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Abstract

Background: The need for efficient algorithms to uncover biologically relevant phosphorylation motifs has become very
important with rapid expansion of the proteomic sequence database along with a plethora of new information on
phosphorylation sites. Here we present a novel unsupervised method, called Motif Finder (in short, F-Motif) for identification
of phosphorylation motifs. F-Motif uses clustering of sequence information represented by numerical features that exploit
the statistical information hidden in some foreground data. Furthermore, these identified motifs are then filtered to find
‘‘actual’’ motifs with statistically significant motif scores.

Results and Discussion: We have applied F-Motif to several new and existing data sets and compared its performance with
two well known state-of-the-art methods. In almost all cases F-Motif could identify all statistically significant motifs
extracted by the state-of-the-art methods. More importantly, in addition to this, F-Motif uncovers several novel motifs. We
have demonstrated using clues from the literature that most of these new motifs discovered by F-Motif are indeed novel.
We have also found some interesting phenomena. For example, for CK2 kinase, the conserved sites appear only on the right
side of S. However, for CDK kinase, the adjacent site on the right of S is conserved with residue P. In addition, three different
encoding methods, including a novel position contrast matrix (PCM) and the simplest binary coding, are used and the ability
of F-motif to discover motifs remains quite robust with respect to encoding schemes.

Conclusions: An iterative algorithm proposed here uses exploratory data analysis to discover motifs from phosphorylated
data. The effectiveness of F-Motif has been demonstrated using several real data sets as well as using a synthetic data set.
The method is quite general in nature and can be used to find other types of motifs also. We have also provided a server for
F-Motif at http://f-motif.classcloud.org/, http://bio.classcloud.org/f-motif/ or http://ymu.classcloud.org/f-motif/.
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Introduction

Protein phosphorylation, mediated via a group of enzymes

(called kinases) that performs addition of a phosphate (PO4) group

usually to serine (S), threonine (T), tyrosine (Y) residues, is one of

the most frequent forms of post-translational modification

mechanisms. In prokaryote, aspartic acid/glutamic acid might

be considered to be involved in the process through histidine-

specific protein kinases. Although only 518 kinases are identified

among about 30,000 human proteins, more than 30% of human

proteins are affected by kinase-mediated phosphorylation and

nearly half of kinases (244) have close relationships with cancers

and other diseases [1,2]. Modification of proteins via phosphor-

ylation is considered a key event that is involved in the most

abundant form of cellular regulation including metabolism, signal

transduction pathways, transcription, translation, membrane

transport, cell growth and cell differentiation [3,4]. Thus, gaining

an understanding of the mechanism of kinase-specific phosphor-

ylation is an important step in explaining the role of protein

functions in the regulation of cellular processes.

Recently, through in vivo or in vitro experiments and due to the

advent of mass spectrometry techniques, a huge number of

phosphorylation sites have been identified and collected in a

number of databases, such as ‘‘PHOSIDA’’ [5], ‘‘Phospho.ELM’’

[6], and ‘‘PhosphoSitePlus’’ (http://www.phosphosite.org/). Fur-

thermore, patterns (or motifs) surrounding phosphorylation sites,

which are viewed as the guidance rules for different kinases to

recognize their corresponding protein substrates, have also been

gathered in several databases, e.g., ‘‘PhosphoSitePlus’’, ‘‘Scansite’’

[7], ‘‘Mini-motif Miner’’ [8], and ‘‘PhosphoMotif Finder’’ [9].

However, even though a huge amount of phosphor-proteomics

data across a wide range of species are being continuously

generated [10,11,12], information about the kinases responsible

for such modification is lacking. Hence, many computational

methods have been developed, based on the assumption that each

kinase recognizes its corresponding specific substrate peptides in
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ensuring phosphorylation signaling fidelity, to identify the

plausible kinase. These methods can provide fast and automatic

annotation of kinase-specific phosphorylation. In this context,

investigators have focused attention on two kinds of in silico

research topics: phosphorylation site prediction [13,14,15] and

phosphorylation motif extraction [16,17].

Considering the fixed length of aligned peptides centered on

serine residue, here we focus on extraction of a set of

phosphorylation motifs that are over-represented in the phosphor-

ylated peptides but under-represented in the unphosphorylated

peptides. A similar strategy is also adopted in other studies [16,17].

Such approaches can help us to extract consensus motifs hidden in

substrate peptides surrounding phosphorylation sites. These motifs

may provide more precise rules to guide kinase-substrate

recognition. In a previous study [18], phosphorylated peptides

are further clustered into several subgroups to extract more

delicate patterns for increasing the accuracy of phosphorylation

site prediction. There are several other protein/DNA motif

extraction methods that can be used to analyze phosphorylation

data [19,20,21]. These methods are based on groups of long

unaligned background sequences to score motifs, a concept motivated

by the discovery of transcription factor binding sites. Since these

methods consider mixed information surrounding phosphorylated

and unphosphorylated sites, they do not explicitly identify motifs

in a set of phosphorylated peptides.

As mentioned earlier, using a set of aligned phosphoproteomics

data, two methods, called Motif-X [16] and MoDL [17], were

developed for identifying phosphorylation motifs. In fact, these two

methods identify two different kinds of motifs. Motif-X tries to

extract a type of motif with only one identifiable character in a

specific locus (For example, a 13-mer pattern = ‘‘…RR.S……’’).

MoDL identifies motifs with a mixture of information (more than

one possible character) in a specific position (ex., pat-

tern = ‘‘…[RK][RTD].S……’’). Here ‘‘…’’ represents wild-card

characters (any character is possible). These two types of motifs are

quite popular and useful to biologists to examine consensus

information in given sequences. In this study, we mainly compare

the performance of our method with that of Motif-X because our

new scheme extracts motifs of the same type found by Motif-X.

Our method usually finds the same set of motifs found by Motif-X,

but often it also finds delicate patterns overlooked by Motif-X as a

consequence of the fact that Motif-X extracts patterns initially

using all of a given set of phosphorylated peptides. By using

progressive clustering of the data, we have been able to present an

improved approach that can detect those key delicate patterns

overlooked by Motif-X.

We have also made a comparison of our method with MoDL.

However, the motifs sought by MoDL are mixture motifs and

therefore not strictly the same as those sought by our method.

Thus to make a proper comparison, we break up a mixture motif

found by MoDL into motifs with single residues (e.g., [RK][RK].S

can be thought of as RR.S, RK.S, KR.S and KK.S), and then

check the statistical significance of these single-residue motifs. We

have found that our method finds those motifs which are extracted

by MoDL and are statistically significant. Some of the motifs found

by MoDL are statistically not significant and our method does not

identify them, thereby providing an important improvement.

Moreover, our method also discovers some novel motifs not

identified by MoDL. Since we compare our results with Motif-X

and MoDL, for the sake of completeness we provide a very brief

introduction of them in Text S1.

Most motif finding methods usually try to extract patterns

initially using all of a given set of phosphorylated peptides.

However, these approaches often result in failure to identify

delicate patterns that are obscured by stronger patterns in the

data. Since we believe that some key patterns can only be observed

in a part of a set of phosphorylated peptides, we use progressive

clustering of the data, which results in a refined approach, to

identify the key patterns. Clustering techniques can be very

effective in grouping peptides with highly similar patterns into

clusters. Thus, we may be able to extract consensus sequence

motifs from those clusters. We briefly illustrate this process

in Figure 1. Considering a set of PKA kinase substrate peptides,

the subfigure 1(a) at the center depicts the sequence logo of the

PKA kinase foreground data. After clustering this foreground

data, we can get the subfigures 1(b),(g) representing various

motifs: ‘‘….R.S……’’, ‘‘…R..S……’’, ‘‘…RK.S……’’, and

‘‘.R.R..S……’’, etc. Thus, we see that each such cluster is rich

enough in information to extract the kinds of motifs identified by

both Motif-X and MoDL. In this study we propose an algorithm,

called F-Motif, that not only extracts motifs of the type identified

by Motif-X, but usually also outperforms the latter in several

respects, including finding additional motifs not found by Motif-X.

