSP-4 group. No consistent trend was found in

HVC or HVC shelf.

Effects of DSP-4 on CON selectivity
The comparison of the neural activation induced by the

perception of the CON and the perception of the HET also

allowed us to assess CON selectivity ([CON minus HET]).

Potential DSP-4 effects were similarly measured by comparing

CON selectivity between the two experimental groups ([CON

minus HET]dsp-4 vs. [CON minus HET]saline). This analysis

revealed a significant difference in a cluster located in the right

CMM (Fmax = 14.40, p = 0.005) (Fig. 3). No similar trend was

found in the left CMM, suggesting a potential lateralization of this

effect. However, due to the small number of birds included in this

study, this result should be considered with caution and future

studies should be performed to draw firm conclusions. Post-hoc

analyses in the right CMM cluster indicated a significant CON

selectivity in the DSP-4 group (tmax = 3.44; p = 0.002). Individual

analyses revealed a CON-induced activity higher than HET-

induced activity in five DSP-4 treated birds (out of six). Such a

CON selectivity was absent in the saline group (CON minus HET:

tmax = 21.54; p = 0.62) as well as in the group of non-treated birds

previously scanned while exposed to the same stimuli [24]. The

CON selectivity only present in the DSP-4 group resulted from a

significantly greater neural activity induced by CON (tmax = 3.31;

p = 0.002) and a weaker neural activity induced by HET

(tmax = 2.81; p = 0.009) in this group, compared to the saline

group. No significant difference was found in the telencephalic

song control nuclei.

Discussion

The goal of the present study was to investigate the role of NE

on BOS selectivity. To manipulate NE level in the zebra finch

brain, we systemically injected birds with DSP-4, a neurotoxin

known to induce a retrograde degeneration of the two main

noradrenergic cell groups innervating the telencephalon, the locus

coeruleus and nucleus subcoeruleus ventralis [15,20]. The

effectiveness of the pharmacological treatment was confirmed by

immunohistochemical staining for DBH, the rate-limiting enzyme

for NE synthesis: the number of DBH immunoreactive cells in the

locus coeruleus and the nucleus subcoeruleus ventralis were found

to be drastically reduced in the DSP-4 treated birds compared to a

control group of saline treated birds (locus coeruleus: 288%;

Figure 1. DSP-4 effect on noradrenergic cells. Mean number of
DBH-immunoreactive (DBH-ir) cells per section in the locus coeruleus
(Loc) and the nucleus subcoeruleus ventralis (SCv) of the saline (white
bars) and DSP-4 (black bars) groups. The error bars correspond to
standard errors across subjects.
doi:10.1371/journal.pone.0020131.g001
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nucleus subcoeruleus ventralis: - 66%). This neurochemical

depletion was associated with significant changes in auditory

processing.

Specificity of DSP-4 effects
The present fMRI study demonstrated that the DSP-4

treatment induced a marked BOS selectivity in dorsal NCM, a

secondary auditory region and CON selectivity in CMM, another

secondary auditory region. These auditory regions of the

telencephalon are known to contain NE receptors like many

nuclei of the song control system [25–27]. These auditory regions

also receive a dense noradrenergic innervation [4]. Previous work

in zebra finches specifically demonstrated that DSP-4 markedly

depletes NE levels in multiple telencephalic brain sites [17] and

that DSP-4-induced depletions specifically affect NE without

changing the concentration of other amines [14,17,28,29]. The

selective auditory responses observed here in the DSP-4 group but

not in the control group are thus likely to be a consequence of the

NE depletion induced by the DSP-4 treatment.

Effects on BOS selectivity
In zebra finches, BOS selective responses are present in the song

control system of sedated, anaesthetized and sleeping birds, when

NE level is low [7–9,30]. These BOS selective responses are

suspected to play an off-line role in song learning and maintenance

[31]. However, BOS selective responses are suppressed by arousal,

when NE level is high [11,32]. This state dependence is mediated by

the noradrenergic system: injection of a high-dose of NE in the

nucleus interface of the nidopallium (NIf), a major auditory input to

the song control nucleus HVC, suppresses BOS responsiveness in

HVC while injection of adrenergic antagonists in NIf blocks the

arousal-mediated suppression of BOS responsiveness in HVC [11].

