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Abstract

The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal
development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However,
despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional
regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening
Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding
elements (CNEs) in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four
of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system
and the dorsal root ganglia (DRG), recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There
was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant
enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs) associated with transcription
factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer
motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that
drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is
essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete
expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the
region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple
mammals are required to identify and characterize such enhancers.
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Introduction

LIM homeobox gene Lhx2 is a member of the LIM homeobox

family of transcription factors that are characterized by a LIM-

type tandem zinc finger known as the LIM domain and a DNA-

binding homeodomain. The Lhx2 and its family member Lhx9 are

the vertebrate homologs of the fruit fly (Drosophila) apterous gene.

Apterous is required for wing development, dorsoventral compart-

mentalization [1,2] and neuronal pathway selection [3] in

Drosophila. The murine Lhx2 was identified through a screen for

early markers of B-lymphocyte differentiation and determined to

be involved in the differentiation of lymphoid and neural cell types

[4]. Lhx2-null mice exhibit dorsal telencephalic patterning defects

that involve an expansion of the choroid plexus and cortical hem

at the expense of the hippocampus and neocortex [5,6], ventral

diencephalic defects that involve the infundibulum and pituitary

gland [7], an absence of eyes [8], incomplete development of

olfactory sensory neurons [9], liver fibrosis [10] and defective

erythropoiesis resulting in death at E15.5 – E16.5 due to severe

anemia [8]. Hence, Lhx2 is essential for the normal development of

the forebrain, eyes, olfactory system and liver. Recent studies have

suggested that Lhx2 acts as a classic ‘‘selector’’ gene that induces

cortical stem cells to adopt hippocampal or neocortex identities

[11]. Lhx2 also plays an important role in maintaining hair follicle

stem cells in an undifferentiated state [12], and the progression of

anagen (growth phase) and morphogenesis of hair follicles [13].

In mouse, the expression of Lhx2 begins at E8.5 in the optic

vesicle [8], extending to a wide range of tissues by E10.5 including

the telencephalon, diencephalon, optic cup, midbrain, hindbrain,

future spinal cord [14] and liver [15]. At E11.5, Lhx2 is localized in

the walls of the lateral ventricles and third ventricle of the brain,

the neural retina and optic stalk, the dorsal commissural

interneurons of the neural tube and additionally expresses in limb

bud mesenchyme [16]. By E15.5, Lhx2 expression in the cerebral

cortex becomes restricted to the ventricular layer and intermediate

zone [5] and extends to the olfactory epithelium of the nasal cavity

[17]. By E17.5, Lhx2 expression in the cerebral cortex becomes

restricted to the superficial layers of the entire cerebral cortex and

the hippocampus (except for the subiculum) [5]. The restricted

embryonic expression pattern of Lhx2 is closely related to its

function during development. For example, Lhx2 has a graded

expression pattern in the cortical ventricular zone (highest

expression in the medial regions and lowest in the lateral regions)

and is normally absent in the dorsal midline region [6]. This
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expression gradient is crucial for the role of Lhx2 in specifying

cortical cell fate, in particular by determining the regional fate

(to either neocortex or olfactory cortex) in dorsal telencephalic

progenitors [18]. In zebrafish, Six3, which is required for the

formation of the entire rostral prosencephalon, acts upstream of

Lhx2 suggesting that Six3 establishes the rostral forebrain field

within which Lhx2 specifies cortical cell fate [11]. In Xenopus,

transcription factors such as Pax6 and Six3 regulate the restricted

expression of Lhx2 in the developing eye. Together, these

transcription factors form a gene regulatory network that helps

specify the vertebrate eye field [19]. It has been proposed that Lhx2

plays a central role in coordinating the various pathways that lead

to optic cup formation [20]. Although the spatially and temporally

restricted expression of Lhx2 is crucial for proper development of

the cerebral cortex and the eye, and that previous studies have

indicated several potential upstream regulators of Lhx2, no attempt

has been made to identify and characterize cis-regulatory elements

in the Lhx2 locus.

Human LHX2 has been reported to be overexpressed in chronic

myelogenous leukemia (CML) [21], but downregulated in small

B-cell lymphoma [22] and lung cancer [23]. Little is known about

the mechanisms by which changes in LHX2 expression occur. The

overexpression of LHX2 in CML cells is postulated to be caused by

decreased DNA methylation that results from a BCR-ABL gene

fusion event [24] brought about by a translocation between

chromosomal regions 22q11 and 9q34 [25]. However, LHX2

(9q33.3) and ABL (9q34.12) are separated by a chromosomal

distance as large as 7 Mb (human NCBI36 assembly). It remains

to be seen if there exist cis-regulatory elements in the vicinity of

LHX2, whose disruption could account for changes in LHX2

expression.

In this study we have used evolutionary constraint as an

indicator of putative enhancers in the vertebrate Lhx2 locus. Due

to selective pressure, noncoding functional elements such as

enhancers tend to evolve slowly compared to their neighboring

sequences and hence can be identified as conserved noncoding

elements in comparisons of related genomes. This strategy has

been effectively used to identify a large number of putative

enhancers conserved in distantly related vertebrates such as

mammals and teleost fishes [26,27,28,29]. Functional assay of such

elements in transgenic mouse and zebrafish have indeed indicated

that a large number of them function as transcriptional enhancers

directing tissue-specific expression of reporter genes during

embryonic development [26,28,29]. We have aligned sequences

of the Lhx2 locus from human, mouse and pufferfish (fugu)

genomes and predicted conserved noncoding elements (CNEs) in

the locus. Functional assay of these CNEs in a transgenic mouse

assay system showed that half of them function as tissue-specific

enhancers at embryonic day 11.5.

Methods

Ethics statement
All animals were cared for in strict accordance with National

Institutes of Health (USA) guidelines. The protocol was approved

by the BRC Institutional Animal Care and Use Committee,

Singapore (permit number 080338).