Facts from published literature, reveal that some of these

additional motifs (found by F-Motif) are well established using

laboratory experiments. Further, F-Motif also uncovers novel

substrate motifs that are yet to be assigned to specific kinases. Also

we have checked the statistical significance of each of the single-

residue motifs obtained after breaking up mixture motifs identified

by MoDL. We find that F-Motif identifies all of the statistically

significant motifs identified by MoDL, and ignores motifs found by

MoDL which are not statistically significant. F-Motif also identifies

motifs that are novel and not identified by MoDL.

Materials and Methods

Data Sets
In this study we have performed four sets of experiments to

compare the motif-discovery ability of F-Motif with that of Motif-

X and MoDL. In one of our experiments, as our foreground data

we have collected only the serine-phosphorylated peptides of

length 13 (i.e., 13-mers centered at serine) from the Phospho.ELM

database (Version 8.1) [6], which are experimentally determined

to be substrates of different kinases. Also, considering all available

proteins in the Phospho.ELM database, we have extracted all

peptides of length 13, (i.e., 13-mers) centered on serine as one kind

of background data. Thus this background data set consisting of

more than 300,000 peptides includes both serine-phosphorylated

and serine-non-phosphorylated peptides. We shall denote the

foreground data set as F while the background data set will be

called B. Based on the species information available for those

proteins in the Phospho.ELM database, we have further separated

this background data into two species-related background data

sets: considering only human species (more than 200,000 peptides)

and all species together. Considering the interactions of phos-

phorylated peptides with different kinases and species, several

foreground data sets are created. More specifically, four

foreground data sets are generated for human species, one for

each of the four kinases, PKA, PKC, CK2, and CDK. Similarly,

we have created four other foreground data sets considering all

species together.

For comparison, we shall also use two foreground data sets from

Schwartz and Gygi [16] in conjunction with different background

data sets generated from the Phospho.ELM database. In [16], one

foreground data set collected by Schwartz and Gygi comprised

multiple sets of different kinase substrates, and the other one was

artificially generated by them containing five synthetic motifs.

Finally, we shall use a large-scale mass spectrometry data set for
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mouse species with more than five thousand serine-phosphorylated

sites [22]. Note that, in our experimental analysis with the mass

spectrometry data for mice, we use a background data set different

from the first three experiments. This background data set is

obtained from the IPI mouse database (http://www.ebi.ac.uk/

IPI/) also considering peptides from mouse proteins of length 13-

mers centered at serine. For a fair comparison with Motif-X and

MoDL, we have removed multiple copies of same 13-mers (since

both methods removed multiple copies). However, if the multiple

copies of a 13-mers are coming from diffe‘rent proteins, it may not

be rational to remove them. For Experiment 2 (described later), as

an illustration, we have reported the additional motifs that F-Motif

can get without removing the additional copies of repeated 13-

mers. These foreground and background data sets are briefly

summarized in Table 1 and further explained in Text S1.

Motif Finding Algorithm
A sequence motif is a pattern that appears frequently in a group

of related proteins or DNA sequences and may correlate with some

biological functions [23,24]. Here we are interested to find motifs in

phosphorylated proteins. To identify such motifs algorithmically we

need some computational definition for a motif. Different researchers

use different definitions for this [16,17]. In order to find a motif,

Motif-X [16] uses two natural conditions: each residue/position

pair in a motif should be statistically significant and a motif must

appear in the foreground data adequately. To satisfy the first

condition the P-value for each residue/position pair in a motif,

computed according to a Binomial distribution based model, should

be less than a threshold (PT) and to satisfy the second condition the

frequency of occurrence of a motif in the (current) foreground data

should be more than a threshold (M). In this study we use this definition to

discover motifs. Clearly, different choices of PT and M may result in

different sets of motifs and we cannot make inferences about false

positive/negative without wet-lab validation. If we use a stricter

threshold for PT and M, the identified motifs are more likely to be

true motifs, but we may also miss some true motifs as well. Since

such computational methods do not explicitly use any biological

knowledge, such situations will arise with all computational

approaches. We emphasize that PT and M are not algorithmic

parameters but are related to the definition of a motif. In Motif-X,

M = 20 and PT = 1026 have been used. So, to compare our results we also use

the same protocol.

Let F be the original sequence data consisting of a set of

sequences of length 13-mers of serine-phosphorylated peptides. To

find the motifs we cluster these serine-phosphorylated peptide

sequences, because a motif represents highly conserved positions

and we expect to have clusters representing instances that match a

particular motif. In other words, if we cluster sequences of

phosphorylated peptides, subsets of sequences with the same

conserved positions should be part of the same cluster. To cluster

the peptide sequences, we use an appropriate encoding of the

sequences to get a numeric representation, F*, of F. In this study

we use the k-means algorithm (explained in Text S1), but other

clustering algorithms such as the Fuzzy c-means may also be used

[25]. Once we get such clusters, we can analyze them and identify

the motifs. This is our strategy here. To implement such an

approach, we use a three-step procedure as outlined in Fig. 2:

Encoding of sequence data, Clustering and finding of potential

and candidate motifs, and Identification of the motif set.

Step 1: Encoding of sequence data. For useful clustering of

sequence data the choice of the encoding method, to convert F to F*,

is of utmost importance. The success of such a method may

significantly depend on the encoding method used. Here we use two

kinds of score matrices for encoding: Position Contrast Matrix (PCM)

and Position Weight Matrix (PWM) (explained below). PWM has

been used in other studies but for different problems [26,27]. In

Figure 1. An illustration of extraction of different consensus sequence motifs by clustering process. A set of fixed length sequences are
represented by a sequence logo. Sequence logo (a) represents all of the PKA kinase substrates. The sequences in (a) are split into several clusters.
Each cluster is then represented by a sequence logo. Sequence logos (b),(g) represent PKA kinase substrates in different clusters.
doi:10.1371/journal.pone.0020025.g001
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addition to these, we also explore the effectiveness of binary coding (to

be explained later). The encoding method should enhance the

contrast between the foreground data (sequences of phosphorylated

peptides) and background data (sequences of phosphorylated and

non-phosphorylated peptides). The score matrices are defined using

some foreground (F) and some background (B) data sets. The encoded

foreground data set is represented as F*.

N Position Weight Matrix (PWM) [28,29]. This score

matrix is defined primarily using the foreground data. We

calculate the relative frequency of a residue at each position in

the foreground data and divide it by the relative frequency of

that residue in the entire Phospho.ELM database. The relative

frequency of residue i at location j is computed as

fij~
nijz0:05

Nz1
, where nij is the frequency of residue i at

location j in the foreground data and N is the number of

fragments in the foreground data (i.e., the size of the

foreground data set). The addition of 0.05 is to ensure that

fij never becomes zero as we have to take the logarithm of it.

The constant 1 in the denominator can be dropped, but we

have kept it as other researchers have used it [29,30]. Let ni be

the frequency of residue i in the entire Phosph.ELM database

and n~
P20

i~1

ni and then the relative frequency of residue i is

given by Ei~ni=n. Let us illustrate it using a fixed length

(2s+1)-mers, where s.1 is an integer. For example with s = 6,

we have fragments of length 13. Thus, for s = 6, the PWM is

defined as

PWM~ aij~ln
fij

Ei

� �
; i[ AAf g, j~{6,:::,6: ð1Þ

Here AAf g is the set of residues.

N Position Contrast Matrix (PCM). An effective encoding

scheme should enhance the contrast between the foreground

and background data. Thus, the Position Contrast Matrix is

defined using the ratio of probabilities of a residue at a

particular position in the foreground data and in the

background data. Thus the PCM score matrix for fragments

of length 13-mers (i.e., s = 6) is defined as

PCM~ aij~ln
Afij

Bfij

� �
; i[ AAf g,j~{6,:::,6: ð2Þ

In Equation (2) AAf g is the set of residues, Afij~nij

�
N is the

probability of occurrence of residue i at position j in the

foreground data, while Bfij is the same in the background data.

