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Abstract

Background: Correlations between Educational Attainment (EA) and measures of cognitive performance are as high as 0.8.
This makes EA an attractive alternative phenotype for studies wishing to map genes affecting cognition due to the ease of
collecting EA data compared to other cognitive phenotypes such as IQ.

Methodology: In an Australian family sample of 9538 individuals we performed a genome-wide association scan (GWAS)
using the imputed genotypes of ,2.4 million single nucleotide polymorphisms (SNP) for a 6-point scale measure of EA. Top
hits were checked for replication in an independent sample of 968 individuals. A gene-based test of association was then
applied to the GWAS results. Additionally we performed prediction analyses using the GWAS results from our discovery
sample to assess the percentage of EA and full scale IQ variance explained by the predicted scores.

Results: The best SNP fell short of having a genome-wide significant p-value (p = 9.7761027). In our independent replication
sample six SNPs among the top 50 hits pruned for linkage disequilibrium (r2,0.8) had a p-value,0.05 but only one of these
SNPs survived correction for multiple testing - rs7106258 (p = 9.7*1024) located in an intergenic region of chromosome
11q14.1. The gene based test results were non-significant and our prediction analyses show that the predicted scores
explained little variance in EA in our replication sample.

Conclusion: While we have identified a polymorphism chromosome 11q14.1 associated with EA, further replication is
warranted. Overall, the absence of genome-wide significant p-values in our large discovery sample confirmed the high
polygenic architecture of EA. Only the assembly of large samples or meta-analytic efforts will be able to assess the
implication of common DNA polymorphisms in the etiology of EA.
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Introduction

Access to education is considered to be a predictor for a wide

range of later life outcomes such as employment [1], income [2],

and health outcomes such as obesity [3,4]. In addition to its

relevance to economics and health, educational attainment (EA) is

a measure of interest in the study of cognitive abilities/intelligence.

The correlation between EA and measures of cognitive ability

ranges from 0.45 up to 0.80 [5,6,7]. Three hypotheses of causality

have been postulated to explain the underlying mechanisms of the

relationship between EA and cognitive functioning, (i) intelli-

gence/cognitive abilities are a cause of EA because intelligence is

believed to be more biologically anchored than scholastic

achievements [8], (ii) cognitive abilities are a product of scholastic

achievement [9,10] and (iii) basic cognitive processes such as

reaction time, inspection time and memory recall partly determine

both scholastic achievement and cognitive performance [11]. At

present, none of these hypotheses have been discarded and it is

likely that a mixture of all three plays a role in the link between EA

and cognitive abilities. Additionally, a recent report suggested that

the causal relationship between EA and intelligence varies

according to an individual’s level of intelligence [7].

Biological processes involved in scholastic achievement and

cognitive performance are likely to be shared to some extent. Twin

studies that take advantage of differences between genetically

identical twins (monozygotic or MZ) and fraternal twins (dizygotic

or DZ), have shown that EA and cognitive performance are

influenced to a large extent by common genetic factors [12,13,14]

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e20128



and the heritability of EA has been estimated as high as 80%

[6,15]. Therefore, investigating the biological etiology of educa-

tional attainment could provide insights into the molecular basis of

cognition because of its strong heritability and high correlation

with cognitive performance. Moreover, EA has the advantage of

being a measure that is much easier to collect than IQ and

therefore it is more viable to assemble the large cohorts necessary

to perform genome wide association scans (GWAS).

Molecular genetics studies of EA have been largely limited to a

candidate gene approach including the Catechol-O-methyltrans-

ferase (COMT) [16,17], the Brain-derived neurotrophic factor

(BDNF) [18] and the Dopamine receptor D4 (DRD4) [19]. The

choice of these genes as candidates for EA is strongly hypothesis

driven due to their characterized neurobiological functions but

convincing replications are lacking in support of their hypothetical

role in the etiology of EA. The advances in microarray

technologies in recent years have made it possible to genotype

millions of single nucleotide polymorphisms (SNPs) for a low cost

(about US$500 per individual). This has led to a major shift

toward a hypothesis free genome-wide association study design. A

lot of GWAS studies has emerged in the literature, identifying

hundreds of polymorphisms and genes associated with complex

traits and diseases. In this study we present the results of a GWAS

for EA, using an Australian twin family discovery sample of 9538

individuals from the general population and a further 968

individuals as an independent replication sample.