Riboprobes for in situ hybridization
Primers that would produce 300-500 bp riboprobes were

designed for murine genes Lhx2, Crb2 and Dennd1a. PCR products

were cloned into pBluescript II KS vector and sequenced to verify

sequence identity and transcription orientation. The synthesis of

digoxygenin (DIG)-labeled riboprobe was carried out based on

published protocols [30] with the following modification: tran-

scription was stopped by adding 1 ml of RNase-free DNase I

(10 units/ml; Roche, Germany) and incubating at 37uC for

15 min. RNA concentration was in the range of 300–400 ng/ml.

The riboprobes were designed to target the 5th (last), 7th and 22nd

(last) coding exons of the mouse Lhx2, Crb2 and Dennd1a genes

respectively, and spanned 490 bp, 319 bp and 488 bp respective-

ly.

Whole-mount in situ hybridization
Whole-mount in situ hybridization of riboprobes was carried

out as per published protocols [30], with the following modifica-

tions. For the Proteinase K step, concentration used was 10 mg/ml

for 15 min; for hybridization, concentration of riboprobe used was

1 mg/ml; for post-hybridization washes, TBST instead of MABT

was used; and for antibody incubation, embryos were incubated

overnight in 10% heat-inactivated horse serum/1% blocking

reagent (Roche, Germany)/TBST with 1:2000 anti-DIG alkaline

phosphatase-conjugated antibody (Roche, Germany). Before

photo-taking, embryos were cleared in 50% glycerol/PBT and

80% glycerol/PBT (both times till embryos sunk). Pictures of the

embryos were taken under 166magnification using an Olympus

SZX16 stereomicroscope (fitted with Olympus DP20 camera) and

dark-field illumination.

Lhx2 locus sequence and alignment
Repeat-masked sequences for Lhx2 locus from human, mouse

and fugu genomes were downloaded from Ensembl release 48

(http://www.ensembl.org/) (human NCBI36 assembly, mouse

NCBIM37 assembly and fugu v4.0 assembly). The sequences were

aligned using MLAGAN [31]. CNEs were predicted using VISTA

[32] based on the conservation criteria of $65% identity over

50 bp. Protein-coding and ncRNA sequences were identified and

excluded based on searches against NCBI NR protein database,

human and mouse EST databases (ftp://ftp.ncbi.nih.gov/blast/

db/), Rfam (http://rfam.sanger.ac.uk/) and mirBase (http://

www.mirbase.org/).

Transgene constructs
Transgene constructs were prepared by linking CNEs upstream

of a mouse hsp68 minimal promoter (denoted as ‘‘pHsp68’’ in this

report) and bacterial b-galactosidase reporter gene (lacZ). The

pHsp68-lacZ-pBluescript vector was originally designed by Kothary

et al. [33] and later modified by Nadav Ahituv (Lawrence Berkeley

National Laboratory, USA) to incorporate a GatewayH cassette

(attR1-ccdB-attR2) upstream of pHsp68 for efficient cloning by

GatewayH Technology (Invitrogen, USA). The hsp68 minimal

promoter alone has been shown to drive no lacZ expression in

transgenic mice from E6.5 to E15.5 [33]. For PCR amplification

of CNEs, primers were designed with 100–200 bp of additional

flanking sequence on each side of the CNE with leading attB1/

attB2 sequences for GatewayH DNA recombination. PCR was

carried out using mouse genomic DNA as a template. ‘BP’ and

‘LR’ recombination reactions were carried out to clone the PCR

product upstream of pHsp68. For both reactions, vector PCR was

conducted to confirm that recombination was successful and the

clones were sequenced to verify sequence identity. To generate

constructs with base substitutions, QuikChangeH Site-Directed

Mutagenesis Kit (Stratagene, USA) was used.

Transgenic mice
To prepare the transgene DNA for pronuclear microinjection, a

restriction digest using SalI (or double digest using HindIII and NotI)

Functional Enhancers in Lhx2 Locus
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was performed to remove the pBluescript backbone. The transgene

DNA was gel-purified (,5 kb fragment) from vector backbone

DNA (,2.9 kb) using GenecleanH II Kit (Qbiogene, USA) and its

concentration was estimated by running against known amounts of

1 Kb Plus DNA ladder (Invitrogen, USA). The DNA was diluted

with filtered TE buffer (10 mM Tris pH 7.0, 0.1 mM EDTA

pH 8.0) to a final concentration of 4 ng/ml and centrifuged twice at

full speed for 15 min each to remove impurities, each time

transferring 80% of the supernatant to a new tube. Transgenic

mice were generated as per the standard protocol [34] using FVB/

N mice as the host strain. DNA was extracted from the visceral yolk

sac of embryos and used for genotyping by PCR using primers that

amplify a 416-bp region which spans nucleotides 568 to 983 of the

lacZ gene (GenBank accession number V00296) - laczF: 59-CGT

TGG AGT GAC GGC AGT TAT CTG-39, laczR: 59-CAG GCT

TCT GCT TCA ATC AGC GTG-39.

Whole-mount lacZ staining
The expression of transgene was analyzed in E11.5 embryos by

whole-mount lacZ staining as per published methods [35]. Before

photo-taking, embryos were cleared in 50% glycerol/PBT and

80% glycerol/PBT (both times till embryos sunk).

Expression analysis of human TF-encoding genes
GNF Human GeneAtlas v2 data (MAS5-condensed) were

downloaded from GNF SymAtlas [36]. Expression values derived

from cell lines and pathogenic tissues were removed, leaving

behind expression values for 62 normal human tissues. To

eliminate probes that showed very low expression and insufficient

variance in expression levels across all tissues, probes with mean

expression values less than 100 and standard deviation less than 50

were excluded [37]. Probe identifiers were mapped to human

Ensembl gene identifiers using Ensembl BioMart (for HG-U133A

probes) (http://www.ensembl.org/biomart/martview) and the

annotation table from GNF SymAtlas (for GNF1H probes). Each

gene’s expression value in each tissue was computed by averaging

expression values of all probes corresponding to that gene and

normalizing the resulting value across 62 normal tissues such that

mean expression is 0 and standard deviation is 1. Following this

procedure, expression data were available for 17,210 human

genes. K-means clustering was then performed on the normalized

gene expression values with Cluster [38] and visualized with

TreeView (http://rana.lbl.gov/EisenSoftware.htm). To test the

alternative hypothesis that the average number (and length) of

human-fugu CNEs associated with genes grouped into a cluster

varies from that of genes grouped into other clusters, a Wilcoxon

rank-sum test was applied. Two-tailed P-values were calculated.

