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Abstract

The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are
born through nucleation and shaped into supramolecular structures with various essential functions. These range from
contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or
pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection
of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe
the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering
membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly
induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the
cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.
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Introduction

The actin cytoskeleton in higher eukaryotes comprises numer-

ous sub-compartments, the molecular constituents and regulation

of which are just beginning to be elucidated. Examples include

protrusive organelles, such as lamellipodia and filopodia in

migrating cells, adhesive and invasive structures including focal

adhesions, the immunological synapse and invadosomes [1,2] and

also sensory structures, such as dendritic spines [3,4]. Through its

ability to form helical polar rods by polymerization, actin

constitutes a versatile building unit for both pushing and pulling

(in concert with myosin). The starting point for actin filament

assembly is the formation of a nucleus of three actin monomers,

which is considered to constitute the rate-limiting step in vitro and

in vivo. Once actin filaments are nucleated, other accessory proteins

are thought to take over and promote their elongation at their fast-

growing ends. Whether this is accomplished by the nucleator or

another factor depends on the mechanism of nucleation (see also

below). Due to head to tail assembly of actin monomers, actin

filaments are intrinsically polar, harboring a fastgrowing, barbed

and a slowly growing, pointed end. The differential critical

concentrations of polymerization at the two ends can cause net

flow of actin monomers through the filament in a process known

as treadmilling [5,6], also operating in cellular structures like the

lamellipodium [7,8]. In addition, filament ends and sides are

subject to regulation by uncountable filament binding factors with

numerous activities. These include e.g. capping, stopping and

protecting ends from growth and depolymerization, respectively,

severing, generating filament ends presumably prone to disassem-

bly, or bundling, explicitly amplified in contractile structures or

finger-like protrusions such as filopodia and microvilli. It is

commonly agreed that a composite of all these activities drives the

turnover of a complex structure such as the lamellipodium.

Nevertheless, it is also clear that the essential prerequisite of

formation and maintenance of a given actin structure, lamellipo-

dium or smallish actin accumulation accompanying endocytosis,

constitutes the nucleation event, and an impressive progress has

recently been made in the discovery of mechanisms and factors

catalyzing this important process. Today, actin filament nucleators

are roughly divided into three classes [9]: those that mimic a

nucleus, like Arp2/3 complex, those that stabilize spontaneously

formed intermediates, like formins, and those that recruit and

align actin monomers, like Spir. Arp2/3 complex contains two

actin-related proteins, Arp2 and Arp3 that, together with an actin

monomer, can assemble into a nucleus ready for elongation, either

individually or in association with a socalled mother filament [10].
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In either case, Arp2/3 complex will stay attached to and protect

perhaps the pointed end from depolymerization, but the barbed

end will be free for monomer addition.

However, Arp2/3 complex is inactive in the absence of

nucleation promoting factors (NPFs), which can deliver actin

monomers and promote nucleation by inducing a conformational

change in the complex considered to bring Arp2 and Arp3 in close

proximity to each other [11]. It is assumed today that the multiple

activities of the complex observed in vivo are mostly regulated by

the continuously growing group of NPFs, which now appear to

execute quite distinct and complementary functions determined

e.g. by differential localization [11,12,13]. NPFs are grouped into

two types. WASP family proteins constitute the type I NPFs like

the name-giving Wiskott-Aldrich-Syndrome protein (WASP), N-

WASP or Scar/WAVE proteins, all of which share at their C-

termini modules for binding actin and Arp2/3 complex [14]. This

domain formerly known as WA comprises different numbers of

actin monomer-binding domains, also called V (for verprolin-

homology) or W (WASP homology 2) and a C-terminal CA

domain (connector and acidic) which activates Arp2/3 complex

[11]. So in case of N-WASP, the C-terminus mediating Arp2/3

complex-dependent actin nucleation used in this study is

composed of two V-modules linked to the CA-domain (VVCA).

The second group of Arp2/3 complex activators is known as type

II NPFs and comprises in mammals the Src-kinase substrate

cortactin and HS1 (haematopoietic-specific 1), the latter of which

is expressed in cells of the immune system. At variance to type I

NPFs, these proteins bind to actin filaments instead of monomers

via a central repeat domain and the Arp2/3 complex through an

N-terminal acidic region. Importantly, cortactin and HS1 appear

to activate Arp2/3 complex less potently in vitro than type I NPFs

[15].