Injection of NE in HVC was also found to suppress BOS

responsiveness in RA, a song control nucleus receiving dense

projections from HVC [10]. These results indicate that a high level

of NE during arousal is responsible for the lack of BOS

responsiveness in the song control system of alert zebra finches.

The present study shows that DSP-4 injection, decreasing the level

of NE, has additional effects on BOS selectivity. A significant effect

Figure 2. DSP-4 effect on BOS selectivity. A Statistical map of voxels displaying a significant difference in BOS selectivity between groups in the
song control and auditory regions (F-test). F values are color coded according to the scale displayed on the right side of the figure. Statistical results
are superimposed to an anatomical sagittal image coming from the MRI zebra finch atlas. The position of the slice along the X (left/right) axis is
indicated above the map (the - sign indicates that slices and statistical results are from the left hemisphere). B Estimates of the relative response
amplitude (derived from the Restricted Maximum Likelihood algorithm, expressed in non-dimensional units) elicited by CON (in red) and BOS (in
green) stimuli in the cluster illustrated in panel A (the values have been extracted from the voxel with the maximum F value). The zero level
corresponds to the estimated mean activation during rest periods. The error bars correspond to standard errors across subjects. Stars indicate
statistically significant differences between stimuli vs. rest. Circles indicate statistical significance of comparisons between stimuli (paired t-tests) and
between groups (unpaired t-tests).
doi:10.1371/journal.pone.0020131.g002

Figure 3. DSP-4 effect on CON selectivity. A Statistical map of voxels displaying a significant difference in CON selectivity between groups in the
song control and auditory regions (F-test). The position of the slice along the X (left/right) axis is indicated above the map (the + sign indicates that
the slice and statistical results are from the right hemisphere). B Estimates of the relative response amplitude (expressed in non-dimensional, arbitrary
units) elicited by HET (in blue) and CON (in red) stimuli in the cluster illustrated in panel A (the values have been extracted from the voxel with the
maximum F value). The zero level corresponds to the estimated mean activation during rest periods. The error bars correspond to standard errors
across subjects. Stars indicate statistically significant differences between stimuli vs. rest. Circles indicate statistical significance of comparisons
between stimuli (paired t-tests) and between groups (unpaired t-tests).
doi:10.1371/journal.pone.0020131.g003
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was found in a brain region encompassing the dorsal part of NCM,

and consisted in a specific increase of BOS responsiveness, giving

rise to a strong BOS selective signal in this auditory region. The

functional significance of these latent BOS responsiveness and BOS

selectivity that are only revealed under condition of very low

noradrenergic activity remains unclear at present. Birdsong is

learned and maintained by a trial and error process, in which the

bird uses auditory feedback to actively match its vocal output to a

memorized model (the tutor song). The birdsong brain thus needs to

evaluate the vocal output (error detection) and to drive adaptive

changes in song to decrease the difference between auditory

feedback and memorized tutor song (error correction). BOS-

selective responses are thought to support the auditory feedback

and/or the integration of this feed-back with the motor circuitry for

vocal learning and maintenance [33,34]. The BOS selective signal

revealed in the present experiment under condition of very low

noradrenergic activity might thus play a role in these processes.

Interestingly, this signal was found localized in NCM, a brain region

where a memory trace of the tutor song is suspected to be stored

[35,36]. Finally, feedback-sensitive neurons have been recently

identified in other forebrain auditory regions: in these regions, BOS

responsiveness was found to increase when the birds were singing or

hearing a perturbed song [37,38]. Even if a comprehensive picture

of the neural mechanisms supporting auditory-vocal integration still

needs to emerge, these findings point to a crucial role of the

ascending auditory pathway in vocal error detection.

As mentioned earlier, several electro-physiological studies have

demonstrated NE effects on BOS selective responses in song control

nuclei [10,11]. Based on this literature, one might have expected

DSP-4 effects in the song control regions to be observed in the

present study. We did not find significant effects in these regions.