Motif finding
Statistically over-represented motifs were searched in human-

fugu CNEs of TF-encoding genes using Weeder Version 1.3.1

[39]. Using oligomer frequencies in human intergenic regions as

background, we searched both sequence strands for over-

represented 8-mers with at most 2 substitutions, which appeared

in at least 50% of the sequences and could occur more than once

per sequence. Our search for 10-mers and 12-mers yielded no

significant motifs. Interesting motifs with many close variants

among the best 100 reported motifs were found using the program

‘‘adviser.out’’ in the Weeder package [39]. A chi-squared test

(2-by-2 contingency table with Yates’ correction for continuity;

one-tailed P-values adjusted with Bonferroni correction) was used

to determine which of these interesting motifs were over-

represented (P,0.01) with respect to the complementary set of

CNEs (e.g., CNEs of cluster #3 genes versus CNEs of non-cluster

#3 genes).

Results

Organization of the Lhx2 locus in vertebrates
We analyzed the Lhx2 locus in the completely sequenced

genomes of human, mouse, chicken and fugu. In human, mouse

and chicken, the linkage of Lhx2 and the two genes located

upstream, DENN/MADD-domain containing protein 1A (Dennd1a) and

Crumbs homolog 2 (Crb2), is conserved (Figure 1). In fugu, Lhx2 and

Crb2b are syntenic on scaffold_334 but Dennd1a is missing.

Incidentally, the single remaining copy of Dennd1a in fugu is

located on scaffold_128 and is linked to Crb2a. In addition, the

genomic sequence on fugu scaffold_334 is incomplete ,58 kb

downstream of Lhx2.

The conserved synteny of the locus encompassing Crb2 and

Lhx2 in vertebrates such as tetrapods and fish, led us to postulate

that there may exist cis-regulatory elements in this syntenic block

of Crb2 and Lhx2 that regulate the spatiotemporal expression of

Lhx2 and also Crb2 and Dennd1a located upstream. As described

by Kikuta et al. [40], genes that encode developmental TFs tend

to be embedded in regions of extensive conserved synteny known

as ‘‘genomic regulatory blocks’’, and their cis-regulatory elements

can be located far away, within or beyond neighbouring genes

that are functionally unrelated. Based on this concept, it was

necessary to examine the expression patterns of the adjacent

genes Crb2 and Dennd1a and investigate the possibility that Crb2

and Dennd1a are regulated by CNEs within the Crb2-Lhx2

conserved syntenic block. Crb2 encodes two alternative isoforms,

a transmembrane protein and a secreted protein, that are

calcium-ion binding and are implicated in response to stimulus

and visual perception. CRB2 is expressed in adult human retina,

brain, kidney, fetal eye and at lower levels in the lung, placenta

and heart [41]. In zebrafish, there are two paralogs of the

mammalian Crb2, oko meduzy (ome) and crb2b. The ome gene

expresses in the developing brain and retina from 24–72 hpf and

is essential for determining apico-basal polarity of neural tube

epithelial cells [42]. The crb2b gene expresses in the immediate

proximity of yolk sac and the pineal gland (epiphysis) from

24–48 hpf, and is highly enriched in the photoreceptor cell layer

and pronephros at 72 hpf. It determines apical surface size in

photoreceptors and is required for differentiation and motility of

renal cilia [42]. Hence, because Lhx2 and Crb2 express similarly

in the developing vertebrate brain and eye, there may also exist

shared enhancers within the Crb2-Lhx2 genomic region that direct

expression of these two genes. On the other hand, Dennd1a

encodes connecdenn, a component of the endocytic machinery

with functions in synaptic vesicle endocytosis [43]. Connecdenn

possesses an N-terminal DENN domain that is present in various

signaling proteins involved in Rab-mediated processes or the

regulation of MAP kinase signaling pathways [44], and other

domains that enable it to bind clathrin adaptor protein 2 (AP-2)

and synaptic Src homology 3 (SH3)-domain proteins. Recent

work has shown that connecdenn’s DENN domain acts as a

guanine nucleotide exchange factor for Rab35 GTPase, enabling

it to promote cargo-selective recycling from early endosomes

[45]. The expression of connecdenn is preferentially high in the

adult rat brain and testis, in particular the membranes of

neuronal clathrin-coated vesicles [43], and relatively lower in

liver, kidney, lung, heart and epididymis [46]. The expression

domains shared with Lhx2 (brain, liver) and Crb2 (brain, kidney,

lung, heart) might suggest that Dennd1a could be co-regulated

with Lhx2 and Crb2. However, Dennd1a has been lost from the

Functional Enhancers in Lhx2 Locus
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Crb2-Lhx2 conserved syntenic block in fugu, which implies that it

does not fall under the control of cis-regulatory elements in the

Crb2-Lhx2 region.

Expression patterns of Lhx2, Crb2 and Dennd1a in E11.5
mouse embryos

We determined the expression patterns of Lhx2, Crb2 and Dennd1a

genes in E11.5 mouse embryos by whole-mount in situ hybridization.

While the expression pattern of mouse Lhx2 at E11.5 has been

previously been determined [16,47,48], to the best of our knowledge,

there is no report of the expression patterns of Crb2 and Dennd1a

genes in E11.5 mouse embryos. Our in situ hybridization showed that

at E11.5, Lhx2 is expressed in the telencephalon, diencephalon,

midbrain, hindbrain, eye, dorsal neural tube and distal regions of the

limb buds (Figure 2A). This is in accordance with what has been

previously reported about Lhx2 expression [14,16,47]. Crb2 and

Dennd1a are expressed in the forebrain, midbrain, and hindbrain,

which is strikingly similar to Lhx2. In addition, Crb2 expresses in the

eye. However, compared with Lhx2, both genes are expressed more

highly in the medial regions of the telencephalon than in the lateral

regions (Figure 2B and C) and do not express in the neural tube or

the distal region of the limb buds.