As opposed to Arp2/3 complex, formin dimers can nucleate

and elongate actin filaments by surfing on their barbed ends in a

process also known as leaky capping [16]. Formins are large

proteins, harboring numerous regulatory domains at their N-

termini, and as business end the actin-binding FH2- (formin

homology 2-) domain, frequently aided by an FH1- (formin

homology 1-) module, thought to operate in delivering actin to

FH2 through profilin-actin recruitment [16,17]. The subgroup of

Diaphanous-related formins (DRFs) is activated in a signal-

dependent fashion to promote actin assembly upon release of

autoinhibitory interactions between the DID- (Diaphanous

inhibitory-) and the DAD- (Diaphanous autoregulatory-) domain

at the very C-terminus. The class of proteins potentiating

nucleation by scaffolding actin monomers, such as Spir [18] or

Cobl [19] or Leiomodin in muscle [20] is still growing [21,22], and

considered to stay attached to the pointed end upon nucleation

while the barbed end continues to grow. These nucleators usually

employ three or four actin monomer-binding domains in one

protein, as in case of three and four WH2-domains in Cobl [19]

and Spir [18], respectively. However, additional studies e.g. on

Spir indicate more complex biochemical activities and potential

cooperations with other nucleators such as formins [23,24,25,26],

so precise mechanistic understanding of nucleation by these factors

and their subsequent fate will require future investigation.

Nevertheless, considerable knowledge has already been ob-

tained about the mode of function and regulation by accessory

proteins of all these factors, especially in vitro and in purified

conditions, but understanding their relevance in vivo is more

challenging for numerous reasons. These include the plethora of

unknown factors potentially interfering with straight forward

interpretation of results received upon inhibition of a given factor,

but also the fact that structures dependent on distinct nucleators

like to intermingle with each other (e.g. lamellipodia and filopodia)

within a given cellular compartment [2,27], complicating analyses

and faithful, objective interpretation. Finally, it is almost

impossible to directly compare the potencies of different nucleators

in physiologic actin structures, since cells perfectly tune the

engagement of nucleators in specific structures, both qualitatively

and quantitatively, so traditional functional interference with a

nucleator will provide information on its relevance for a given

structure, but not relative to another nucleator.

To circumvent this problem, and to directly examine the ability

of a given factor to drive actin filament nucleation in vivo, we

developed a novel assay in which the putative nucleator is targeted

to the sides of microtubules. Microtubules belong to those

subcellular structures that are essentially free of endogenous actin,

and they hardly associate with potentially interfering, cellular

membranes along their entire length. Moreover, microtubules

offer a homogenous topology and comparable stability, allowing

not only the detection of actin recruitment in fixed and live cells,

but also the analysis of actin turnover by FRAP (fluorescence

recovery after photobleaching) approaches. Finally, they are easily

relocated in the electron microscope and can thus potentially be

employed to study in vivo actin filament arrangements seeded by

different combinations of nucleators and/or accessory factors.

Results

Targeting actin assembly to microtubules
To test if actin assembly can be targeted to microtubules, we

engineered a construct (pEGFP-MBD-VVCA, Figure 1A) encod-

ing EGFP followed by a microtubule-binding sequence (MBD),

and the VVCA-domain of murine N-WASP, which drives Arp2/3

complex-dependent actin nucleation [28]. The MBD harbors two

independent microtubule-binding activities [29] located within the

C-terminus of human MAP4 comprising a proline-rich, a so-called

A4 domain and a tail region (see Methods). The EGFP-tagged

MBD-VVCA-fusion targeted to microtubules and induced the

assembly of actin filaments (F-actin), as evidenced by counter-

staining with phalloidin (Figure 1B). Actin accumulation on

microtubules was also detectable by live cell imaging (Figure S1A,

Movie S1), and coincided with recruitment of Arp2/3 complex,

visualized with mCherry-tagged p16B (also known as ArpC5B), a

ubiquitously expressed isoform [30] of the smallest out of seven

Arp2/3 complex subunits (Figure 1C, Movie S2). Among all

subunits, fusions to p16 proved most useful for following Arp2/3

complex dynamics in mammalian cells [31], due perhaps to its

peripheral location in the complex [10]. Importantly, MBD-

VVCA-labeled structures strongly overlapped with both microtu-

bules and actin, as evidenced by counter-staining of EGFP-MBD-

VVCA and EBFP2-actin co-expressors with anti-tubulin antibod-

ies (Figure 1D). Moreover, actin and Arp2/3 complex accumu-

lation was specific for the presence of VVCA, since an identical

construct lacking this domain (MBD) failed to stimulate actin

assembly and Arp2/3 complex recruitment, in spite of its strong

accumulation on microtubules (Figure S1B, Movie S3 and Movie

S4). Conversely, EGFP-tagged VVCA alone failed to induce actin

assembly on microtubules, since in the absence of a targeting

domain it was unable to direct Arp2/3 complex activation to the

microtubule surface (Figure S1C). Finally, western blotting

confirmed expression of EGFP-tagged MBD or MBD-VVCA as

full-length proteins, since no degradation pattern was observed

using anti-GFP antibodies (Figure S1D).