Methods

Participants
The participants for our discovery sample were drawn from two

cohorts of adult twin families (cohorts 1 and 2) that have taken part

in a wide range of studies of health and well-being. Individuals

from Cohort 1 were born before 1964 and individuals from cohort

2 were born between 1964 and 1981. Both these cohorts have

participated in previous postal questionnaire and telephone

interview studies, and recruitment was extended to their relatives

(parents, siblings, adult children and spouses). Our total discovery

sample was composed of 9538 individuals for whom both EA and

genome-wide SNP genotype data were available. Our replication

sample (Cohort 3) consisted of 968 individuals who are the parents

of adolescent twins participating in our melanoma risk factors and

cognition studies (1996-ongoing) [20]. Information for the

different studies is available in Table S1.

For the prediction analysis of cognitive ability based on the EA

GWAS results obtained in the discovery sample, we used one of

the twin children of cohort 3. Their full scale IQ (FSIQ) was

collected as part of the cognition study and genotyping data were

available for 1842 adolescent twins and their siblings ranging in

age from 15 to 22 years (mean = 16.28 years 60.45 SD).

Ethical approval, for the studies from which the data drawn,

was obtained from the Human Research Ethics Committee of the

Queensland Institute of Medical Research. Informed written

consent for all measures was obtained from each participant and

their parents/guardian if participants were younger than 18 years

of age.

Educational attainment
Self reported educational attainment (EA) was collected as part

as of questionnaires and telephone interviews. In the adult cohorts

(1 and 2) three similar education scales were used to collect EA

depending on the study in which an individual participated (fig. 1).

Each individual score was transformed to create a new 6-level EA

scale harmonised across the studies, with 1 = 7 years or less of

schooling, 2 = 8 to 10 years of schooling, 3 = 8 to 10 years of

schooling + apprenticeship or 11 to 12 years of schooling or 12

years of schooling + apprenticeship, 4 = teacher college or

technical college, 5 = university undergraduate training and

6 = university postgraduate training (fig. 1). For a number of

individuals (n = 5314) multiple reports of EA were available and

the highest education level reported was selected for analysis. In

cohort 3, EA was also assessed as part of a questionnaire that the

parents of the adolescent twins answered while their children

underwent cognitive testing. EA was recorded with one of the

scales previously used in the adult cohorts (Figure 1). All

individuals that were included in the GWAS analysis were at

least 21 years of age (the standard age of first degree graduation).

Descriptive statistics of the age and educational attainment of the

participants according to their study of origin can be found in

Table S1.

Cognitive abilities
Cognitive abilities were measured by full scale IQ (FSIQ) that

was assessed using the Multi-dimensional Aptitude Battery (MAB)

[21]. The MAB is a general intelligence test designed to mirror the

WAIS-R [22] and it is presented in a multiple-choice format.

Participants completed three verbal (information, arithmetic,

vocabulary) and two performance subtests (spatial, object assem-

bly) which were combined here to form a full-scale IQ score.

Twins completed the MAB as close as possible to their 16th

birthday when they came to participate in the cognition study.

Further details of the IQ testing procedure have been previously

published [23,24].

Genotyping and Imputation
The genotypic data used in the current study come from a large

genotyping project involving nine waves of genotyping that used

three different Illumina SNP chips (Human610-Quad, Hu-

manCNV370-Quadv3 and Human 317K) [25]. For each

genotyping wave, rigorous quality control (QC) steps were applied

to ensure the highest standard of the pre imputation data. Details

of the QC steps have been described elsewhere [25]. Imputation of

the autosomal chromosomes was performed in two stages with

MACH [26] using a set of SNPs (N = 269840) common to the

different Illumina chips. These data were screened for ancestry

outliers. Full siblings and offspring of individuals who had been

identified as ancestry outliers were excluded from the reference set

used in MACH stage 1. In the first stage, the data from a set of 450

reference individuals from our set were compared to the phased

haplotype data from the HapMap samples of european ancestry

(CEU I+II) (release 22, build 36). These 450 reference individuals

were made up of fifty unrelated individuals (with the lowest

missingness) from each of the nine subsamples. Stage 1 generated

recombination and error files that describe how our data relate to

the HapMap data, in effect allowing us to customise the HapMap

data for our population. In the second stage, data were imputed

for the 17,862 individuals using the HapMap data (release 22,

build 36) as the reference panel and the recombination and error

files generated in stage 1 to customise the imputation. SNPs with a

minor allele frequency ,.01, SNPs with an Rsq imputation quality

score ,.3 were excluded. A panel of 2,480,163 autosomal SNPs

and a panel of 13783 genotyped X-chromosome SNPs were use

for association analysis.