CNEs in the Lhx2 gene locus
To identify a comprehensive list of CNEs that may direct the

expression of Lhx2, we aligned the entire region of conserved

synteny beginning from the end of the gene upstream of Crb2 to

the start of the gene downstream of Lhx2 in human and mouse and

the end of scaffold_334 in fugu (see Figure 1) using MLAGAN [31]

and predicted CNEs using VISTA [32]. The length of this region

is 989 kb in human, 808 kb in mouse and 186 kb in fugu

(Figure 3). Ten human-fugu and mouse-fugu CNEs were identified

using criteria $65% identity over 50 bp and were numbered

CNE1 to CNE10 (Figure 4), beginning from the CNE that is

located furthest from the transcription start site of Lhx2. The CNEs

are 51 bp to 243 bp in length (average 115 bp), possess 65% to

90% sequence identity (average 72% identity) and reside 219 kb to

619 kb upstream of human LHX2, within the introns of the

upstream gene DENND1A (Table 1; Figure 5).

Functional assay of CNEs in E11.5 transgenic mouse
embryos

The CNEs were amplified from mouse genomic DNA including

100–200 bp of flanking sequence on either end of the CNE, and

cloned upstream of a lacZ reporter gene whose expression is driven

by a mouse hsp68 minimal promoter (‘‘pHsp68’’). Transgenic mouse

embryos were generated and harvested at E11.5. The details of the

CNE constructs tested in transgenic mice are given in Table 1 and

Table S1. We studied the lacZ (b-galactosidase) expression patterns

that were directed under the control of each CNE. A CNE was

classified as a transcriptional enhancer if it directed reproducible

reporter gene expression in the same anatomical structure in at least

three independent transgenic mouse embryos.

CNE1
CNE1 is a 76-bp sequence located approximately 619 kb

upstream of human LHX2 within the 20th intron of DENND1A.

Altogether seven transgenic embryos were obtained for CNE1

construct, of which four (57%) showed no lacZ expression while

three (43%) showed varying patterns of lacZ expression (Figure S1).

Although two independent embryos showed similar expression in

the dorsal root ganglia (marked with red arrows in Figure S1), the

Figure 1. Lhx2 gene loci in human, mouse, chicken and fugu. Rectangles above the line indicate genes on the forward strand, while rectangles
below the line indicate genes on the reverse strand. Genes in blue are syntenic in the 4 species. Not drawn to scale.
doi:10.1371/journal.pone.0020088.g001

Functional Enhancers in Lhx2 Locus
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number of transgenic embryos displaying this pattern of expression

is not sufficient for this CNE to be classified as an enhancer. We

therefore concluded that CNE1 does not act as a transcriptional

enhancer at stage E11.5.

CNE2/3
CNE2/3 is a combination of two CNEs, CNE2 and CNE3,

which were tested together due to their close proximity to each

other (41 bp apart). These CNEs have a combined length of

210 bp, and are situated approximately 516 kb upstream of

human LHX2 in the 13th intron of DENND1A. A total of six E11.5

transgenic embryos were obtained for CNE2/3 construct, four

(67%) of which displayed reproducible expression in the neural

tube and dorsal root ganglia (Figure 6A and Figure S2) while the

remaining two embryos (33%) showed no expression. We

therefore conclude that CNE2/3 directs expression to neural tube

and dorsal root ganglia at E11.5. However, it should be noted that

this expression pattern differs from Lhx2 expression in the neural

tube; while lacZ appears to express in the ventral region of the

neural tube under the direction of CNE2/3, Lhx2 expresses in the

dorsal region at E11.5. Furthermore, the dorsal root ganglion is

not a domain of Lhx2 expression.

Figure 2. Expression of Lhx2, Crb2, Dennd1a in E11.5 mouse embryos. Expression patterns (ventral, lateral and dorsal views) as determined by
whole-mount in situ hybridization at E11.5 for genes (A) Lhx2, (B) Crb2, and (C) Dennd1a. Three to four embryos were assayed for each gene and all
embryos gave essentially the same results as these representative embryos. Scale bar at lower right corner denotes 1 mm in length. F: forebrain;
M: midbrain; H: hindbrain; E: eye; NT: neural tube.
doi:10.1371/journal.pone.0020088.g002

Functional Enhancers in Lhx2 Locus
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CNE4
CNE4 is a 119-bp element situated approximately 324 kb 59 of

LHX2, within the fifth intron of DENND1A. A total of five transgenic

embryos were obtained for E11.5, but none of them showed lacZ ex-

pression (data not shown). Hence, CNE4 is not an enhancer at E11.5.

CNE5/6
CNE5/6 is a combination of two CNEs, CNE5 and CNE6, that

are 38 bp apart and are located approximately 269 kb upstream of

human LHX2 within the fifth intron of DENND1A. A 719-bp

genomic fragment was amplified and cloned for this construct,

making it the longest element among all the constructs tested. A

total of five E11.5 transgenic embryos were obtained. Four (80%)

of these embryos had two lacZ-expressing anatomical features in

common - the hindbrain and the neural tube (Figure 6B and

Figure S3A – C) while the fifth embryo showed nearly ubiquitous

expression throughout the entire head and the dorsal part of the

embryo (Figure S3D). CNE5/6 is classified as a transcriptional

enfhancer at E11.5 because it directs reproducible reporter gene

expression to similar embryonic regions in independent transgenic

embryos. Although CNE5/6 does not recapitulate the expression of

Lhx2 in the dorsal region of the neural tube, it does partially

recapiftulate the expression of Lhx2, Crb2 and Dennd1a in the hindbrain.

CNE7
The 51-bp CNE7 is the shortest among all the 10 CNEs tested.