It is thinkable that actin filaments are not nucleated on

microtubules, but recruited instead as pre-nucleated, small

filaments. Interestingly, the annealing of small actin oligomers

Targeting Actin Filament Assembly to Microtubules
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has recently been proposed to contribute to actin assembly in yeast

cells [32]. In addition, the two consecutive WH2-domains (VV) of

N-WASP-VVCA were also demonstrated recently to interact with

the barbed ends of actin filaments [33]. However, the following

observations argue against oligomer recruitment to significantly

contribute to actin assembly in our system. First, a truncated

VVCA-domain lacking the C-terminus but comprising the two

WH2-domains (VV) failed to recruit actin and Arp2/3 complex

Figure 1. MBD-VVCA induces actin polymerization on microtubules by recruiting the Arp2/3 complex. (A) Domain structure of the
EGFP-MBD-VVCA construct (MBD-VVCA). The EGFP-tag is fused to the microtubule-binding C-terminus of human MAP4 (MBD) and the VVCA-domain
of N-WASP. (B) Phalloidin staining of a B16-F1 cell (red in merge) transiently expressing MBD-VVCA (green in merge). (C) B16-F1 cell co-transfected
with MBD-VVCA (green in merge) and mCherry-tagged p16B to mark Arp2/3 complex (red in merge). Arrows denote co-localization of MBD-VVCA
with actin (B) or Arp2/3 complex (C). Merges correspond to boxed insets in left panels. Bar, 10 mm. (D) Immunolabeling using anti-a-tubulin
antibodies (red in merge) of a cell co-expressing EGFP-MBD-VVCA (green in merge) and EBFP-actin (blue in merge) to show co-localization of
microtubules with the MBD-construct and actin. Merge corresponds to region boxed on the left. Bar,10 mm.
doi:10.1371/journal.pone.0019931.g001
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(Figure S2 and Figure S10, Movie S5 and Movie S6). The lack of

Arp2/3 recruitment under these conditions emphasizes the need

for physical interaction between the CA fragment and the Arp2/3

complex (see also below). Furthermore, to test whether an actin

filament binding protein is capable of actin recruitment to

microtubules, we produced chimeras of fascin and the actin-

binding domain of a-actinin with MBD (Figure 2). Fascin is a

prominent actin filament bundling protein, most famous for its

strong association with microspikes and filopodia [34], which it

serves to stabilize [35]. a-actinins are a family of dimeric actin-

binding proteins with essential functions e.g. in signaling and

stabilization of the contractile apparatus in muscle and analogous

structures in non-muscle cells [36]. The fusion of EGFP-tagged

MBD with fascin displayed a dual specificity pattern in vivo

(Figure 2A): the MBD mediated microtubule localization, while

fascin also targeted the fusion protein to microspike bundles at the

cell periphery, as expected [35,37]. Importantly, only the latter

structures co-localized with actin, whereas MBD-fascin on

Figure 2. Actin filament binding is not sufficient to target actin to microtubules. Epifluorescence images of live cells co-expressing
mCherry-actin with (A) EGFP-MBD-fascin or (B) EGFP-MBD-ABD (ABD: actin-binding domain of a-actinin). Arrowheads mark accumulation of MBD-
fascin and MBD-ABD in microspikes embedded into the lamellipodium, as expected. Arrow points to a former microspike that became integrated into
the lamella, as evidenced by video microscopy (data not shown). Merges (right) corresponding to boxed insets (left) reveal the absence of co-
localization of these MBD-constructs with actin on microtubules. Bar, 5 mm.
doi:10.1371/journal.pone.0019931.g002
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microtubules did not show any sign of actin recruitment. Since

MBD-fascin was expressed as a full-length protein (Figure S3B)

capable of targeting to microspikes, the lack of actin accumulation

on microtubules is unlikely due to non-functional protein folding.

We also cloned the actin-binding domain (ABD) of a-actinin,

which when tagged to EGFP alone labeled the actin cytoskeleton

(Figure S3A). In contrast, a chimera of MBD and ABD of a-

actinin (Figure 2B) again targeted to microspike bundles at the cell

periphery and to microtubules, but there was no actin accumu-

lation on the latter. Thus, we conclude that targeting of an actin-

binding activity to microtubules potentially capable of recruiting

small filaments or oligomers is not sufficient to drive actin

assembly in this assay. Together with the lack of actin

accumulation induced by N-WASP-VV, these data strongly

suggest that VVCA-induced actin assembly on microtubules is

mediated by de novo nucleation of actin filaments through the

Arp2/3 complex.