However, this absence of significant results should be interpreted

cautiously. The fact that the fMRI signal is usually lower in the song

control nuclei compared to the auditory regions (this study and [24])

combined with the limited number of subjects involved in the

present study drastically reduced the statistical power of the analysis

in these regions. Consistent with the interpretation of a lack of DSP-

4 effects due to a too low statistical power, we did find a non-

significant effect in the border of area X. In line with BOS selective

responses found in the same region in our previous study [24], we

found a trend for BOS selective responses in the saline treated birds

but not in the DSP-4 treated birds. Interestingly, data suggest that

DSP4 injection resulted in an increase of the neural activity induced

by the three stimuli but to a lesser extent by BOS than CON and

HET stimuli. If this non-significant effect is confirmed by further

experiments, it will indicate a qualitative difference of DSP-4 effects

between the auditory and song control regions. In our previous

experiment [24], we also found BOS selective responses in the HVC

shelf, generalizing to large population of neurons what was

previously found with electro-physiology in a small number of

neurons [8]. In the present study, we did find BOS selective

responses in some birds of each group but results were too variable

to give rise to any consistent effect within and between groups. In

addition to the limited statistical power of the study that can explain

this absence of results, it should be noted that because HVC is

situated at the top of the songbird brain, the signal is often

contaminated by MRI artifacts due to brain tissues/air interface.

These artifacts make particularly challenging to measure a robust

and reliable fMRI signal in this region.

Effects on CON selectivity
DSP-4 injection also induced CON selectivity in CMM, another

secondary auditory region. This selective signal was due to a

higher neural activity induced by CON and a lower activity

induced by HET in the DSP-4 treated birds, compared to the

saline-treated birds. Previous studies in awake birds suggest an

important role of NE in selective attention to sexually relevant

stimuli (e.g. [18,21,22,39]). For instance, Lynch and Ball [21]

found that DSP-4 injection in awake female canaries induces a

decrease of neuronal activity (measured by ZENK expression)

triggered by male song perception in NCM and CMM. These

results might seem in opposition with the increase of CON-related

neural activity observed in the present study in DSP-4 treated

birds. It should however be noted that, in addition to the species

and sex difference, our birds were anesthetized, preventing us to

draw any conclusion in terms of attention. It has also been

suggested that NE plays a different role within and outside the

reproductive context [40]. For instance, DSP-4 administration to

male zebra finches increases ZENK expression in area X induced

by female-directed singing motor behavior but not by (non-sexual)

undirected singing [20]. It should be noted that only undirected

songs were tested in our study.

Like BOS selectivity observed in dorsal NCM, CON selectivity

present in CMM might play a role in song learning and

maintenance. Song learning in juvenile birds is biased in favor

of copying conspecific songs rather than heterospecific songs. The

CON selective signal in CMM might play a role in learning to

produce a zebra finch song while the BOS selective signal in dorsal

NCM could be involved in copying one specific zebra finch song,

the tutor song.

Conclusion
The present study illustrates the usefulness of fMRI to

investigate suspected effects whose precise location is not a priori

known. Specifically, we show here that brain NE depletions affect

in a very specific manner neural activity related to song perception

in CMM and dorsal NCM. The neurochemical mechanisms

mediating these effects could now be analyzed by imaging birds

exposed to a variety of specific agonists or antagonists of the

noradrenergic receptor sub-types.

Materials and Methods

Ethics Statement
Experimental procedures were in agreement with the Belgian

laws on the protection and welfare of animals and were approved

by the ethical committee of the University of Antwerp, Belgium

(Permit number: 2007-12).

Subjects
Sixteen adult male zebra finches (Taeniopygia guttata) purchased

from local suppliers were used in this experiment. Birds were

housed in aviaries under a 12 h light: 12 h dark photoperiod and

had access to food and water ad libitum throughout the experiment.

Pharmacological treatments
Birds were first pre-treated with an i.p. injection of zimelidine

hydrochloride (20 mg/kg; Sigma), a serotonin reuptake blocker

used to protect serotonergic neurons from DSP-4 (see 14). One

hour later, birds were injected i.p. with DSP-4 (N-(2-chloroethyl)-

N-ethyl-2-bromobenzylamine hydrochloride, 50 mg/kg, Sigma)

(n = 8) or saline solution (0.9%) (n = 8).