The orthologous sequences in human and fugu share 65%

identity. CNE7 is located in the third intron of DENND1A,

approximately 242 kb upstream of LHX2 in human. When

assayed in transgenic mice, this construct directed reporter gene

expression in the hindbrain and neural tube at E11.5. Among a

total of four transgenic embryos that were obtained, three (75%)

showed similar lacZ expression in the hindbrain and neural tube

(Figure 6C and Figure S4) while the remaining embryo did not

display any expression. Hence, CNE7 acts as a transcriptional

enhancer at stage E11.5. While CNE7 does not recapitulate Lhx2

expression in the dorsal region of the neural tube, it does partially

recapitulate Lhx2, Crb2 and Dennd1a expression in the hindbrain.

CNE8
CNE8, like CNE7, resides in the third intron of DENND1A,

approximately 234 kb upstream of human LHX2 gene. This

CNE does not act as an enhancer at E11.5, because no

lacZ expression was detected in four out of the six (67%) transgenic

embryos obtained for this developmental stage. The remain-

fing two embryos (33%) exhibited ectopic lacZ expression in

various anatomical structures with no reproducible similarities

(Figure S5).

CNE9
CNE9 is a 53-bp element, the second shortest CNE after

CNE7, that is also located in the third intron of DENND1A,

approximately 222 kb upstream of human LHX2. CNE9 was

amplified and cloned as part of a 261-bp insert fragment.

When assayed in transgenic mice, a total of eight transgenic

embryos were obtained, half of which showed no expression

(data not shown) while three embryos showed ectopic expression

in various tissues and the final embryo expressed lacZ

ubiquitously (Figure S6). Hence, CNE9 does not act as an

enhancer at E11.5.

CNE10
CNE10 is a 145-bp element that has the highest percentage

identity (,90%) in human and fugu among all the CNEs

assayed. CNE10 is located approximately 219 kb upstream of

human LHX2, immediately upstream of the third exon of

DENND1A. Because CNE10 encompasses a splice site of

DENND1A, it may be involved in the regulation of DENND1A

mRNA splicing. Nevertheless, we assayed this element for

enhancer activity in transgenic mice because the ortholog of

DENND1A is absent from the genomic region upstream of fugu

Lhx2 on scaffold_334 suggesting that the CNE may have been

retained during evolution due to selective pressure that arose

from an underlying cis-regulatory function. Indeed, CNE10 was

found to act as a transcriptional enhancer. Of the total seven

transgenic embryos obtained, three embryos (43%) showed

reproducible lacZ expression in essentially the same anatomical

features, the most rostral part of the midbrain, the hindbrain

and the neural tube (Figure 6D and Figure S7) while two

embryos showed ubiquitous lacZ expression throughout the

whole embryo and the remaining two embryos did not display

any lacZ expression. Although CNE10 does not recapitulate Lhx2

expression in the dorsal region of the neural tube at E11.5, it

does partially recapitulate Lhx2, Crb2 and Dennd1a expression in

the midbrain and hindbrain.

Figure 3. Region of conserved synteny in human, mouse and fugu used for sequence alignment. Lhx2 locus in human, mouse and fugu
used for sequence alignment. In human and mouse, Crb2 and Dennd1a overlap by ,100 bp at their 39 ends.
doi:10.1371/journal.pone.0020088.g003
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Summary of the expression patterns of CNEs
In summary, four out of the eight elements (50%) that we

assayed for enhancer activity in transgenic mouse embryos,

directed reproducible reporter gene expression in specific tissues

at E11.5 (Table 2). Elements CNE2/3, CNE5/6, CNE7 and

CNE10 directed lacZ expression to the neural tube with the latter

three also directing lacZ expression to the hindbrain. Thus there

was clear overlap in their domains of expression. In addition,

Figure 4. CNEs in the Lhx2 locus. Human, mouse and fugu Lhx2 loci were aligned using MLAGAN and CNEs ($65% identity over 50 bp) were
predicted with VISTA. Fugu served as the base sequence. Pink peaks denote CNEs while blue peaks denote conserved coding sequences. The arrows
above the blue boxes that denote exons indicate the direction of transcription. x-axis represents distance along the fugu sequence while y-axis shows
the percentage identity in each pairwise alignment. The pink peaks that are not annotated do not meet the thresholds of $65% identity over 50 bp.
doi:10.1371/journal.pone.0020088.g004
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CNE2/3 induced lacZ expression in the dorsal root ganglia while

CNE10 extended lacZ expression from the hindbrain into the

ventral and most rostral regions of the midbrain. Overall, these

four elements partially recapitulate Lhx2 expression in the

midbrain and hindbrain, but do not recapitulate the expression

of Lhx2 in the forebrain, eye, limb buds and dorsal neural tube at

E11.5.

Prediction of motifs in CNEs associated with transcription
factor-encoding genes that express in central nervous
system

Transcriptional enhancers typically comprise clusters of binding

sites for transcription factors (TFs). Since four of the Lhx2-

associated CNEs (CNE2/3, CNE5/6, CNE7 and CNE10)

function as enhancers directing expression to the central nervous

system, we reasoned that they might be enriched for motifs

(binding sites of TFs) that mediate expression in the central

nervous system. Since four is a small number for predicting motifs,

we decided to use the large set of human-fugu CNEs (,3,000

elements that are at least 65% identical over 50 bp) that we have

previously predicted in the TF-encoding gene loci in human and

fugu [49]. This is a comprehensive set of CNEs associated with

718 human TF-encoding genes that have orthologs in fugu. We

first extracted the expression data for 718 human-fugu TF

orthologs across 62 human tissues from GNF Human GeneAtlas

v2 [36]. The gene expression profiles were then clustered using the

k-means clustering algorithm, Cluster [38]. We experimented with

different values of k and selected the value k = 6 (resulting in six

clusters) for subsequent analysis because it performed best

qualitatively. Figure 7A shows the heat maps generated using

TreeView (http://rana.lbl.gov/EisenSoftware.htm) and Figure 7B

the corresponding average gene expression levels for each of the

62 human tissues across the six clusters. The CNE densities of

genes in expression clusters #1, #3, #4 and #6 (Figure 7C) are

higher than, but not significantly different (P.0.01; Wilcoxon

rank-sum test with Bonferroni correction for multiple testing)

from, those in other expression clusters. However, when the

number of CNEs and total length of CNEs per gene are

considered, genes in cluster #3 have a significantly higher number

of CNEs (5.90 CNEs per gene, P = 0.00983) than genes in other

clusters, although their total length is not significantly high

(total length 800 bp per gene, P = 0.0124) (Figure 7C). This cluster

consists mainly of genes that express highly in different regions of

the brain (e.g., prefrontal cortex, amygdala, whole brain) and

spinal cord, which make up the central nervous system. This

suggests that TF-encoding genes that predominantly express in the

central nervous system contain higher numbers of CNEs

compared to TF-encoding genes that express in other tissues.