Data analysis
Genome wide association analysis using dosage scores was

performed in MERLIN offline [27] to account for family structure.

The association analysis of genotyped markers on the X-
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chromosome were conducted in Minx (as implemented in

MERLIN). Sex, year of birth (YOB), age, YOB6sex, YOB2,

YOB26sex, age2, Age6sex and Age26Sex were used as covariates.

Both YOB and age were used as covariates in this study: YOB in

order to account for changes in terms of access to education that

have occurred since the early 1900’s and age in order to account

for the fact that the older an individual is, the less likely he/she is

to undertake further education. Visualisation and annotation of

the GWAS results was conducted using WGAViewer [28] and the

pruning for linkage desquilibrium (LD) (r2,0.8) of the top 200

SNPs was performed in SNAP [29] based on the HapMap release

22 CEU panel.

Additionally, The VEGAS gene-based test [30] that can be used

with related individuals was performed using the GWAS output

data of our discovery sample. The test summarizes evidence for

association on a per gene basis by considering the full set of SNPs

within the gene (determined by SNPs lying within 650 kb of a

gene’s 59 and 39 UTRs) and the LD between them.

Power analyses
It is expected that many genes of very small effect size

contribute to the genetic variance of complex traits. We estimated

the empirical power our discovery sample provides to detect

genetic variants explaining 1%, 0.5% and 0.2% of the phenotypic

variance by running association tests on simulated datasets in

Merlin. The simulated datasets are similar to the original data in

terms of marker informativeness, spacing, allele frequency, trait

distribution, and missing data patterns, but they are simulated

such that a selected SNP accounts for a specified proportion of the

variance. The selected SNP had minor allele frequency 0.25.

Association analysis was conducted on 1000 data sets generated by

the simulation procedure. The empirical power is estimated as that

proportion of the 1000 association analyses in which a genome-

wide significant association (a= 5*1028) was detected. Results

indicated that our sample provides 100%, 80% (799 out of the

1000 simulations) and 13% (130 out of the 1000 simulations)

power to detect SNPs that explain 1%, 0.5% and 0.2% of the

variance in EA, respectively.

Prediction analyses
Prediction analyses were conducted in two stages. In stage 1, the

effect sizes of the 2,480,163 SNPs from GWAS for EA, as well as 5

sub-panels of SNPs (based on p-value thresholds of p,0.5, p,0.4,

p,0.3, p,0.2 and p,0.1), were extracted from the MERLIN [27]

output of our discovery sample. Based on the effect sizes for these

panels and the imputed SNP data of our adolescent twin families we

generated 6 sets of prediction scores using the PLINK [31] scoring

routine for cohort 3 (968 parents and only one of their twin children

(n = 799) in order to have a sample of independent individuals). In

stage 2, we compared the predicted scores of the parents to their EA

by fitting EA as a function of the predicted scores in a linear model

(EA,predicted scores) using R (http://cran.r-project.org/) to

evaluate to percentage of variance explained (R2) by the predicted

score and its level of significance. Similarly, we fitted the FSIQ of

one of the twin children as a function of their predicted scores in a

linear model (FSIQ,predicted scores).

Results

We examined educational attainment for over 9538 individuals

born between 1900 and 1981 from 3764 families. A similar

distribution of the mean educational attainment was observed

between males and females (figure 2). We observed a gradual

increase of the mean EA from 8–10 years of schooling to above 11

to 12 years of schooling for individuals born during the first half of

the 20th century (Figure 2). The mean EA of individuals born

between the late 40’s up to the mid 70’s stayed constant around

3.5 before increasing close to 4 (4 = teacher college or technical

college) for individuals born after the early to mid 70’s (figure 2).