Stimuli and fMRI experimental protocol
After seven days of recovery from these pharmacological

treatments in individual cages, all birds were imaged in an MRI

scanner while being exposed to three different acoustic playbacks.

The full description of the acoustic stimuli and the experimental

New Noradrenergic Effect on Own Song Selectivity
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protocol can be found in one of our previous papers [24]. Briefly,

the protocol consisted of a block design alternating auditory

stimulation periods with resting periods. Three different auditory

stimuli were presented to each bird: a heterospecific song (canary

or starling song, HET), a conspecific song (undirected song from a

cage mate, CON) and the bird’s own song (undirected song, BOS).

The duration of the stimuli was 16 s and their intensity was

matched in term of Root-Mean-Square. Each stimulus was

presented 25 times, resulting in the acquisition of 50 MRI scans

per stimulus and per subject (2 scans per presentation). The

presentation order of the three stimuli was randomized within and

between subjects.

During the experiment, birds were anesthetized with isoflurane

(2%). Body temperature was continuously monitored with a

cloacal temperature probe and maintained at 40 uC by a feedback

controlled heating system (SA-Instruments, USA). The 7T MR

scanner and the RF coils used for the experiment are described in

Boumans et al. [41]. Anatomical 3D images required for

localization of the functional data were obtained for each bird

using a T2-weighted Fast Spin Echo sequence (TE/TR: 60/

2000 ms, voxel size: 0.062560.062560.0625 mm3). Blood oxygen

level dependent (BOLD) fMRI data were acquired with a T2-

weighted Fast Spin Echo sequence (TE/TR: 60/2000 ms). Fifteen

continuous sagittal slices of 0.75 mm thickness covering nearly

the entire brain were acquired within 8 s. Voxel size was

0.2560.2560.75 mm3.

Functional MRI data processing and statistical analyses
Functional images were realigned, normalized to the zebra finch

brain MRI atlas [42], and smoothed with a 0.5-mm width

Gaussian kernel (for more details, see 24). Statistical voxel-based

analyses were carried out using SPM5 (http://www.fil.ion.ucl.ac.

uk/spm/). Data were modeled as a box-car and filtered with a

high-pass filter of 360 s. Model parameters were then estimated

using a classical Restricted Maximum Likelihood algorithm and a

mixed-effect analysis was performed.

We first computed the mean effect of each stimulus (as

compared to the rest period) in each voxel, for each subject of

each group. In a second step, a group analysis was performed on

the effects identified by the previous analysis. The individual

analyses revealed a BOLD response triggered by the auditory

stimuli in the bilateral Field L (equivalent of the primary auditory

cortex in mammals) in 7 of the 8 saline treated birds and 6 out the

8 DSP-4 treated birds (Figure S1). This success rate is similar to

the one obtained in our previous spin-echo fMRI experiments

[23,24]. The group analysis was thus only performed on these

birds. The statistical analysis was restricted to a priori defined

regions of interest (ROI), first the song control nuclei: HVC, used

as a proper name [43], the nucleus robustus of the arcopallium

(RA), area X and the lateral magnocellular nucleus of the anterior

nidopallium (LMAN), and secondly the auditory regions: Field L,

the caudal medial nidopallium (NCM), the medial part of the

caudal mesopallium (CMM), and the lateral part of the caudal

mesopallium (CML). Because they were too small to be sampled

reliably in one sagittal slice, the dorso-lateral nucleus of the medial

thalamus, the nucleus ovoidalis and NIf were not investigated.

Delineations of the nuclei on the zebra finch atlas [42] were used

to define the ROI. Note that in the atlas, the dark region in the

auditory forebrain is interpreted as the whole Field L and not only

as the subdivision L2 due to its size, its position and its shape (see

three-dimensional rendering in [42]), and the fact that a darker

sub-region likely to be L2 is visible in the most frontal part of the

nucleus (see fig. 3 in the present manuscript). NCM, CMM and

CML are not visible on the atlas. NCM was thus defined as the

region located between Field L and the cerebellum and the caudal

mesopallium as the region dorso-frontal to Field L but ventral to

the lateral ventricle. The limit between the medial and the caudal

part of the mesopallium was set at 1 mm lateral to the midline.