Note that, Afij is essentially the same fij used in Equation (1).

Given a sequence of residues of length 13, we replace the

residue i at position j by aij resulting in a vector of length 13 as

explained in Figure 2.

Note that, we can use any other meaningful coding scheme

including binary coding. The coding scheme should enhance the

distinction between the phosphorylated and background sequenc-

es. We shall demonstrate later that binary coding is also reasonably

effective with our algorithm.

Step 2: Clustering and finding of potential and candidate

motifs. The general outline of the Step 2 process is to cluster the

phosphorylated data F* into k clusters. Then from each cluster we

select one potential motif, if that satisfies our criteria. Thus from k

clusters we can get a list of at most k potential motifs. From this list

of potential motifs, we select the best one (please refer to the

filtering rules described later in Task-2). This best potential motif is

added to a list of candidate motifs, called ‘‘CM’’, CM = {m1, ..., mt}; t is

the number of distinct candidate motifs. This process of finding

Table 1. Summary of the data sets.

Data set (No. of peptides) Description

Foreground data sets FM (298) Foreground data set comprised of the multiple sets of ATM,
Casein II, CaMK II, and MAPK kinase substrates [16].

FAPKA (306) Foreground data sets from the Phospho.ELM database
considering all species with respect to PKA, PKC, CK2, and CDK
kinase substrates.

FAPKC (297)

FACK2 (241)

FACDK (209)

FHKA (187) Foreground data sets from the Phospho.ELM database
considering only human species with respect to PKA, PKC, CK2,
and CDK kinase substrates.

FHPKC (209)

FHCK2 (177)

FHCDK (155)

FS (9774) Synthetic foreground data set consisting of five specially
designed motifs ‘‘…D..SQ.N…’’, ‘‘….R.S..L…’’, ‘‘…TV.S.E….’’,
‘‘….R.S..P…’’, and ‘‘…..KS…I..’’ [16].

FMS (4189) Foreground data set from mouse mass spectrometry data [22].

Background data sets BA (346248) All species background data set from the Phospho.ELM
database.

BH (233805) Human background data set from the Phospho.ELM database.

BM (514792) Mouse background data set from the IPI mouse database.

doi:10.1371/journal.pone.0020025.t001
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Figure 2. Overview of motif finding steps. In Step 1, for PCM we use the background data and foreground data, for PWM encoding, in place of
the background data we use the entire Phospho.ELM database, while for binary encoding neither the foreground nor the background data are used.
In Step 2 the k-means clustering algorithm is repeatedly used to generate a composite motif list (CML). This CML is then used to generate the final list
of motifs in a stepwise manner ensuring two factors: statistical significance of the motif using a Binomial distribution based model, and frequency of
occurrence of the motif in the present foreground data is at least M.
doi:10.1371/journal.pone.0020025.g002
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one candidate motif is called a trial. After this, all occurrences of

this best motif are removed from phosphorylated data F and F*

and the clustering of the reduced set of phosphorylated data is

done to find the next best candidate motif. This process is repeated

till no more candidate motif can be found. This entire process will

be called an iteration. Thus, Step 2 is a process of repeated cycles

(iterations) designed to identify potential and candidate motifs.

Each iteration comprises of trials, and each trial consists of two

tasks (described later in detail).

Since the clusters found by the k-means algorithm depend on

the initialization used, we repeat the iterations several times (in this

case 50 times) and each iteration may result in a different list of

candidate motifs. In other words, different iterations may result in

different sets of motifs. However, highly conserved regions, i.e.,

strong motifs are expected to appear repeatedly in different

iterations. We record the candidate motifs from all iterations to

form the composite list of motifs and that list is denoted by CML =

{m1, ...,mT }; T is the number of distinct candidate motifs.

While forming the list of candidate motifs, two questions arise (i)

Should every best motif from a cluster be considered a candidate

motif? (ii) How many clusters should be looked for? The two

questions are related and we shall address them together. The

answer to the first question is, ‘‘No’’. The best motif must have

adequate representation in the foreground data set. Let N be the

size of the foreground data set F*. Following the same protocol as

that of Schwartz and Gygi [16], we assume that for a candidate

motif, its frequency of appearance in F should be at least 20. Here

let this minimum required frequency be M. We want to partition

F* into k clusters with a hope that each cluster may represent one

or more motifs. In order to get a motif with a frequency of

appearance at least M, each cluster size should preferably be greater

than M because every member in a cluster may (usually will) not

satisfy the motif. We use the word preferably because although most

data points satisfying the motif are expected to be in the cluster,

there may be (usually will be) some fragments outside the cluster

that also satisfy the motif. We assume that to get a motif, on

average a cluster size should be 1.5M. In the absence of any

information, we may assume that clusters will be of uniform size (a

kind of the maximum entropy choice), thus the desired value for

the number of clusters is k = N/(1.5M). However, as we continue

finding motifs, the size of the data set F* will reduce and hence k

will also change. At any stage of clustering, if we get some clusters

with very small sizes, then also the number of clusters will be

reduced. We shall explain this later in detail.

In our implementation, to be consistent with Schwartz and Gygi

[16], we have used M = 20 and hence we start with k = N/30

clusters. Note that, one can use some cluster validity measures

[31,32] but we do not adopt such a path for two reasons: First,

there is no universally acceptable cluster validity index. Second, in

the present case, our intention is not to look for clusters in the

pattern recognition sense but to use it as an aid to find motifs.

N Task-1: Identifying Potential Motifs from Each
Cluster. So far we have not explained how to identify

potential motifs. As mentioned before, in each trial, we first

generate a set of k = N/30 clusters C1, ..., Ck. If a cluster is very

small, it is not likely to yield any motif. Hence any cluster with

a size smaller than a threshold G is treated as a small cluster

and discarded (we discard the cluster but not the points in the

cluster), and the task of identifying potential motifs is continued

with a reduced number of clusters, as elaborated later. The

data points in each cluster are expected to be homogeneous

(similar) and hence may have some motifs. For each cluster, we

calculate the frequency of each amino acid at each position.

Let the frequency of AAi at position j in a cluster be rij. In a

cluster, if the frequency of a particular AA at one position is

large enough, then that position may be a conserved position

and hence a possible candidate for a motif. If rij is greater than

a threshold T, then the jth site may be conserved with residue i.

But there may be more than one such residue for the same

position. So we find the residue with the highest frequency for

position j and take that as conserved. For a given j, if more

than one residue have the same highest frequency then only

one of them is selected randomly.

Since M is the minimum required number of occurrences

of a template to be considered a motif, T should be #M.

Similarly, G should also be #M. But the use of a T that is too

small is not desirable. Similarly, a very small G is also not

desirable. When we use, say, M = 20 and T = 20, one may

think, that G.20 would be desirable. This is not so, because

for a given motif, all fragments satisfying that motif may not

(usually will not) appear in the same cluster. Hence, in our all

experiments, we have used G = 15 and T = 15 as default values,

although we have studied separately the robustness of the

algorithm with respect to various other choices of G and T. In

this way, from each cluster we shall identify only a very strong

potential motif out of the possible candidates, noting however

the possibility, that a cluster may yield no potential motif.

Figure 3, illustrates this process of finding a potential motif

from a cluster.

N Task-2: Filtering of the Potential Motifs. All potential

motifs may not be good ones. In any trial, for each potential

motif first we count the total number of peptides in F that

satisfy the motif. If this count is not equal to or greater than M

(here M = 20), we discard that potential motif. We use M = 20

because Schwartz and Gygi [16] used the same threshold.