This inference is in agreement with our previous findings that

genes that are involved in development, in particular development

of the central nervous system, are enriched with CNEs [49]. In

addition, these results are consistent with the findings of Sironi et

al. [50] that central nervous system-expressed genes tend to be rich

in CNEs while Pennacchio et al. [29] who had verified ,80

transcriptional enhancers in developing mouse embryos, found

that the enhancers directed reporter expression most frequently in

the brain and neural tube. More recently, a similar association

between ultraconserved noncoding elements (noncoding sequences

exceedingly conserved in human, chimp and mouse) and genes

that preferentially express in the central nervous system has been

described [51]. Using the GNF Human GeneAtlas, this study

found that nine out of the ten tissues that express genes most

significantly associated with ultraconserved noncoding elements

constitute various members of the central nervous system.

The identification of a large number of CNEs (810 CNEs)

associated with genes that express in the central nervous system

(cluster #3) (Figure 7B) allowed us to search for over-represented

motifs using the motif finding program, Weeder [39]. Comparison

of CNEs associated with cluster #3 genes and non-cluster

#3 genes (810 CNEs of 117 genes vs. 1,684 CNEs of 601 genes)

resulted in the detection of four over-represented 8-mer motifs

(P,0.01) (Table 3). These over-represented motifs in CNEs of

cluster #3 genes presumably represent binding sites for TFs that are

involved in directing expression of the target gene to the central

Figure 5. Location of CNEs in the human LHX2 locus. The exons of protein-coding genes are shown in light/dark blue or green rectangles. The
CNEs are located within the introns of the upstream gene DENND1A are indicated by red rectangles that extend above the exons.
doi:10.1371/journal.pone.0020088.g005

Table 1. Details of CNEs tested in transgenic mice.

CNE
construct

Length of
CNE(s) (bp)

Percentage
identity of
CNE(s)

Distance from
TSS of human
LHX2

Location of
CNE(s)

CNE1 76 69.1% 619 kb DENND1A
intron 20

CNE2/3 210 75.0% 516 kb DENND1A
intron 13

CNE4 119 71.4% 324 kb DENND1A
intron 5

CNE5/6 380 72.3% 269 kb DENND1A
intron 5

CNE7 51 64.7% 242 kb DENND1A
intron 3

CNE8 120 67.7% 234 kb DENND1A
intron 3

CNE9 53 69.8% 222 kb DENND1A
intron 3

CNE10 145 89.7% 219 kb DENND1A
intron 2

TSS: transcription start site.
doi:10.1371/journal.pone.0020088.t001
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nervous system. Interestingly, all the four motifs contain the

‘‘TAAT’’ motif characteristic of homeodomain TF binding sites

(TFBS) [52]. Two of the motifs (motif #1, ‘ATTAACCG’ and motif

#4, ‘TGATTACG’) coincide with two pentamer motifs (‘ATTAA’

and ‘GATTA’) previously reported to be enriched in four human-

fugu CNEs that drove reporter gene expression in the mouse

forebrain [29]. Motif #2 (‘CTAATTAG’) shares the ‘TAATT’

sequence of homeodomain TFBS, whose co-occurrence with SOX

and POU TFBS in highly conserved mammal-fugu CNEs was

proposed to be associated with gene expression in the central

nervous system [53]. However, the motifs identified by Pennacchio

et al. [29] and Bailey et al. [53] that coincide with our motifs, were

not experimentally tested for functional activity in the central

nervous system. Finally, a third study searched 13 forebrain

enhancers conserved in human and zebrafish and identified five

hexamer motifs that were enriched [54]. Mutation of the 5 motifs in

some forebrain enhancers significantly reduced or altered enhancer

activity and hence these motifs were deduced to be critical for

forebrain enhancer activity. Our motif #3 (‘CATTAGCG’)

partially corresponds to one of their motifs ‘AATGGA’.

We searched TRANSFAC for TFBS that matched instances of

the four motifs in our 810 human-fugu CNEs associated with

Figure 6. Lhx2-associated CNEs direct expression to various tissues in E11.5 mouse embryos. Lateral and dorsal views of a representative
transgenic embryo for each construct. (A) CNE2/3; Strong lacZ expression was observed in the neural tube and dorsal root ganglia. (B) CNE5/6;
(C) CNE7; lacZ expression was observed in the hindbrain and the neural tube for CNE5/6 and CNE7. (D) CNE10. lacZ expression extending from the
most rostral region of the midbrain to the hindbrain and the entire length of the neural tube. Additional ectopic lacZ expression was detected in the
diencephalon for this embryo. Scale bar denotes 1 mm in length. M: midbrain; H: hindbrain; NT: neural tube; DRG: dorsal root ganglion.
doi:10.1371/journal.pone.0020088.g006

Table 2. Summary of the expression patterns directed by CNE constructs.