Topology of actin filaments assembled on microtubules
To assess the arrangement of Arp2/3 complex-induced actin

filaments associated with microtubules, we performed correlative

light microscopy and negative stain electron tomography. Control,

non-transfected cells showed no specific association of actin

filaments with microtubules, as expected (for representative

microtubule see Figure 3E). Co-expression of mCherry-actin and

EGFP-MBD-VVCA allowed confirmation of actin assembly on

microtubules by observation in the light microscope (Figure3A, B),

and subsequent processing of the same cells by negative staining

and electron microscopy. Individual microtubules labeled for

MBD-VVCA and actin filaments in the light microscope were

relocated in the electron microscope (Figure 3C). As shown, short

actin filaments were found arranged as a disorganized cloud

concentrated around microtubules, consistent with stochastic

nucleation of actin filaments at the microtubule surface

(Figure 3D). Individual actin filaments or filament stubs in physical

contact with the microtubule surface could also be discerned

(Figure 3D), indicative of at least transient direct interactions of

nucleated actin filaments with microtubules, and also consistent

with results obtained by FRAP (see below). These data confirm

that microtubules can be exploited as platforms for actin

nucleation in vivo, and can generate actin assemblies analyzable

in detail by different types of light and electron microscopy.

Arp2/3 dependent actin nucleation on microtubules is
instantaneous and continuous

Although the induction of actin filament assembly on microtu-

bules on average reduced microtubule dynamics as compared to

cells expressing MBD alone (compare e.g. Movie S1 and Movie

S3), it was still possible to explore actin dynamics during growth or

shrinkage of individual microtubules. Interestingly, actin nucle-

ation on growing microtubules did not lag behind the MBD-

VVCA-binding to their growing tips, neither for the frame rate

shown here (0.1 Hertz) (Figure 4A; Movie S7) nor at higher image

acquisition frequencies (1 Hertz, not shown). We assume that the

moderate average growth rates of microtubules of roughly

2.2 mm/min in these cells were not fast enough to detectably

escape potent actin nucleation at the microtubule tip. These data

indicate that MBD-VVCA binding can instantly drive actin

filament nucleation at these sites. Furthermore, the shrinkage of

microtubules again visualized with MBD-VVCA coincided with

abrupt depolymerization or dissipation of actin filaments at

microtubule tips (Figure S4; Movie S8), indicating that actin

filaments on microtubules undergo rapid turnover, comparable to

other Arp2/3 complex-dependent structures such as the lamelli-

podium [7]. To compare the dynamics of MBD-VVCA and actin

at the surface of microtubules, we performed fluorescence recovery

after photobleaching (FRAP) experiments (Figure 4B–E). Interest-

ingly, MBD-VVCA bound along the length of microtubules

continuously exchanged with the cytosolic pool with an average

half time of 7.7 seconds (Figure 4B, D), similar to the turnover of

the Arp2/3 complex activator WAVE at the lamellipodium tip [7].

This observation might explain the efficient activation of Arp2/3

complex on microtubules, since the residence times of a given

Arp2/3 complex activator at a specific subcellular location could

well be a limiting factor for activation efficiency. The turnover of

actin filaments on microtubules was significantly slower than

MBD-VVCA (t1/2 = 16 sec, Figure 4C, E), again reminiscent of

turnover rates observed for actin and Arp2/3 complex in the

lamellipodium which are longer than the NPF at the tip, due to the

treadmilling of the network [7]. These data indicate that the

physical association of MBD-VVCA molecules with microtubules

is sufficiently long to allow nucleation and elongation of individual

actin filaments (see Figure 3). Turnover of the actin ‘‘network’’ is

delayed however, because nucleation may not occur as instantly as

MBD binding or because fluorescence in the network will have to

recover by treadmilling or both. The turnover data of both MBD-

VVCA and actin on microtubules best fitted bi-exponential

models (Figure 4D, E), presumably due to the multitude of

parameters potentially contributing to average exchange. More

specifically, actin on microtubules may be lost by dissociation of

entire filaments or oligomers and not just by depolymerization,

and the residence times of individual MBD-VVCA molecules may

vary depending on active engagement in Arp2/3 activation for

instance or on steric restraints. Whatever the case, the data

unequivocally show that the actin filament turnover observed in

physiological, Arp2/3 complex-dependent structures such as the

lamellipodium [8,38] is largely recapitulated in this assay.