From an algorithm’s point of view we assume that motifs with

a larger number of conserved positions are better than those

with a smaller number of conserved positions. Note that, we do

not, in any way, like to suggest that longer motifs are

biologically more important or more informative. With a view

to finding longer motifs, in this reduced set of potential motifs

we find the motif with the highest number of conserved

positions. If there is just one motif, with the largest number of

conserved sites, we pick it up as a candidate motif from this

trial and add it to CM. If there are more than one motif with

the same highest number of conserved positions, then we pick

up the one with the smallest frequency of occurrence in the

original F. We do so to enhance the possibility of finding

additional motifs. If there is a tie in terms of frequency, we

randomly pick any one of the tied potential motifs. Finally,

before we finish the trial, all sequences in F that match the

selected motif are removed from F to get the reduced F and F*

that will be used in the next trial.

N Iteration – Repeat the trials. Now we repeat the trial with

the reduced F and F* to find additional motifs. If in the most

recent trial, there are k.0 clusters and none of them result in a

potential motif, then possibly we have over-clustered, i.e.,

generated more clusters than we should have. Hence, for the

next trial we set k = k21 and repeat the process. Or, we shall

find, TSn, the total number of fragments in all of the Sn small

clusters (i.e., sum of the sizes of the Sn small clusters). Since

these TSn fragments may generate tTSn=Gs useful clusters, we

reduce the number of clusters by Sn{tTSn=Gs clusters. In

other words, the next trial starts with k~k{ Sn{tTSn=Gsð Þ.
In this way, trials are repeated, i.e., Task-1 and Task-2 are

repeated until k becomes zero. This finishes one motif-finding
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iteration. At the end of an iteration, the candidate motif list

CM is copied to composite motif list CML.

N Repeat the iterations. Because the results of k-means

clustering depend on the initialization, if we repeat the

iteration described above, we are likely to get a set of motifs

that may (usually will) not be identical to the list of motifs

extracted in some other iteration. But, strong motifs are likely

to be selected more frequently than weaker ones. Hence, we

repeat the iteration IT ( = 50) times. Each time we get a list of

motifs, which is copied into CML. We also compute the

frequency with which different motifs are selected over

iterations. This CML will now be further filtered, as discussed

in Step 3 below, to identify the final list of motifs, FLM.

Step 3: Identification of the motif set. Thus far in the

process, although we have tried to extract phosphorylation motifs

that are over-represented in the phosphorylated peptides

(foreground data), we have not yet established whether those

motifs are in fact under-represented in the unphosphorylated

peptides. Step 3 finds the final list of motifs, FLM, a set of reliable

motifs (from CML produced in Step 2) that have met both criteria,

over-representation in the phosphorylated peptides, and under-

representation in the unphosphorylated peptides. In order to do

that, as mentioned earlier, we follow Schwartz and Gygi [16] by

considering two factors: (i) statistical significance of a motif using a

Binomial distribution based model, and (ii) whether the frequency

of occurrence of the motif in the current foreground data is at least

M (here M = 20). To assess the statistical significance of a motif, we

use the same criterion as used in [16]. The association between a

position-residue pair is considered statistically significant, if the P-

value of that pair smaller than a threshold (here the threshold is

1026). Consequently, a motif is considered statistically significant,

if each of the position-residue associations in the motif is

statistically significant. Instead of using the P-values, as suggested

in Schwartz and Gygi [16], the statistical significance of a motif

can also be assessed using the motif score defined in Equation (3).

The motif score is computed using a log transformation of the

Binomial probabilities (e.g., P-value of 1026 = motif score of 6):

Score(motif )~
XL

j

{log
Xm

i~cxj

m

i

� �
pxj

i(1{pxj)
m{i ð3Þ

where m is the size of F, cxj is the frequency (count) of residue x at

position j in F, pxj is the relative frequency (fractional percentage)

of residue x at position j in B, the background data, L is the length

of the motifs, i.e., the number of conserved positions. If we use a

higher threshold (say 1024) on the P-value or if we do not impose

the constraint on P-value then F-Motif may generate a bigger list

of motifs. For example, we shall see in Experiment 2 that if we

ignore the constraint on P-value, F-Motif identifies the motif

‘‘……SP.P…’’ with a high score of 21. But this motif is lost when

we impose the constraint on P-value, because although the P-value

associated with ‘‘……SP…..’’ is about 10216, the same for

‘‘……S..P…’’ is about 1025. For a fair comparison, following

Schwartz and Gygi [16], when the motif score at any motif site is

larger than 16, it is taken as 16.

N Calculate motif score. In this step, we use F and B to

calculate the motif score for each candidate motif in CML.

N Refine the motif set. We select the motif in the CML that

satisfies the constraint on the P-value and has the highest score,

and add it to the final list of motifs, FLM. If there is more than

one motif with the same highest score, we pick the one which

has the most occurrences in F. If there is a tie in the number of

occurrences in F, then any one of the tied motifs can be

selected. Then we remove all sequences from B and F that

satisfy the motif. Note that, before selecting a motif we must

ensure that it appears at least M times in the present

foreground data. Now using the reduced F and B, we re-

estimate the probabilities used in Equation (3) and re-compute

the scores of the remaining motifs. Based on these new

probabilities and new motif scores, using the same procedure

we select the next motif with the highest score and copy it to

FLM. This is followed by removal of all occurrences of

sequences from B and F that satisfy the motif. This process of

Figure 3. An illustration of how a potential motif is extracted from a cluster. First, for every position the frequency of each residue is
counted. Then for each position the residue with the highest frequency is noted. If more than one residue have the same highest frequency, one of
them is randomly chosen. At the next stage of the process, sites with residues having frequency $T are considered conserved sites to generate a
potential motif.
doi:10.1371/journal.pone.0020025.g003
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selection is continued until no more statistically significant

motif is found.

Summary of F-Motif Algorithm
To summarize, the algorithm has two phases, one for finding a

list of candidate motifs and the second for finding the motifs

satisfying our definition. The first phase explores and identifies as

many candidate motifs as possible using a clustering environment.

This idea is different from other approaches and is the strong point

of our philosophy because, unlike Motif-X, it allows us to find key

subtle patterns by looking at parts of a set of phosphorylated

peptides. For the second phase, we provide a scheme to find the

final list of motifs, but note that it is possible to design other

schemes.

Algorithm F-Motif Pseudo-code
STEP 1.

1. Get Foreground (FG) and background (BG) sequence data

2. Encode the FG sequences

STEP 2.

1. Repeat Iterations (IT) with FG

2. Repeat Trials

3. Compute the number of clusters, c

4. Cluster current FG

5. Generate potential motifs (at most one from each cluster)

with the frequency in FG$M

6. Generate a candidate motif from the potential motifs

having the highest number of conserved positions (in case

of ties, select the one having the minimum frequency in

FG)

7. Remove all occurrences of the candidate motif from the

current FG

8. Until we fail to get a candidate motif

9. Add candidate motifs to composite motif list (CML)

10. Until IT times

11. Compute frequency of every motif in CML

STEP 3.

1. Generate final list of motifs (FLM)

2. Compute Motif Score and check P-value for every motif

in CML

3. Select best motif in terms of score (in case of ties, select the

one with maximum frequency in current FG) and its

frequency in the current FG must be $M

4. Remove the all occurrences of the selected motif from FG

and BG

5. Until no more acceptable motif is found

Results

Motif Discovery Results
In order to benchmark our method, primarily we have used a

state-of-the-art method, Motif-X [16] for comparison. In addition,

we have also compared our results with those from MoDL [17].

We shall denote our algorithm as F-Motif. For a fair comparison,

we use the same parameters, to the extent possible, for both Motif-

X and F-Motif. For example, we use 13-mers peptides for both

algorithms. Also, as used in Schwartz and Gygi [16], in order to

qualify as a motif, the minimum required frequency of a motif in

the current foreground data is set to M (here M = 20). As

mentioned in the Materials and Methods, we have four data sets: a

set of data generated by us, two data sets obtained from Schwartz

and Gygi [16], and another data set on mouse mass spectrometry

[22]. For comparison, we use all three methods, Motif-X, MoDL,

and F-Motif, on all four sets of data. Our method, F-Motif and

Motif-X, both compute the motif score using Equation (3) as done

in Schwartz and Gygi [16]. For a proper comparison with MoDL

as mentioned in the Introduction, we break up a mixture motif

found by MoDL into motifs with single residues, and then we

analyze the statistical significance of those single-residue motifs. In

order to show statistical significance of these single-residue motifs,

we do not directly use Step 3 of our F-Motif algorithm. In Step 3,

after we find a motif we remove occurrence of that motif from the

foreground and background data sets. Thus the order, in which we

consider these single-residue motifs, will have strong impact on the

statistical significance, and some of these motifs are not likely to be

significant. Hence, to favor MoDL, we individually check

statistical information for these single-residue motifs and indicate

whether each of the associations between the position-residue pair

in each motif is statistically significant in terms of P-value.