Number of mouse embryos Reproducible expression pattern (if any)

CNE
construct Transgenic

No lacZ
expression

Ubiquitous
expression

Ectopic
expression

Reproducible
expression Midbrain Hindbrain Neural tube

Dorsal root
ganglia

CNE1 7 4 - 3 -

CNE2/3 6 2 - - 4 N N
CNE4 5 5 - - -

CNE5/6 5 - 1 - 4 N N
CNE7 4 1 - - 3 N N
CNE8 6 4 - 2 -

CNE9 8 4 1 3 -

CNE10 7 2 2 - 3 N N N
doi:10.1371/journal.pone.0020088.t002
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Figure 7. TF-encoding genes predominantly expressed in the central nervous system are enriched with CNEs. (A, B) Tissue expression
patterns of 718 human TF-encoding genes. (A) Each of the six panels displays a heat map. The rows and columns of each heat map represent human
TF-encoding genes and 62 human tissues respectively. (B) Each graph represents the average gene expression levels of a cluster of TF-encoding
genes. Expression cluster #3 consists of genes that predominantly express in the central nervous system. (C) The table pertains to the CNE density
(CNE bases per kb of noncoding sequence in a human gene locus), the number and total length of CNEs per TF-encoding gene in different expression
clusters.
doi:10.1371/journal.pone.0020088.g007
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central nervous system-expressing genes. The identified sites

included binding sites for homeodomain TFs such as HoxA5,

Brain-2, Islet-1 and Pit-1 (Table 3) which are implicated in the

development of the nervous system [55,56,57,58]. Thus, the motifs

we have found in the central nervous system CNEs are likely to be

the binding sites for TFs that mediate expression of genes in the

central nervous system. These motifs are putative targets for

experimentally verifying TFBS in CNEs and for identifying

upstream regulators of the associated TF-encoding gene.

Besides cluster #3, genes of clusters #1 and #6 also display

relatively high numbers of CNEs although the association of these

genes to presence of CNEs is not statistically significant. Cluster

#1 genes are expressed highly in the human lung, placenta,

prostate, thyroid and uterus (top five expression domains)

(Figure 7B). To the best of our knowledge, these expression

domains have not been previously associated with enrichment of

CNEs. Cluster #6 genes are expressed highly in the human

skeletal muscle, superior cervical ganglion, trigeminal ganglion,

appendix and uterus corpus (top five expression domains)

(Figure 7B). Among the top 10 expression domains, four tissues

(superior cervical ganglion, trigeminal ganglion, adrenal cortex

and ciliary ganglion) are derived from the neural crest.

TF-encoding genes such as Sox10 [59] and Pax3 [60] are known

to be associated with conserved enhancers that mediate gene

expression in the neural crest or its derivatives. Despite having no

significant enrichment of CNEs, the genes in the expression

clusters other than cluster #3 may still be enriched for motifs that

direct expression to the tissues characteristic of each cluster. To

obtain a more complete list of motifs enriched in all TF-encoding

genes, we searched the CNEs associated with the genes of the

remaining expression clusters and identified two to twelve motifs

enriched in CNEs of each cluster (Table S2).

Site-directed mutagenesis of a predicted motif in CNE2/3
Among the 10 CNEs predicted by us in the Lhx2 locus, CNE2

contained 1 instance each of motifs #2 (with 1 base mismatch) and

#4 (2 mismatches) (Table 3); and CNE4 contained 1 instance each

of motifs #1 (2 mismatches) and #4 (2 mismatches). No other

motif instance could be found in these or the other CNEs. The

locations of these putative motif instances are shown in Figures S8,

S9, S10, S11, S12, S13, S14, S15, S6, S17. Interestingly, while

CNE2 is part of the CNE2/3 construct that directed expression to

neural tube and dorsal root ganglia, CNE4 did not drive expression

of reporter gene in transgenic mouse embryos at E11.5. This

suggests that CNE4 may be active in the central nervous system at

some other stage of development. Alternatively, motif #1 has

occurred in this CNE by chance and is not acting as a

transcription factor binding site. The latter hypothesis is more

likely because the motif #1 instance is not conserved in fugu

(see Figure S9). To determine if the motifs predicted in CNE2 are

functional, we selected CNE2/3 construct, which directed

expression to the neural tube and dorsal root ganglia. This

construct has two motif instances ‘AGTAATTA’ and ‘GTAAT-

TAG’ that overlap each other (bases that match motifs #4 and #2

are underlined) and are located at the 59 end of CNE2 (Figure S9).

We mutated the ‘TAATTA’ subsequence to ‘GGGGGG’

(Figure 8A). We then tested the mutant construct in transgenic

mice at stage E11.5. A total of 13 transgenic embryos were

obtained. The expression in 3 embryos (23%) displayed lacZ

expression patterns that are faintly similar to but significantly

truncated compared with the expression pattern of the wild-type

construct (Figure 8B–F). Two embryos (15%) showed ubiquitous

lacZ expression throughout the entire embryo and notably, while

8 embryos (62%) showed no lacZ expression. Hence, through the

mutation of the predicted motif, the enhancer activity of CNE2/3

was either significantly reduced or completely abolished.

Discussion

In this study, we have used evolutionary constraint as an

indicator for identifying conserved enhancers directing the

expression of Lhx2 gene. By aligning Lhx2 locus from distantly

related vertebrates such as human and fugu, we identified

10 CNEs in the greater Lhx2 locus that encompasses three genes.

We tested the 10 CNEs as a set of eight constructs in transgenic

mice and found that four elements confer restricted expression

patterns in transgenic mouse embryos at E11.5. These four CNEs

directed reporter gene expression to mainly the hindbrain and the

neural tube, partially recapitulating the endogenous expression

pattern of Lhx2 at E11.5. In addition, one of these CNEs (CNE10)

directed reporter expression to the rostroventral midbrain while

another CNE (CNE2/3) induced reporter expression in the dorsal

root ganglia. As for the four CNEs that did not display specific

spatiotemporal reporter gene expression, they may direct

expression at other stages of development or they may act as

transcriptional silencers instead of enhancers, and therefore

would not be detected by the minimal promoter-reporter

construct used.

Table 3. Over-represented 8-mer motifs in CNEs of cluster #3 genes.