Cortactin cannot activate Arp2/3 complex on
microtubules

The experiments described above demonstrate the develop-

ment of an assay that allows asking whether a given actin-

binding protein can recruit proteins or protein machineries

driving actin filament assembly. The type II NPF cortactin has

been implicated in the regulation of multiple Arp2/3-dependent

structures and co-localizes with Arp2/3 complex in lamellipodia

and at sites of clathrin endocytosis [39,40]. However, its precise

functions in vivo are elusive, especially since genetic deletion in

fibroblasts did not abolish lamellipodia formation or actin

assembly accompanying endocytosis [38,41]. Although these

data indicated cortactin to be dispensable for Arp2/3 complex

activation in these structures, they did not address directly

whether cortactin is able in principle to activate Arp2/3

mediated actin assembly in vivo.

To test this, full-length cortactin was fused to MBD in analogy

to N-WASP-VVCA and co-expressed again with mCherry-tagged

actin or p16B for visualization of Arp2/3 complex. Interestingly,

the cortactin molecule was functional, since it mediated additional

targeting of the EGFP-tagged fusion protein to its physiological

localization in lamellipodia and microspikes (Figure 5A), and was

expressed as a full-length protein as confirmed by western blotting

(Figure S5). Although the MBD-cortactin chimera was mainly

targeted to microtubules, this was not accompanied by accumu-

lation of actin or Arp2/3 complex at these sites (Figure 5A; Movie

S9 and Movie S10). Activation of Arp2/3 complex by cortactin in

vitro requires interaction domains for both Arp2/3 complex and

actin filaments [42], both of which were present in the chimera,

however, the full-length molecule is potentially regulated by a

Targeting Actin Filament Assembly to Microtubules
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complex network of additional interactions in vivo [43], which may

influence the outcome of our assay. Thus, we also asked whether

the isolated Arp2/3 binding surface of cortactin (N-terminal

residues 1–84 [15], Figure 5B) might be able at least to recruit

Arp2/3 complex. However, neither Arp2/3 complex nor actin

(used as negative control) were targeted to microtubules in this

case (Figure 5B; Movie S11 and Movie S12), indicating that

binding of the N-terminus to Arp2/3 complex is not sufficient to

ectopically target Arp2/3 complex in vivo. Based on these and our

previous results obtained with genetic deletion of cortactin in

fibroblasts [38], we conclude that the comparably weak Arp2/3

complex activation of cortactin observed in vitro does not suffice to

potently activate Arp2/3 complex in vivo. The interaction of

cortactin with Arp2/3 complex might indeed serve distinct

functions, as suggested for instance by the observation of

competitive binding with Arp2/3 complex between type I NPFs

such as N-WASP and cortactin [44]. Finally, the intimate

connection between cortactin and Arp2/3 complex function was

Figure 3. Ultrastructural arrangement of actin filaments induced on microtubules. (A–D) Correlated light microscopy and electron
tomography of EGFP-MBD-VVCA/mCherry-actin double-transfected B16-F1 cell. (A, B). EGFP-MBD-VVCA (A) and mCherry-actin pattern (B) in B16-F1
cell after fixation on the light microscope. Inset in (B) shows merge of the regions boxed in (A) and (B); EGFP-MBD-VVCA is in green and mCherry-actin
red, as indicated. Bar in (A) corresponds to 10 mm. (C) Overview electron microscopy image of the same cell after negative staining. Overview
corresponds to merged inset in (B). (D) Composite image assembled from 30 slices (0.75 nm) of a tomogram of the region boxed in (C). Arrowheads
in (D) mark surface of a single microtubule. Note the high density and disorganized arrangement of actin filaments located in close proximity to the
microtubule (D), as compared to a microtubule in non-transfected control cell (E). Arrow marks an actin filament apparently attached to the
microtubule surface. (E) Composite image assembled from 40 slices (0.75 nm) of a tomogram of an untransfected B16 cell, showing a microtubule
traversing the field from the bottom left to the top right. Bar in (E) is valid for (D) and (E) and corresponds to 100 nm.
doi:10.1371/journal.pone.0019931.g003

Targeting Actin Filament Assembly to Microtubules
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underscored by the observation that full-length cortactin was co-

recruited to microtubules with actin filaments induced by MBD-

VVCA and Arp2/3 complex but not other nucleators (see also

below), indicating that subcellular cortactin positioning in vivo

occurs subsequently and not prior to Arp2/3 complex activation

(Figure S6).