Experiment 1: FM in conjunction with BA and BH. We

have extensively studied the effect of choices of G and T (discussed

in Text S1) on the performance of F-Motif and based on that we

recommend the use of G = 15 and T = 15. Except the experiments

that investigate the effect of choices of the two parameters, we use

G = 15 and T = 15 as in Table 2. Table 2 summarizes the motifs

obtained by Motif-X and F-Motif using the foreground data set,

FM from Schwartz and Gygi [16] in conjunction with both

background data sets, BH (only human species) and BA (all

species). In column 3 and column 6 of Table 2, the pair of values

(a, b) shows the motif scores: a is the score when BH is used and b is

the score when BA is used. Note that, for the first detected motif

(by both algorithms) the scores computed by Motif-X and F-Motif

are different. This is probably because Motif-X uses the ‘‘pbinom’’

function of PERL while we make a logarithmic transformation of

the terms in Equation (3) to compute its value. If a motif is found

by both F-Motif and Motif-X, then in the column labeled ‘‘Index’’

we include the order in which that motif is detected by Motif-X.

We follow this convention in subsequent tables also. The last

column in Table 2, indicates whether these motifs also appear in

the MoDL results when BH or BA is used (discussed in next

paragraph) – a symbol ‘‘3’’ indicates that the motif is found by

MoDL while ‘‘6’’ indicates that it is not found by MoDL. Table 2

reveals that F-Motif finds all motifs identified by Motif-X. It also

discovers a new motif ‘‘……S..EE..’’ shown in row 2 of Table 2.

Since Motif-X cannot find this motif, we use an asterisk (*), to

indicate that this is a new motif and *1 indicates that it is the first

new motif identified by F-Motif. It is interesting to note that this

motif has a higher score than five of the motifs found by both

algorithms. Also, note that we perform an exhaustive search to

uncover motifs of length up to four, and find that there are only

those seven motifs satisfying the constraint on P-value. Later we

shall discuss whether such new motifs are indeed novel.

In Table 3, we perform a detailed analysis of the MoDL results.

As noted previously, we break the mixture motifs found by MoDL

into motifs with single residues. The mixture motifs found by

MoDL (with BH or BA) are shown in column 2 of Table 3, and the

corresponding single-residue motifs are separately displayed, in

column 3. The columns labeled ‘‘Foreground match’’ and

‘‘Background match’’ show the number of times the associated

single-residue motif appears in the foreground and background
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Table 2. Motifs identified by F-Motif and Motif-X using the foreground data set, FM and the background data sets, BH and BA for
G = 15 and T = 15.

Motif-X F-Motif MoDL

Order Motif
Score with
(BH, BA) Index Motif

Score with
(BH, BA)

Appearance
in (BH, BA)

1 ......SD.E... (27.45, 27.48) 1 ......SD.E... (31.64, 31.61) (3, ?)

2 ......S..E... (16.00, 16.00) *1 ......S..EE.. (23.69, 23.68) (?, ?)

3 ......S..D... (16.00, 16.00) 3 ......S..D... (15.80, 15.70) (?, ?)

4 ......SQ..... (16.00, 16.00) 4 ......SQ..... (16.00, 16.00) (?, 3)

5 ......SP..... (7.61, 7.36) 2 ......S..E... (15.84, 15.85) (?, ?)

6 ...R..S...... (7.95, 7.99) 5 ......SP..... (7.61, 7.36) (?, ?)

6 ...R..S...... (7.95, 7.99) (?, ?)

The first three columns correspond to the output generated by Motif-X while the next three columns correspond to F-Motif. The last column uses symbols ‘‘3’’ and ‘‘?’’
to indicate the appearance of a motif identified by MoDL or not, respectively. The entry (*1) in row 2 of the right half of the table shows a novel motif that Motif-X could
not discover. This novel motif ‘‘……S..EE..’’ also has a very high score (see column 6).
doi:10.1371/journal.pone.0020025.t002

Table 3. Motifs identified by MoDL using the foreground data set, FM and background data sets, BH and BA.

Data set Mixture motifs Motifs with single residues
Foreground
match

Background
match

Individual
position score

FM
(with BH)

......S[DEGQ].[DE]... ......SD.D... 13 998 15.64; 12.52

......SD.E... 33 1536 15.64; 16.00

......SE.D... 10 1003 4.66; 12.52

......SE.E... 19 2046 4.66; 16.00

......SG.D... 9 704 0.47; 12.52

......SG.E... 5 1025 0.47; 16.00

......SQ.D... 2 548 13.04; 12.52

......SQ.E... 9 873 13.04; 16.00

......S..[ADES].[DE]. ......S..A.D. 1 693 0.08; 9.80

......S..A.E. 4 998 0.08; 11.40

......S..D.D. 10 968 12.52; 9.80

......S..D.E. 9 1188 12.52; 11.40

......S..E.D. 22 1167 16.00; 9.80

......S..E.E. 32 2184 16.00; 11.40

......S..S.D. 2 1477 0.24; 9.80

......S..S.E. 6 1868 0.24; 11.40

FM
(with BA)

......S..[DE].[DE]. ......S..D.D. 10 1437 12.42; 9.73

......S..D.E. 9 1762 12.42; 11.55

......S..E.D. 22 1756 16.00; 9.73

......S..E.E. 32 3196 16.00; 11.55

...…S[DQ]..... ......SD..... 54 17260 15.61

......SQ..... 49 16753 13.05

In columns 2 and 3, the mixture motifs found by MoDL (with BH or BA) and the corresponding motifs with single residues are displayed, respectively. Columns
‘‘Foreground match’’ and ‘‘Background match’’ show the number of times the associated single residue motif appears in the foreground and background data,
respectively. ‘‘Individual position score’’ column indicates the motif score for each of the associations between the position-residue pair in each motif.
doi:10.1371/journal.pone.0020025.t003

Discovery of Protein Phosphorylation Motifs

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e20025



data, respectively. The last column, ‘‘Individual position score’’,

indicates the motif score for each of the position-residue pair in

each motif. Here we can make the following observations on the

MoDL results: (a) Apparently, some single-residue motifs found by

MoDL are not really good motifs because they appear too

infrequently in the foreground data (less than the minimum

required frequency of a motif, M = 20 for Motif-X and F-Motif);

and (b) Aside from these non-significant motifs which fail to satisfy

the frequency requirements, mentioned in (a), MoDL is able to

find only a few good motifs found by Motif-X and F-Motif (shown

in the last column of Table 2, using symbols ‘‘3’’ and ‘‘to indicate

the appearance ’’ to indicate the appearance of a motif or not,

respectively). Note that, some motifs found by MoDL, e.g.,

‘‘……S..E.D.’’, ‘‘……S..E.E.’’, and ‘‘……SD…..’’ in Table 3,

satisfy the frequency requirements, but they do not appear in

Table 2. Actually, those motifs appear in our CML list (please refer

to our F-Motif Web site), but after our Step 3, only the seven

motifs shown in Table 2 are selected by F-Motif. Such

observations regarding MoDL results can also be made on other

experiments. Thus, the MoDL results are not really comparable

with Motif-X and F-Motif results. Hence, in this study, we

primarily focus on the comparison between Motif-X and F-Motif,

and MoDL results are included merely for reference.