Using DNA previously collected for these individuals we

performed a GWAS for EA. The heritability of EA was estimated

63.5% by MERLIN and is comparable to the 57% previously

reported in our earlier variance components analysis of EA in

cohort 1 [6]. Table 1 reports the results for the top 50 most

associated SNPs after pruning for LD (r2,0.8), with the best-

associated SNP rs2680324 having a p-value of 9.7761027 (the Q-

Q plot is presented in Figure S1 and the manhattan plot in Figure

S2). We then tested the association of these 50 SNPs with EA in an

independent replication sample of 968 individuals. Five of these

SNPs had an association p = value below 0.05 and an effect in the

same direction: rs226039 (p = 0.040), rs976928 (p = 0.0036),

rs4298928 (p = 0.004), rs7106258 (p = 0.00097) and rs226047

(p = 0.039). However, only rs7106258 survived correction for

multiple testing (p = 0.05/50 = 0.001).

Figure 1. Transformation applied to the original education scales (1 to 3) to obtain a new harmonized scale across studies.
doi:10.1371/journal.pone.0020128.g001
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To completely utilise the GWAS results, we then performed a

gene-based test that maps SNPs to their respective genes if they are

located within 50 kb of a gene locus. The gene-based test

produced an empirical p-value for 17549 autosomal genes. The

top 50 most associated genes are reported in table 2 and the best

result was obtained for FLJ41766 (p = 1.461025), however, it does

not reach the multiple-testing correction threshold (p = 0.05/

17549 = 2.8*1026).

Our Prediction analyses of EA in our replication sample using

predicted scores for different thresholds of GWAS significance

(from p,0.1 to the whole genome) showed a regression r2 ranging

between 0.0011 to 0.0023 (non-significant: p$0.14) between the

predicted scores and EA in the independent sample of adults in all

6 analyses. Similarly, in the children of these individuals (n = 799)

when we attempted to predict FSIQ as a function of the predicted

scores across the different thresholds of GWAS significance the

regression r2 were non-significant (p$0.15) and varied between

9.0*1025 to 0.0026.

Discussion

In the current study we observed that Educational attainment

(EA) has increased constantly during the 20th century from a mean

EA of 8–10 years of schooling to around 12 years of schooling

followed by apprenticeship, teacher college or technical college.

This trend was the same for males and females. However, it should

be noted that only 2% of our sample was born before 1926 and

31% before 1951. Thus the data are too sparse to comment on the

changes of mean EA in relation to time specific events such as

World War II. The majority of our sample was born post World

War II and the mean EA for these individuals confirms that

pursuing a tertiary education was much more common for these

generations than it was for the previous generations. The mean EA

for individuals born in this period remained fairly constant and

major events such as the Vietnam War (Australian conscription:

1965–1975) or free access to university education (1974–1988) do

not appear to have affected the level of EA in our sample.

Using SNP genotyping data for these individuals, we performed

a large GWAS study for EA. The strength of our study was its

large sample size that conferred 100% and 80% power to detect

polymorphisms (MAF = 0.25) explaining 1% and 0.5% of the

phenotypic variance respectively. However, despite a good power,

no SNP had a p-value significant at the genome wide level of

561028. Therefore, we tested the robustness of the top 50 most

associated SNPs pruned for LD (r2,0.8) in a replication sample.

Five of these 50 SNPs reached a p-value smaller than p = 0.05 and

an effect in the same direction. Among these SNPs only one had a

p-value surviving multiple correction, rs7106258 (p = 0.00097)

located in an intergenic region of chromosome 11q14.1 (combined

p-value was 3.71*1027). This region deserves future attention as it

has been suggested to be involved in other brain phenotypes. This

region contains the GAB2 gene, a candidate gene for Alzheimer’s

disease [32] and copy number variations in this region have also

been linked with mental retardation [33].