Figure 4. Turnover of MBD-VVCA and associated actin filaments on microtubules. (A) Selected frames derived from time-lapse movie of
B16-F1 cell expressing EGFP-MBD-VVCA and mCherry-actin. Arrowheads point to the growing tip of a MBD-VVCA-labeled microtubule instantly
recruiting actin. Time is in seconds; bar, 2 mm. (B, C) Representative frames taken from FRAP movies of cells transfected either with EGFP-tagged
MBD-VVCA (B) or mCherry-MBD-VVCA (false-colored green in [C]) and EGFP-actin (false-colored red in [C] for clarity). Simultaneous imaging of MBD-
VVCA was used to ensure bleaching of actin structures co-localizing with MBD-labeled microtubules. Circles in (B, C) indicate areas of bleaching and
dashed lines enclose those regions used for measurements of fluorescence intensity changes over time. Time is in seconds; bars, 2 mm. (D, E)
Fluorescence recovery curves obtained for EGFP-MBD-VVCA (D) or EGFP-actin (E). Data are means and standard errors of means (error bars) measured
for each time point and construct as indicated. n values correspond to number of movies analyzed. Half times of fluorescence recovery (t1/2) were
calculated from best exponential fits (green curves).
doi:10.1371/journal.pone.0019931.g004

Targeting Actin Filament Assembly to Microtubules
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Actin assembly on microtubules can be induced by
distinct nucleation mechanisms

As described above, our assay allows the induction of Arp2/3

complex-dependent actin assembly at ectopic sites in vivo. Next we

asked whether actin polymerization could also be induced by

Arp2/3 complex-independent nucleation mechanisms, e.g. by

formins or Spir. Interestingly, fusion of the EGFP-MBD targeting

unit with Drf3 lacking DAD (Drf3DDAD), an active variant of the

formin Drf3 (also known as mDia2), which was previously

concluded to potently stimulate filopodia formation in vivo through

actin filament nucleation [45] was also capable of inducing actin

assembly on microtubules (Figure 6A). Moreover, an N-terminal

fragment of human Spir-1 (Spir-NT), which comprises all four

WH2-domains, also mediated strong actin polymerization on

microtubules (Figure 6B). Virtually identical results were obtained

with the full-length variant of Spir-1 (data not shown). With both

Drf3 and Spir-NT, actin assembly could be scored both in fixed

cells stained with phalloidin to prove the presence of actin

filaments (Figure 6A, B), and in live cells co-transfected with

mCherry-actin (Figure S7A, B). The latter approach is more

sensitive and easier to interpret. To confirm the specificity of each

actin nucleation pathway, cells expressing EGFP-MBD-tagged

Spir-NT or Drf3DDAD were counterstained with an antibody

specific for the Arp2/3 complex subunit p16A (Figure S8A–C).

Although the antibody strongly labeled lamellipodia and ruffles as

well as vesicular structures in non-transfected cells as expected

(Figure S8A), no co-localization was observed with ectopic Spir- or

formin-induced actin filaments on microtubules (Figure S8B, C),

indicating Arp2/3 independent actin assembly.

Collectively, these data demonstrate the general applicability of

the microtubule platform to assay actin nucleation induced by

different mechanisms in vivo.

Figure 5. Cortactin does not drive actin assembly or Arp2/3 complex accumulation on microtubules. Epifluorescence images of live cells
co-transfected with (A) EGFP-MBD-cortactin (MBD-Cttn) or (B) the EGFP-MBD-tagged N-terminus of Cortactin (MBD-Cttn 1–84) with mCherry-actin or
mCherry-p16B as indicated. In neither case, a co-localization of the respective MBD-construct with actin or Arp2/3 complex was discernible. Merged
images correspond to enlarged insets on the left. Arrowheads indicate co-localization of MBD-Cttn with microspikes. Bar, 10 mm.
doi:10.1371/journal.pone.0019931.g005
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Employing the assay: probing the minimal requirements
of Arp2/3 dependent actin assembly in vivo

There is consensus that the WH2-domains (VV) in N-WASP-

VVCA bind actin monomers and the acidic domain Arp2/3

complex, whereas the connector can interact with both [46]. All

these interactions are considered essential for Arp2/3 dependent

actin assembly [11]. The A-region harbors a tryptophan residue,

the mutation of which to serine was sufficient to eliminate

detectable Arp2/3 complex binding of WASP-VCA [47]. Notably,

the same domain harboring the WH2 and connector regions had

previously been observed to induce weak actin nucleation [48].

However, this was subsequently interpreted as an artifact of GST-

induced dimerization [46]. A more recent study described strongly

reduced but not abolished affinity of VVC for Arp2/3 complex,

and actin assembly induced by this domain on synthetic vesicles in

vitro [49]. Whether the acidic region might also be dispensable for

Arp2/3 dependent actin assembly in vivo has remained unclear.