Experiment 2: FA in conjunction with BA or FH in

conjunction with BA and BH. Two sets of simulations are

performed in this experiment (using both foreground and background

data collected from the Phospho.ELM database): one uses the

foreground data set considering all species (FA) in conjunction with the

background data set, BA; another uses the foreground data set

considering only human species (FH) in conjunction with both

background data sets, BH and BA. As we have stated earlier, for all

experiments we check whether the P-value at each residue/position

pair is less than 1026. For this experiment, as an illustration, we show

that relaxing the constraint on P-value results in several additional

motifs with high scores, which are indicated using a pair of

parentheses in the index column in the associated tables.

Table 4 depicts the motifs found by both algorithms (Motif-X

and F-Motif) when we use kinase specific foreground data

considering all species (FA) and the background data considering

all species (BA). In these experiments, as shown in Table 4 and in

other related tables we use just one column (column 2) to show the

motifs found by F-Motif. If a motif is found only by our method

(and not by Motif-X) then that motif is marked with an asterisk in

column 2 (We have summarized the motifs found only by Motif-X

but not by F-Motif in another table). The information in other

columns of the table corresponds to F-Motif. The column labeled

Table 4. Motifs identified by F-Motif and Motif-X using the kinase specific all species foreground data sets (FAPKA, FAPKC, FACK2,
FACDK) and the all species background data set (BA) with G = 15 and T = 15.

Data set Index Motif Match/Total PCM hit frequency Background match Motif score

FAPKA 1 ...RR.S...... 98/306 37/50 0.59% 32.00

2 ...RK.S...... 36/208 50/50 0.41% 32.00

3 ....R.S...... 76/172 50/50 4.94% 16.00

4 ...R..S...... 52/96 50/50 5.75% 16.00

$1 .R.R..S......

FAPKC *1 ...RR.S...... 22/297 2/50 0.59% 32.00

1 ......S.R.... 77/275 50/50 5.15% 16.00

3 ......S.K.... 54/198 50/50 5.58% 16.00

2 ...R..S...... 45/144 50/50 5.78% 16.00

4 ....R.S...... 32/99 50/50 5.11% 16.00

$1 ......S.RR...

$2 ...K..S.K....

FACK2 1 ......SD.E... 36/241 11/50 0.65% 32.00

*1 ......S.EE... 22/205 19/50 0.92% 31.60

3 ......SD.D... 23/183 22/50 0.44% 27.91

2 ......S..E... 55/160 50/50 6.62% 16.00

4 ......S..D... 42/105 50/50 5.44% 16.00

FACDK 1 ......SP.K... 44/209 35/50 0.45% 30.62

*1 ......SP.R... 27/165 22/50 0.53% 22.69

*(2) ......SP.P... 24/138 8/50 0.99% 21.44

*(3) ......SP.S... 21/114 24/50 1.01% 17.43

2 ......SP..... 84/93 33/50 5.51% 16.00

An asterisk in column 2 indicates a new motif that is found by F-Motif but not found by Motif-X. The information in other columns corresponds to F-Motif. The fourth
column labeled ‘‘Match/Total’’ shows the number of times the associated motif appears in the present (remaining) foreground data. The fifth column, PCM hit
frequency, gives the number of times, out of the fifty iterations, the associated motif is detected and it refers to the PCM encoding. The sixth column, Background
match, displays the percentage of the present (remaining) background data that has matched with the associated motif. Also a ‘‘$’’ symbol in column 2 indicates a new
motif (satisfying the criteria on statistical significance) that is found by F-Motif but not found by Motif-X if we do not remove the repeated sequences.
doi:10.1371/journal.pone.0020025.t004
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‘‘Match/Total’’ shows the number of times the associated motif

appears in the present (remaining) foreground data. For example,

in the first row, the value 98/306 indicates that the motif

‘‘…RR.S……’’ appears 98 times in the foreground data set of size

306. The next column, PCM hit frequency, gives the number of

times, out of the fifty iterations, the associated motif is detected and

it refers to the PCM encoding. For example, in the first row the

value 37/50 indicates that the motif is generated 37 times in 50

iterations. The sixth column, Background match, displays the

percentage of the present (remaining) background data that has

matched with the associated motif. Note that, if we do not remove

the repeated sequences, F-Motif can find some new motifs

satisfying the criteria on statistical significance. These motifs are

listed using a ‘‘$’’ symbol in column 2. For such motifs, we do not

list values for columns 4 to 7 because these values depend on the

order in which the associated motif is detected while using the data

without removing the repetitions. We observe that for PKA

foreground data there is one novel motif ‘‘.R.R..S……’’ found by

F-Motif when the repeated sequences are not removed.

From Table 4, we find that for PKC foreground data, out of five

motifs found by our method, the top motif (both in terms of Motif

score and number of conserved positions) is not identified by

Motif-X. If we allow the repeated sequences, F-Motif can discover

two new motifs each satisfying the criterion on P-value. Similarly,

for the CK2 and CDK kinases our method could find 1 and 3

novel motifs, respectively. For CDK kinase, two novel motifs do

not satisfy the constraint on P-value. These motifs are indicated by

parentheses in the index column. It is also interesting to note that

for the PKA and PKC kinases all motifs identified by Motif-X are

detected by F-Motif in almost all 50 iterations.

Some other interesting observations from Table 4 are:

a) For PKA kinase, the conserved sites appear only on the left

side of S.

b) For CK2 and CDK kinases, the conserved sites appear only

on the right side of S.

c) For the CDK kinase, for all motifs, the position adjacent to S

on the right side is conserved with P, making this a strong

signature for CDK kinase.

In the second set of simulations we consider kinase specific

human species foreground data (FHPKA, FHPKC, FHCK2, FHCDK) in

conjunction with two kinds of background data, only human

species (BH) and all species (BA). Table 5 is divided into 4 groups,

each corresponding to a different foreground data set as indicated

in the first column of the table. For example, the first group shows

the 4 motifs found by Motif-X and F-Motif using the foreground-

background pair, (FHPKA, BH) and also the foreground-back-

ground pair, (FHPKA, BA). In this case, the change of background

has not changed the motifs found by either algorithm. This is true

for all other kinases. Note that, except for the CDK kinase, for

both methods we get the same set of motifs and all of them satisfy

the constraint on the P-value, i.e., the position/residue pair is

statistically significant. For CDK kinase, F-Motif finds a novel

motif, but for this motif the P-value at every site is not lower than

the threshold for both BA and BH (again indicated by parentheses

in the index column).

Some of the observations made regarding Table 4 are also valid

for Table 5. For example, for PKA kinase, the positions on the left

side of S are conserved while for CK2 kinase, only sites at the right

of S are conserved. Like Table 4, for all three motifs for CDK

kinase, P is conserved immediately on the right of S.

In Tables S1 and S2, we also show the MoDL results for FA in

conjunction with BA, and FH in conjunction with BH, respectively

(the results for FH in conjunction with BA are not shown in the

tables since the list of motifs is the same as that by FH in

conjunction with BH). Here for four kinase specific groups, the

same two observations made on Table 3 for the MoDL results also

Table 5. Motifs identified by F-Motif and Motif-X using the kinase specific human species foreground data sets (FHPKA, FHPKC,
FHCK2, FHCDK) and the human background and all species background data sets (BH, BA) with G = 15 and T = 15.