Known TFBS

No.
Motif (and reverse-
complement) No. of instances P-value Sequence TF References

1 ATTAACCG (CGGTTAAT) 159 1.1610212 ATGYTAAT Brn2 [64]

2 CTAATTAG (palindromic) 276 6.861028 GCATAATTAAT Brn3 [65]

TAATTA HoxB1, HoxB3 [66]

3 CATTAGCG (CGCTAATG) 98 5.261024 CYYNATTAKY HoxA5 [67]

CATTAG Isl-1 [68]

4 TGATTACG (CGTAATCA) 124 4.261023 AATTAATCAA Pit-1 [69]

Human-fugu CNEs of cluster #3 human transcription factor-encoding genes were compared against CNEs of non-cluster #3 transcription factor-encoding genes.
Number of instances of each motif was determined by searching each motif in the human-fugu CNEs permitting at most 2 mismatches. P-values were calculated based
on a chi-squared test followed by Bonferroni correction for multiple testing. Underlined portion of TFBS sequence indicates similarity with motif. TF, transcription factor;
TFBS, TF binding sites.
doi:10.1371/journal.pone.0020088.t003
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Lhx2 is located within a conserved syntenic block that spans at

least 14 genes in tetrapods (Figure 1). However, the conserved

syntenic block covers only three genes in mammals and fish,

namely Crb2, Dennd1a and Lhx2. Furthermore, the duplicated copy

of the intervening gene Dennd1a has been lost in the fugu Crb2-Lhx2

locus. The Crb2-Lhx2 is reminiscent of ‘‘genomic regulatory

blocks’’ (GRBs) previously described by Kikuta et al. (2007) based

on conserved syntenic blocks of genes and CNEs in mammals and

teleost fishes. GRBs are long-range conserved syntenic regions

characterized by the presence of CNEs and their target genes in

addition to ‘‘bystander’’ genes that are specifically not under the

control of the CNEs. Consequently, the bystander genes can be

‘‘lost’’ from the GRBs in some species such as teleosts that have

experienced a ‘‘fish-specific’’ whole-genome duplication. The loss

of the duplicated Dennd1a in the fugu Crb2-Lhx2 locus indicates

that this could be a bystander gene in this locus. The four CNEs

that were showed to be functional enhancers in our transgenic

mouse assay directed expression, among other domains, to the

midbrain and hindbrain. Since both Crb2 and Lhx2 are expressed

in these domains in mouse embryos at E11.5, it is possible that

these CNEs may be directing the expression of Lhx2 and/or Crb2.

Interestingly all four functional CNEs have one expression domain

in common – the full length of the neural tube, in particular the

ventral region. Since both Lhx2 and Crb2 are not expressed in this

domain, the possibility remains that these enhancers may be

directing the expression of other genes, possibly those located

downstream of Lhx2 for which we have not yet determined to be

syntenic in fishes and mammals. An alternative possibility is that

the Lhx2 locus may contain silencers that repress the expression of

Lhx2 and Crb2 in the ventral region of the neural tube.

By identifying a large number of CNEs associated with TF

encoding-genes that predominantly express in the central nervous

system, we predicted motifs that are over-represented in such

CNEs. We then hypothesized that motifs may represent

TF-binding sites that are essential for directing expression to the

central nervous system. We tested this hypothesis through site-

directed mutagenesis of a predicted motif instance, motif #2, in

CNE2/3, that directed expression to the neural tube. Mutation of

the motif ‘TAATTA’ in this CNE resulted in the abolition of

reporter gene expression in the neural tube. This indicates that the

motif is necessary for the CNE2/3 enhancer to direct gene

expression to the neural tube. This motif shares the ‘TAATT’

sequence with the homeodomain binding model by Bailey et al.

[53] and a forebrain-associated motif of Pennacchio et al. [29].

However in these studies, the motifs were not tested for functional

activity in the central nervous system. We have now tested and

provided experimental evidence that motif #2 is indeed necessary

for expression in the neural tube. Interestingly, CNE2/3 also

directed expression to the dorsal root ganglia which is part of the

peripheral nervous system, and mutation of motif #2 in this

construct resulted in abolition of expression in this domain. These

results suggest that motif #2 also plays a role driving expression in

the peripheral nervous system in the embryo.

Out of the four CNEs that showed expression in the central

nervous system and the dorsal root ganglia, three showed

overlapping expression in the hindbrain and all showed similar

Figure 8. Site-directed mutagenesis of overlapping motifs in CNE2. (A) Wild-type and mutant sequences of overlapping motifs in CNE2.
(B) lacZ expression although still detectable in neural tube and dorsal root ganglia, is greatly reduced especially in the anterior neural tube. (C, D)
Faint lacZ expression in neural tube is present in two different embryos, and visible under higher magnification in (E, F). Yellow scale bar denotes
1 mm in length. Red scale bar denotes 0.2 mm in length.
doi:10.1371/journal.pone.0020088.g008
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expression in the neural tube. These overlapping expression

patterns of the different enhancers suggest that they are either

associated with different genes in this locus or alternatively,

redundant enhancers of the same gene. Similar enhancers showing

overlapping patterns of expression have been previously identified

in the screening of mammal-chicken CNEs in the Sox10 locus [59]

and in a 1-Mb region surrounding the Shh locus [61]. Such

apparently redundant enhancers are believed to be retained to

ensure robust and high levels of expression of target genes and/or

to serve as templates for evolution of novel enhancers. Interest-

ingly, based on studies in Drosophila, some apparently redundant

enhancers have been found to be essential for survival in extreme

conditions because they maintain optimal levels of target gene

expression and confer phenotypic robustness [62,63]. For

example, deletion of two enhancers that direct shavenbaby

expression in overlapping domains in Drosophila results in only

minor defects in trichome development under normal conditions,

whereas a significant loss of trichomes is observed at extreme

temperatures [62]. Such apparently redundant enhancers have

been termed as ‘‘shadow’’ or secondary enhancers which function

in concert with primary enhancers that reside closer to the target

gene. It remains to be seen if the apparently redundant enhancers

identified in the Lhx2 locus act as shadow enhancers.

As the four functional CNEs that we have identified in the Lhx2

locus do not direct expression to the forebrain, eye, limb buds and

dorsal neural tube in which Lhx2 normally expresses at E11.5,

additional analyses have to be conducted to identify the complete

repertoire of cis-regulatory elements that recapitulate the full

expression pattern of Lhx2. It is possible that some cis-regulatory

elements that direct specific spatiotemporal expression of Lhx2 lie

outside the locus studied. Alternatively, the cis-regulatory elements

present within the genomic region we have analyzed are divergent

in mammals and fish and cannot be detected by human-fish

sequence comparisons. Comparisons among several mammalian

species may help to identify such lineage-specific enhancers.
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