We employed the MBD-assay to compare effects of microtubule

targeting of VVCA (wildtype) with VVC and VV. For expression

of all variants see Figure S9. MBD-VV failed to induce actin and

Arp2/3 complex recruitment (Figure S2, see above). However,

expression of MBD-VVC induced significant actin and Arp2/3

complex accumulation on microtubules (Figure 7A, B), although

less robustly especially in case of Arp2/3 complex than usually

observed for VVCA. This conclusion is based on the fact that

accumulation on microtubules was more difficult to distinguish

from the cytosolic fraction than observed in VVCA-expressors

(compare Figure 1 and Figure 7). Furthermore, when counting the

number of cells capable in principle of actin accumulation for each

construct, it became evident that the frequency of actin co-

localization with microtubules (97.2% for VVCA-expressors

[n = 252]) was significantly reduced to 43.2% (n = 264) in case of

VVC (p,0.001), whereas no single co-localization was scored in

case of VV (n = 278) (Figure S10). The accumulation of Arp2/3

complex followed a similar trend, although the detection

frequency on microtubules was generally reduced for all constructs

(Figure S10). Nevertheless, Arp2/3 complex enrichment could

clearly be detected also with VVC (10.7%; n = 190), albeit much

less robustly than with VVCA (69.4%; n = 193). Again, no

recruitment could be scored with VV alone (n = 271) (Figure

S10). These data strongly suggest that the acidic domain

contributes to, but is not essential for Arp2/3 complex-dependent

actin assembly in vivo. The physiologic relevance of this

observation was confirmed by comparing N-WASP-dependent

actin tail formation induced by intracellular Shigella in N-WASP

null cells reconstituted either with EGFP-tagged full length N-

WASP or N-WASP lacking the acidic domain (N-WASPDA)

(Figure 7C–E). Interestingly, both N-WASP variants were capable

of driving actin tail formation, although reduced efficiency of N-

WASPDA was reflected e.g. by increased expression levels

required for inducing prominent actin tails (not shown). These

results demonstrate for the first time the dispensability of the acidic

Figure 6. Actin nucleation on microtubules as induced by active Drf3/mDia2 and Spir. Phalloidin stainings of fixed B16-F1 cells expressing
(A) MBD-tagged Drf3DDAD (mDia2-DDAD) and (B) MBD-Spir-NT. Merged images and arrows show co-localization of MBD-constructs with actin
filaments. Bar, 5 mm.
doi:10.1371/journal.pone.0019931.g006
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domain in an N-WASP-dependent process in vivo, and call for

revision of our views on the functional relevance of this domain in

both type I and II NPFs.

Discussion

The nucleation of actin filaments is key to numerous processes

regulating cell division, morphogenesis, migration, signaling and

host-pathogen interaction. A constantly increasing number of

molecules can influence actin nucleation activity in vitro, but how

and where exactly they function in vivo is often unknown. Whether

or not actin assembly mediated by a given factor in vitro translates

into bona fide actin nucleation activity in the cytoplasm frequently

remains unclear. Here we introduce a novel and robust assay to

analyze actin nucleation ectopically targeted to the surface of

microtubules. Ectopic actin assembly had previously been induced

on mitochondria [50,51,52] or late endosomes in Dictyostelium [53].

The use of endosomes is complicated by the fact that these

structures do assemble actin filaments by themselves to counteract

their fusion [54]. As opposed to this, it is quite safe to assume that

Figure 7. The acidic domain of N-WASP is dispensable for recruitment and activation of Arp2/3 complex. Epifluorescence images of
cells transfected with EGFP-MBD-VVC and stained with phalloidin (A) or co-expressing fluorescently labeled p16B (B). Merged images and arrows
indicate co-localization of MBD-VVC with actin filaments (A) and Arp2/3 complex (B). Bar, 10 mm. (C–E) Epifluorescence images of N-WASP-deficient
cells transfected with EGFP (C), EGFP-N-WASP full length (D) or EGFP-N-WASPDA (E) and infected with S. flexneri (Shigella). No actin tails are visible in
cells transfected with EGFP alone (C), as expected [60], whereas both ectopically expressed N-WASP full length and N-WASPDA bind to the surfaces of
Shigella, and induce actin tail formation in N-WASP–deficient cells (see insets). Bar, 10 mm.
doi:10.1371/journal.pone.0019931.g007
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a construct engineered to induce actin assembly on the surface of