Overall our GWAS findings are comparable to the latest

GWAS report for general cognitive abilities in that no SNPs

survived multiple testing correction for genome wide significance

[34]. The estimated heritability of EA in our sample was 63.2%

and comparable to the 57% found in our behavior genetic analysis

of EA [6]. However, we also know from our previous study that

the heritability of EA could be as high as 82% in Australia once

corrected for assortative mating [6]. So why can we not find SNPs

with genome wide significant p-values for a highly heritable trait

such as EA? Some elements of an answer can be drawn from what

we have learned from other human complex traits such as IQ [34]

and height [35] in which common variants of large effect size were

not found. Common explanations for the missing phenotypic

variance due to genetic variation might be (i) a large number of

common variants of small effect sizes (,1%), (ii) rare variants of

large effect sizes, (iii) structural variants or (iv) low power to detect

epistasis or gene-environment interactions [36]. These questions

are being addressed with the formation of a new consortium and

meta-analytical efforts that assemble large samples to examine if a

large number of common variants of small effect sizes contribute

to the current lack of robust association signals. Some new

elements of an answer to the above question are already available

with Yang and colleagues [37] recently showing that 45% of

variance for human height can be explained when all SNP effects

from a panel of nearly 300 000 SNPs were considered simulta-

neously. On the other hand, the potential role of rare and

structural variants in the etiology of EA and other complex traits

may be answered by the next-generation of association studies

Figure 2. Mean educational attainment (EA) by year of birth in male and female.
doi:10.1371/journal.pone.0020128.g002
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Table 1. Top 50 most associated SNPs in 9538 individuals after pruning for LD (r2,0.8).