The aim of this study was to investigate the role of NE on BOS

selectivity (as defined by BOS- minus CON-related activity) and on

CON selectivity (as defined by CON- minus HET-related activity).

We thus first identified voxels that displayed a differential response

to the stimuli as a function of experimental treatments by the

presence of a significant interaction ‘‘stimulus6group’’ in the 362

ANOVA (within factors: three stimuli; between factors: 2 groups) in

the predefined ROI. In a second step, we focused exclusively on

these voxels and investigated the nature of this general interaction

by testing more specifically for potential interaction between groups

and BOS selectivity (within factors: BOS and CON stimuli; between

factors: groups) or CON selectivity (within factors: CON and HET

stimuli; between factors: groups). Post-hoc t-tests were then

performed (paired t-tests for intra-group comparisons; unpaired

t-tests for inter-group comparisons) only on the voxels found to be

significant in the interactions. Because statistical tests were

performed on a voxel basis resulting in numerous tests, p values

were adjusted to the number of independent tests performed. This

was done using the Family Wise Error method. This method uses

the Random Field Theory to calculate the number of independent

tests, taking into account the number of voxels but also the amount

of auto-correlation among data.

Brain fixation and immunohistochemistry
Birds were sacrificed one day after the fMRI experiment by

decapitation. Brains were dissected out of the skull and fixed in

acrolein solution (Fluka Biochemika; 5% in Phosphate Buffered

Saline) for 2.5 h, washed twice for 30 min in Phosphate Buffered

Saline, cryoprotected overnight in 30% sucrose solution, frozen on

dry ice and stored at 280uC.

Brains were then cut in the coronal plane with a cryostat in four

series of 50 mm thick sections. Two alternate series (one section

every 100 mm) were stained by immunohistochemistry for DBH,

the rate-limiting enzyme in NE synthesis, with a commercially

available rabbit polyclonal DBH antibody (Immunostar Inc.,

Hudson WI, USA) following a standard avidin-biotin protocol.

Briefly, free-floating sections were rinsed in 0.1% sodium

borohydrate in Tris Buffered Saline, blocked in 5% normal goat

serum and incubated overnight in the primary antibody at 1:6000

in Tris Buffered Saline containing 0.1% triton X100. The

following day, sections were incubated with a biotinylated goat

anti-rabbit secondary antibody, and processed through the avidin-

biotin Vectastain Elite procedure (peroxidase) as described by the

manufacturer (Vector Labs, Burligame CA, USA). The enzymatic

activity was then visualized with diamino-3,39-benzidine substrate.

Three to five rinses were performed between each step.

Pictures were then taken from sections containing the locus

coeruleus and the nucleus subcoeruleus ventralis using a Leica

DFC40 camera connected to an Olympus BH2 microscope. The

number of DBH-immunoreactive cells within the boundaries of

these nuclei was counted on both sides of the brain in all sections

containing these nuclei. Given the small size of these nuclei (150–

200 mm length in the rostro-caudal axis) compared to the section

thickness (50 mm), they were in all subjects present in only one or

two sections. The average number of DBH-immunoreactive cells

per section was then computed for each subject and each nucleus

and used for statistical analysis. No attempt was made to correct

these numbers by the surface or volume of the target nuclei since

the boundaries of these nuclei were not visible in immuno-stained

sections.

New Noradrenergic Effect on Own Song Selectivity
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Supporting Information

Figure S1 Activations induced by the auditory stimuli
(vs. rest) in two individuals (one saline treated bird and
one DSP-4 treated bird). The statistical parametric maps

(unilateral one sample t-test) are superimposed on anatomical

images coming from the zebra finch atlas. They illustrate the

bilateral activation of Field L, the equivalent of the mammalian

primary auditory cortex, and the (caudally and frontally) adjacent

secondary auditory regions. T values are color coded according to

the scales displayed on the right side of the figure. Only voxels in

which the t-test was found significant (p value ,0.05, corrected for

multiple comparisons at the whole brain level) are displayed.

(TIF)
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