Data set Index Motif Match/Total PCM hit frequency Background match Motif score

FHPKA 1 ...RR.S...... 58/187 (50, 48)/50 (0.58, 0.59)% (32.00, 32.00)

2 ...RK.S...... 26/129 (50, 50)/50 (0.43, 0.41)% (31.58, 31.92)

3 ....R.S...... 45/103 (50, 47)/50 (4.91, 4.94)% (16.00, 16.00)

4 ...R..S...... 30/58 (50, 50)/50 (5.75, 5.75)% (16.00, 16.00)

FHPKC 1 ......S.R.... 62/209 (50, 50)/50 (5.19, 5.17)% (16.00, 16.00)

2 ...R..S...... 46/147 (50, 50)/50 (6.29, 6.31)% (16.00, 16.00)

3 ......S.K.... 37/101 (50, 50)/50 (5.79, 5.60)% (16.00, 16.00)

4 ....R.S...... 20/64 (50, 50)/50 (5.07, 5.11)% (10.55, 10.49)

FHCK2 1 ......SD.E... 27/177 (6, 2)/50 (0.66, 0.65)% (32.00, 32.00)

2 ......S..E... 56/150 (50, 50)/50 (7.45, 7.44)% (16.00, 16.00)

3 ......S..D... 53/94 (49, 47)/50 (5.85, 5.88)% (16.00, 16.00)

FHCDK 1 ......SP.K... 34/155 (31, 34)/50 (0.44, 0.45)% (27.93, 28.36)

*(1) ....P.SP..... 23/121 (28, 24)/50 (0.97, 1.02)% (21.73, 21.53)

2 ......SP..... 89/98 (44, 49)/50 (6.78, 6.93)% (16.00, 16.00)

An asterisk in column 2 indicates a new motif that is found by F-Motif but not found by Motif-X. The information in other columns corresponds to F-Motif. The fourth
column labeled ‘‘Match/Total’’ shows the number of times the associated motif appears in the present (remaining) foreground data. The fifth column, PCM hit
frequency, gives the number of times, out of the fifty iterations, the associated motif is detected and it refers to the PCM encoding. The sixth column, Background
match, displays the percentage of the present (remaining) background data that has matched with the associated motif.
doi:10.1371/journal.pone.0020025.t005
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exist. Further those motifs found by MoDL which satisfy the

frequency requirements are still in our CML list for this experiment

(please refer to our F-Motif Web site).

Experiment 3: FS in conjunction with (BH plus FS). In

this experiment, we further validate our approach using the

synthetic foreground data set, FS, used by Schwartz and Gygi [16].

The background data set for this experiment is obtained by

combining the data set, BH, and the foreground data set, FS, to

ensure that the combined background data set also includes the

synthetic peptides from the foreground data set. As mentioned in

the Materials and Methods, this foreground data set was artificially

generated by Schwartz and Gygi [16] and contains five specially

designed synthetic motifs. Table S3 shows 28 motifs found by F-

Motif. Of these 28 motifs, 9 motifs (including two of the five

designed motifs, ‘‘….R.S..L…’’ and ‘‘…..KS…I..’’) are found both

by F-Motif and Motif-X, and the remaining 19 novel motifs are not

found by Motif-X. Since Motif-X finds a total of 12 motifs,

including the other three artificially designed motifs, ‘‘….R.S..P…’’,

‘‘…TV.S.E….’’, and ‘‘…D..SQ.N…’’, we perform the following

experiment to examine why out of all the motifs, F-Motif could not

find those three artificially designed motifs. As shown in Table S4,

we use the list of motifs found by Motif-X and further check whether

the P-value is smaller than 1026 (e.g., motif score $6) for each

residue/position pair in each motif (here, after a motif is considered,

we remove the occurrence of that motif from the foreground and

background data sets as this is the philosophy used by Motif-X).

Surprisingly, these three artificially designed motifs (marked by

symbol # in Table S4) not found by F-Motif do not satisfy the

constraint on P-value that must be satisfied by the computational

definition of motifs used by both F-Motif and Motif-X. This then

explains why F-Motif did not find them, but raises the question as to

why/how Motif-X could find them! Although we do not know for

sure the reason behind these results, we think there might be some

issues relating to computation of the motif score performed by

Motif-X. The overall results demonstrate the consistency and

stability of F-Motif, and its ability to discern subtle or delicate

patterns. We again emphasize that there is no reason to say these

new motifs are false positive because they are patterns that satisfy

the definition of motifs.

We have also run MoDL on this data set. As shown in Table S5,

MoDL cannot find any of the artificially designed motifs.

Furthermore, one motif identified by MoDL (‘‘……S..P…’’) does

not satisfy the constraint on P-value.

Experiment 4: FMS in conjunction with BM. Now we

consider the mouse mass spectrometry data [22] as the foreground

data set in conjunction with the background data set, IPI mouse

data. Here we randomly use half of peptides extracted from IPI

mouse data as the background data set because the Motif-X

program is unable to use too large a data set as the input. To

justify the use of the randomly selected half of the data, we use the

Chi-Square test to check whether there exists a statistically

significant difference in distributions of residues in each of the 13

peptide positions between using all of the data and half of the data.

In Table S9 (in excel file) each column represents one of the 13

peptide positions, the 30 rows represent 30 simulations, and each

cell represents results for one simulation for each peptide position

using two data sets (i.e., all of the data and only the randomly

selected half of the data). The number in each cell represents the

Chi-Square statistic. Since there are 20 amino acids used for the

Chi-Square test, we refer to the Chi-Square table with the degree

of freedom = 19 to determine whether a statistically significant

difference exists or not. The critical value of Chi-Square at level of

significance 0.05 is 30.14. In addition to the 30 rows in Table S9,

the two additional rows represent the maximum and minimum

values of Chi-Square, respectively, for the 30 simulations in each

column. In Table S9, the maximum value in each column is less

than 30.14 indicating that there is no statistically significant

difference between the distributions obtained using the randomly

selected 50% of data and the entire data set. Thus the use of the

50% randomly selected background data set is adequate.

Table S6 displays 99 motifs found by F-Motif, of which 25

motifs are found both by F-Motif and Motif-X, and the remaining

74 are novel motifs found by only F-Motif. Moreover, Table S7

shows the 21 motifs found by Motif-X which are not identified by

F-Motif (and which do not appear on Table S6). Actually, Table

S7 is part of our composite motif list CML (please refer to our F-

Motif Web site), and it shows that except for two of the 21 motifs

(indicated by ‘‘#’’), i.e., ‘‘…RT.S……’’ and ‘‘……S…D..’’, all

motifs appear in our composite motif list CML after 50 iterations.

However, instead of 50 iterations, if we use 100 iterations, then

these two motifs also appear in CML. We also include the MoDL

results for this case (see Table S8).

Robustness with Respect to Encoding of Data
To demonstrate the numerical stability of F-Motif with respect to

the coding schemes (Binary, PCM, and PWM [28,29]), we want to

use a bigger foreground data set so that a relatively bigger motif set

can be identified. For this we use 697 distinct peptides that are

obtained combing four different kinase specific human foreground

data sets: FHPKA, FHPKC, FHCK2, and FHCDK. For notational

simplicity, we call it FHCOMBINED and use it in conjunction with

BH. We have repeated the clustering experiments 100 times. The

results of these experiments are summarized in Table 6.

In column 3 of Table 6, we report the frequencies with which

different motifs, which are shown in column 2, have appeared over

100 iterations for binary coding. Similarly, column 4 and column 5

depict the frequencies for PWM and PCM coding schemes,

respectively. Two interesting observations can be made from

Table 6. First, the list of motifs found for the three different coding

schemes are identical. For the PCM coding, each of the 11 motifs

on average has appeared 92 times while for PWM and binary

coding the average number of times each motif has appeared are

86 and 76, respectively. For the PCM coding, 8 of the 11 motifs

have appeared 90 or more times, while for PWM and Binary

coding these numbers are 6 and 3, respectively. Second, the size of

the CML for PCM, PWM, and Binary are 28, 28, and 97,

respectively. As expected, since with binary coding the dimension

of the data becomes large, it takes much more processing time

than the other two coding schemes. In fact, PCM and PWM

coding take only about 7% of the time required by binary coding.

Also note that PCM takes about 8% less time than that required

for PWM. All of these suggest three things: F-Motif is quite stable

an algorithm, it is robust with respect to the encoding of features,

and of the three coding schemes PCM is the best while Binary is

the worst.

Discussion

Since motif refers to a sequence that is characteristic of a specific

biochemical function, here phosphorylation, the relative abun-

dance of a sequence in different proteins is useful information

suggesting presence of a motif. Hence, in our F-Motif program we

allow the user to determine whether (s)he wants to remove copies

of the same sequence that are coming from different proteins (for

both foreground and background data).