rank SNP Chr. Position in bp SNP type Closest gene p-value SNP in LD*

1 rs2680324 10 56970071 INTRONIC PCDH15 9.77E-07 2

2 rs10079475 5 179585240 INTRONIC RASGEF1C 1.36E-06 3

3 rs8085689 18 21656634 INTRONIC TTC39C 5.20E-06 2

4 rs13092348 3 116580097 INTRONIC LSAMP 5.40E-06 17

5 rs1521417 3 116761113 INTRONIC LSAMP 5.55E-06 2

6 rs11004778 10 56974190 INTRONIC PCDH15 5.58E-06 9

7 rs2246477 5 172208454 UPSTREAM Y_RNA.479 7.27E-06 1

8 rs914925 9 93584793 INTRONIC SYK 8.16E-06 2

9 rs226039 16 21288101 INTRONIC CRYM; 8.98E-06 0

10 rs976928 11 81479043 INTERGENIC RP11-179A16.1 9.60E-06 6

11 rs7191909 16 21262897 3PRIME UTR ANKS4B 1.02E-05 15

12 rs4298928 11 81470414 INTERGENIC RP11-179A16.1 1.11E-05 0

13 rs6767669 3 116599500 INTRONIC LSAMP 1.19E-05 0

14 rs6581191 12 58875698 INTERGENIC RP11-652N17.1 1.23E-05 0

15 rs7281948 21 32970928 INTERGENIC FBXW11P1 1.23E-05 2

16 rs1517635 2 224203115 INTERGENIC AC068035.1 1.32E-05 0

17 rs8082313 17 17976932 INTERGENIC C17orf39 1.40E-05 0

18 rs2431664 5 172203911 WITHIN NON CODING GENE RP11-779O18.3 1.50E-05 0

19 rs17157509 7 109881775 INTERGENIC AC003088.1 1.52E-05 6

20 rs12497655 3 116764010 INTRONIC LSAMP 1.82E-05 1

21 rs13402289 2 100659389 INTRONIC AFF3 1.89E-05 6

22 rs7106258 11 81484019 INTERGENIC RP11-179A16.1 1.92E-05 14

23 rs10068846 5 179588797 INTRONIC RASGEF1C 2.01E-05 0

24 rs5009524 20 38894887 INTERGENIC RP1-191L6.2 2.17E-05 0

25 rs226047 16 21301472 INTRONIC CRYM 2.30E-05 3

26 rs744684 7 154196001 INTRONIC DPP6 2.32E-05 0

27 rs226038 16 21288338 INTRONIC CRYM 2.37E-05 0

28 rs6691053 1 173868955 DOWNSTREAM ZBTB37 2.37E-05 0

29 rs1011689 10 97760476 INTRONIC CC2D2B 2.38E-05 6

30 rs4876153 8 2304334 INTERGENIC AC133633.2 2.38E-05 0

31 rs7672521 4 175302173 UPSTREAM RP11-51M24.1 2.58E-05 0

32 rs2029238 18 21702106 INTRONIC AC090772.1 2.63E-05 2

33 rs9903961 17 10732872 UPSTREAM PIRT 2.75E-05 0

34 rs1122208 15 58623525 INTERGENIC LIPC 2.82E-05 3

35 rs11194701 10 111292456 UPSTREAM BTF3P15 2.92E-05 0

36 rs2297679 1 32157009 INTRONIC COL16A1 3.00E-05 1

37 rs2044541 11 41343185 INTRONIC LRRC4C 3.36E-05 1

38 rs1793791 11 131111013 WITHIN NON CODING GENE AP002856.7 3.61E-05 0

39 rs6011899 20 61356257 INTRONIC NTSR1 3.76E-05 0

40 rs472975 1 185534476 WITHIN NON CODING GENE GS1-204I12.2 3.83E-05 12

41 rs256940 5 114866191 INTRONIC FEM1C 3.84E-05 0

42 rs4514783 18 61918306 INTERGENIC AC100848.1 3.85E-05 4

43 rs11876820 18 61891408 INTERGENIC AC100848.1 4.12E-05 0

44 rs2275998 11 66326581 INTRONIC CTD-3074O7.2 4.15E-05 0

45 rs7936167 11 40156059 INTRONIC LRRC4C 4.40E-05 4

46 rs6986402 8 17630589 INTRONIC MTUS1 4.43E-05 1

47 rs10057387 5 172230003 INTERGENIC RP11-536N17.1 4.49E-05 0

48 rs6938281 6 25312488 INTRONIC LRRC16A 4.54E-05 0

49 rs2257055 9 130311404 INTRONIC FAM129B 4.57E-05 0

50 rs6584475 10 103806793 INTRONIC C10orf76 4.68E-05 1

*number of SNPs in LD (r2$0.8) among the top 200 GWAS hits.
doi:10.1371/journal.pone.0020128.t001
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[38]. An example of an innovative study design was recently

described by Holm et al [39] and was successful to detect low

frequency SNPs associated with sick sinus syndrome. Their multi

step approach consisted of a classic GWAS followed by whole

genome sequencing for a small number of cases and controls,

before imputing the newly discovered variants into their original

sample. Although the above example was applied to a case-control

setting this could be adapted to quantitative traits by sequencing a

small number of individuals at the extremes of the distribution.

Another noticeable feature of our GWAS results is that none of

the top 50 SNPs fall into exons. This is not surprising as more than

80% of associated variants detected by GWAS were found in non-

coding regions [36] which further supports the importance of

including these regions in gene mapping studies of complex traits

[40].

Moving from a traditional single marker analysis, we performed

the VEGAS gene-based test [30]. This is an attractive approach

that gives a second life to GWAS data and it might ease the

current frustration of the millions of dollars spent in large

genotyping projects that cannot produce replicated associations.

FLJ 41766 was the best hit, however, there is no evidence for this

gene to suggest a role in neurobiology. A similar observation was

found when looking at the genes among the top hits one at the

time. Additionally, both the gene-based test and GWAS showed

no evidence of association for BDNF (rank = 16132 out of 17549

genes tested by VEGAS), COMT (rank = 197), and DRD4

(rank = 17451), which have been previously associated with EA

[16,17,18,19]. However, these candidate gene studies were

conducted on small samples that may have not produced genuine

association signals. If true, these association signals previously

reported should have been detected in our large sample (.9 500

individuals).

One of the major goals of genetic epidemiologists is to identify

genetic variants that can be used to predict complex traits and

susceptibility risk to diseases. So far, this has been harder than

originally thought due to the difficulty of mapping loci of small

effect that reflect the highly polygenic architecture of common

diseases and complex traits. One recent approach that has been

used in this exercise is to generate a predicted score based on a

genome wide profile of SNPs effects [41,42]. Here, we generated

an EA predicted score based on different level of p-values obtained

in the GWAS of our large discovery sample to see whether or not

we could predict EA in an independent sample. The EA variance

explained by the six sets of predicted scores was low and non

significant. When a similar prediction analysis was performed with

FSIQ instead of EA, this percentage of variance was lower than

with EA as expected and also non-significant. These low

correlations between the predicted phenotypes scores might arise

from a low accuracy of the genome wide SNP effects that were

used to generate these scores. In the future, it will be most

interesting to see the evolution of these results if these analyses

were to be repeated once genome wide SNP effects from a larger

sample or from a meta-analysis are available.

Table 2. Top 50 most associated genes with the EA in 9538
individuals.

rank Chr. Gene
Number
of SNPs

Start
position

Stop
position P-value

1 16 FLJ41766 35 21219670 21237413 1.40E-05

2 16 CRYM 64 21177342 21221918 2.10E-05

3 16 ANKS4B 82 21152516 21171251 2.80E-05

4 10 NPM3 24 103531071 103533148 6.10E-05

5 10 FGF8 22 103519876 103525817 8.80E-05

6 10 MGEA5 31 103534198 103568165 0.000117

7 14 LTB4R2 110 23848000 23850798 0.000154

8 10 HPS6 12 103815136 103817783 0.000155

9 14 C14orf21 115 23838937 23844214 0.000171

10 14 ADCY4 122 23857409 23873704 0.000175

11 19 ZNF100 83 21698682 21742270 0.000232

12 14 RABGGTA 76 23804583 23810643 0.000237

13 5 DUSP1 108 172127706 172130809 0.000249

14 10 CC2D2B 80 97749872 97782431 0.000263

15 14 TGM1 80 23788159 23802256 0.000319

16 10 KCNIP2 29 103575720 103593667 0.000538

17 1 ZBTB37 53 172104115 172122397 0.000553

18 1 DARS2 45 172060580 172094305 0.000617

19 18 CABYR 76 19972952 19995562 0.000629

20 10 CCNJ 84 97793143 97810612 0.000723

21 17 DYNLL2 49 53515797 53521810 0.000783

22 11 FLRT1 99 63627937 63643221 0.000844

23 10 C10orf76 89 103595345 103805922 0.000847

24 7 C7orf59 44 99584465 99589769 0.000872

25 11 BBS1 64 66034694 66057660 0.000953

26 19 ZNF99 88 22730846 22744624 0.000961

27 11 ACTN3 56 66070966 66087373 0.001017

28 7 C7orf43 41 99589978 99594238 0.00102

29 17 CCDC43 45 40110330 40122691 0.001079

30 11 CTSF 50 66087510 66092623 0.001108

31 14 NFATC4 104 23907093 23918650 0.001127

32 11 DPP3 54 66004455 66033706 0.00114

33 11 ZDHHC24 57 66063310 66070247 0.00117

34 15 RHCG 89 87815643 87840803 0.001346

35 3 APEH 52 49686438 49695938 0.00135

36 7 GAL3ST4 52 99594800 99604309 0.001364

37 1 SERPINC1 57 172139564 172153096 0.001451

38 7 BET1 79 93458935 93471626 0.001466

39 3 RHOA 51 49371582 49424530 0.001497

40 17 SPHK1 52 71892296 71895536 0.001549

41 3 MST1 48 49696391 49701099 0.001573

42 18 CD226 199 65681172 65775212 0.00158

43 3 RNF123 53 49701993 49733966 0.00163

44 5 C5orf39 57 43074938 43076098 0.00166

45 11 PELI3 39 65990911 66001384 0.001683

46 6 LY6G6F 110 31782662 31786351 0.00177

47 3 BSN 87 49566925 49683986 0.001818

48 7 STAG3 50 99613473 99649946 0.00182

rank Chr. Gene
Number
of SNPs

Start
position

Stop
position P-value

49 6 BAT5 131 31762714 31779067 0.00186

50 6 LY6G6C 97 31794403 31797489 0.00188

doi:10.1371/journal.pone.0020128.t002

Table 2. Cont.
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In the present study we performed one of the largest genome

wide association scans to examine the molecular genetics of

educational attainment. Despite our large discovery sample and

good genome coverage of the genome, no SNP reached genome

wide evidence of association. As for many other complex traits

(e.g. Human heights [43]), our results confirmed the high

polygenic architecture of EA. Future large consortiums combined

with sequencing efforts will hopefully bring more insights into the

molecular architecture of EA and shed light on whether it is

common variants of small effects or rare variants of large effect

that contribute to the biological blue print of EA.
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