To make a fair comparison with Motif-X, we adopt Equation (3)

and its concomitant removal of peptides satisfying the motif as

done by Schwartz and Gygi [16] in Step 3 of our algorithm to get
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the final list of motifs. However, for the current motif, since the

matched peptides in the foreground and background data are

removed first before extracting the next motif, the order in which

motifs are extracted has an impact on the final list of motifs. For

example, suppose the motif ‘‘…RR.S……’’ is selected first, and

‘‘….R.S……’’ is the next motif. Then some peptides that match

with the motif ‘‘…RR.S……’’ and are removed, also are members

of ‘‘….R.S……’’, and their removal will affect the frequency of

‘‘….R.S……’’ and influence extraction of subsequent motifs.

Hence, in future research, we may use the frequency of a motif in

foreground and background data without removing matched

peptides to get more motifs.

We have already seen many motifs that are discovered by F-

Motif but not by Motif-X with the same foreground and

background data sets and using the same protocols. We call

these motifs novel. Table 7 summarizes the list of such motifs

found in Experiment 2. We shall try to establish that these motifs

are indeed novel based on a search of the literature (here we do

not make any discussion of the 74 novel motifs found in

Experiment 4).

It should be kept in mind that the motifs found by F-Motif

might be novel with respect to the motifs found by Motif-X, but

these novel motifs might have been well described in the scientific

literature consisting of wet-lab experimentations. For example, in

Table 6. Comparison of motifs discovered by F-Motif using three coding schemes for the human species foreground data set,
FHCOMBINED, and the human species background data set (BH).

Data set Motif Binary hit frequency PWM hit frequency PCM hit frequency

FHCOMBINED ...RR.S...... 100 100 100

......SD.E... 39 88 88

......SP..... 98 99 99

...RK.S...... 97 87 94

....R.S...... 81 100 100

...R..S...... 41 100 100

......S..D... 75 96 92

......S..E... 81 98 94

......S.R.... 79 63 99

......S.K.... 70 29 71

...K..S...... 70 81 70

Average hit frequency/motif 75.55 85.55 91.55

CML size 97 28 28

Execution time 1509.628s 98.090s 90.343s

The process is repeated 100 times with G = 15 and T = 15 using data represented by three different encoding schemes: PCM, PWM and Binary coding. It reveals that the
ultimate performance of the F-Motif is practically independent of the three schemes although computation time and the size of CML vary significantly with the choice of
encoding schemes.
doi:10.1371/journal.pone.0020025.t006

Table 7. The list of novel motifs that are discovered by F-Motif but not by Motif-X in Experiment 2.

Foreg./Backg. data sets Motif Literature

(FM, BH, BA) ......S..EE.. Could not find in the wet-lab literature but in
bioinformatics literature [44].

(FHCDK, BH, BA) ....P.SP..... MAPK substrate motif [33]; probable CDK substrate motif [34].

(FAPKA, BA) .R.R..S...... Akt and PKA substrate motif [35,36,37].

(FAPKC, BA) ...RR.S...... Classical PKA substrate motif [38]; possible PKC substrate motif
[39] (also appears in FAPKA,and FHPKA).

......S.RR... PKC substrate motif [40].

...K..S.K.... A possible PKC substrate motif [41].

(FACK2, BA) ......S.EE... Well established CK2 substrate motif [38,42].

(FACDK, BA) ......SP.R... CDK substrate motif [42].

......SP.P... Could not find in the literature

......SP.S... Phosphorylated by kinases GSK3 and CK1 rather than CDK [43].

The third column refers to literature that has discussed such motifs. There are some novel motifs for which we could not find any clue in the existing literature.
doi:10.1371/journal.pone.0020025.t007
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Table 7 the motif ‘‘….P.SP…..’’ found with (FHCDK, BH), (FHCDK,

BA) is a classical substrate motif recognized by MAPKs such as

ERK1 and ERK2 and subsequently phosphorylated [33]. The F-

Motif algorithm categorized this motif under CDK substrate motif

possibly because one of the consensus CDK substrate motifs

‘‘….PL(S/T)P.(K/R/H)…’’ [34] contains the ‘‘….P.SP…..’’

motif. Motif ‘‘.R.R..S……’’ is an Akt kinase substrate motif

[35,36]. However, it has been observed that in PDE3A the amino

acid sequences RRRRSSS which enlists the ‘‘.R.R..S……’’ motif,

is phosphorylated by both PKA and PKB/Akt kinases [37].

‘‘…RR.S……’’ motif is a classical PKA kinase substrate motif

[38]. However, our system has also listed it under PKC. Research

revealed that this motif has also been shown to be phosphorylated

by PKC. For example, in the NMDA receptor subtype NR2C, the

sequences (CTWRRVpSVLES) containing RRXS motif is

specifically phosphorylated both by PKA and PKC at the depicted

serine site (pS) [39]. Recently it has been shown that PKC

phosphorylates four-repeat motifs ‘‘……S.RR…’’ in potassium

channel subunit Kir 6.1 and thereby, inhibits the channel function

[40]. It is interesting to note that F-Motif algorithm has correctly

predicted this ‘‘……S.RR…’’ motif as a probable PKC substrate

motif. F-Motif algorithm has also classified ‘‘…K..S.K….’’ motif

as a probable PKC motif. Research reveals that this motif is

presented in myelin basic protein (MBP), and that a peptide

comprising this motif (Lys-Arg-Gly-Ser55-Gly-Lys-Asp) is very well

phosphorylated both by PKC and PKA [41].

The CK2 motif ‘‘……S.EE…’’ in Table 7, found in human

Hsp-90 and phosphatase inhibitor-2 (EDVGpSDEEE and

EQESpSGEED, respectively) are well established for being CK2

substrate [38,42]. The motif ‘‘……SP.R…’’, obtained with

(FACDK, BA), is a well recognized CDK substrate motif [42]. The

‘‘……SP.S…’’ motif identified by F-Motif algorithm found to be

phosphorylated by other kinases GSK3 and CK1, not included in

this study [43]. It remains to be seen whether this motif can also be

phosphorylated by CDK. On the other hand, our F-Motif has also

identified a good number of peptides containing motifs that have

not as yet been found to be associated with any specific kinase. For

example, there are no known kinases or interaction domains that

specifically target ‘‘……S..EE..’’ and ‘‘……SP.P…’’ sequences in

wet-laboratory experimental settings. Villén et al. [44], have found

‘‘……S..EE..’’ motif through their in silico phoshorylation motif

analysis and mentioned that the motif ‘‘……S..EE..’’ is phosphor-

ylated by casein kinase II (CK2). However, no corresponding

reference was provided and we could not find any description of

this motif in the published literature. A closer look at the motif

‘‘……S..EE..’’ reveals that this motif displays an acidic nature,

residues C-terminal to the pSer. Further, according to our

observations and analysis presented in Tables 4 and 5, it is likely

that this motif be phosphorylated by acidic kinase types such as

CK2.

Conclusions
Our algorithm uses exploratory data analysis to discover motifs

exploiting statistical information hidden in phosphorylated data.

The foreground data is clustered into homogeneous groups, which

are analyzed to identify candidate motifs. These candidate motifs

are then filtered to find actual motifs with statistically significant

motif scores. We use three different encoding schemes including

the simplest orthogonal coding and a novel scheme called PCM,

which contrasts the foreground data with the background data.

Although, the performance of our algorithm practically is

independent of the coding schemes, the PCM is found to be the

most effective one and orthogonal coding is the least effective one

in terms of computation time and consistency. The effectiveness of

the algorithm is demonstrated using several data sets and its

performance is compared with that of two state-of-the-art

methods. In most cases our method could find all statistically

significant motifs identified by the other methods. In addition, our

method discovered several novel motifs. For some of these

additional motifs, we have verified their existence using evidence

from the literature. This establishes the excellent motif discovery

ability of our algorithm.
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