microtubules will find essentially no endogenous actin and thus

other actin binding proteins that might aid the ectopic actin

assembly process. The conclusion that Arp2/3 complex activation

in live cells is feasible in the absence of the acidic domain of the N-

WASP C-terminus would not have been legitimate on subcellular

structures suspected to recruit endogenous actin. Mitochondria

recruit little actin [55], but are highly dynamic structures

undergoing fusion and fission events within seconds [56], thus

compromising the in-depth analysis of actin assembly by live-cell

imaging. This is most critical for turnover studies such as those

using FRAP, since the relatively slow turnover rates observed for

actin and actin regulators can only reliably be determined on

comparably rigid, and thus stable structures. Likewise, the

topology and comparably firm surface of microtubules will both

be advantageous for successful relocation and for detailed analyses

of the ultrastructure of actin networks generated by distinct actin

nucleators.

Actin polymerization could be induced irrespective of the

molecular mechanism of nucleation, demonstrating the versatility

of the assay. In principle this approach is applicable to any

transfectable cell line, irrespective of model organism or cell type.

In our hands, transfection with MBD-VVCA of murine NIH 3T3

or fish CAR fibroblasts also caused robust actin assembly on

microtubules (not shown). However, we recommend analyses best

be completed by 24–48 hours after transfection. It should be

pointed out that the strongly-induced reorganization of the actin

cytoskeleton might affect additional, actin-dependent processes, so

analyses of MBD-construct expressors should be restricted to actin

assembly events on the surface of microtubules. Nevertheless,

spindle formation and cytokinesis could still be observed in cells

expressing MBD-VVCA (not shown), indicating that these

processes are not generally blocked, but the treatment could

interfere with efficiency or frequency of their occurrence.

Moreover, MBD-VVCA-induced reprograming of Arp2/3 com-

plex activation onto the microtubule surface abolished lamellipo-

dia formation, which is not surprising given that Arp2/3 complex

is considered to be essential for the formation of these protrusions

[57] and that simple sequestration of Arp2/3 complex in the

cytosol also interfered with lamellipodia formation [58]. In

contrast, cells expressing MBD-Spir-NT appeared more likely

to form lamellipodia (not shown), consistent with the absence

of a reported function for Spir in the formation of these structures

[24].

The assay is ideally suited for the analysis of co-recruitment of

additional regulators (exemplified here by cortactin), and can be

extended to tuning output actin assembly by RNAi-mediated

suppression of specific components. Furthermore, assaying actin

assembly induced on the same structure by distinct nucleators

upon knockdown or knockout of a given factor will allow to

directly uncover its potential differential functions in distinct actin

assembly processes.

Combination of the simple actin accumulation readout with

high content screening should facilitate identification of novel

activators or inhibitors of specific actin nucleation mechanisms in

vivo. This way the assay will help to increase our understanding of

the complex interplay of different actin assembly mechanisms in

normal and diseased cells.

Methods

DNA constructs
EGFP tagged human b-actin was purchased from Clontech

(Mountain View, CA, USA), and the following constructs were

described previously: mCherry-actin [59], EGFP-N-WASP and

pEGFP-C3-VVCA [60]. EBFP2-actin was obtained by fusing

human b-actin into pEBFP2-C1, kindly provided by Dr. Robert E.

Campbell [61]. mCherry-p16B was obtained by exchanging

EGFP in EGFP-p16B [31] for mCherry. For generation of

microtubule targeting constructs, the MBD encoded by residues

688–1151 of human MAP4, (isoform 3; genebank accession:

U19727) was amplified with pMEP-MAP4 as template [62], kindly

provided by Dr. Martin Gullberg (Umeå, Sweden) and using

primers 59-gacatgtacaccccaccgaac-39 (forward) and 59-gtcatctgta-

catgcttgtctcc-39 (reverse), thereby introducing BsrGI sites. For the

control vector, the MBD-fragment was fused into pEGFP-C1

(Clontech) using BsrGI digestion. For EGFP-MBD-VVCA, the

fragment was fused in frame into pEGFP-C3-VVCA [60]. Fusion

with other cDNAs of interest was routinely done in an analogous

fashion based on constructs harboring the respective N-terminally

EGFP-tagged sequences. These included EGFP-Drf3DDAD [45],

EGFP-fascin [63] or EGFP-cortactin. For generation of the latter,

murine cortactin (genebank accession: NM_007803) was cloned

into pEGFP-C1 vector. mCherry-cortactin, mCherry-VVCA and

mCherry-Spir-NT were generated by exchanging EGFP in

respective vectors described above for mCherry.

MBD-Spir-NT was generated by fusing Spir-NT (see below)

into pEGFP-MBD-C1. Spir-NT (the N-terminal KIND and four

WH2 domains) corresponded to residues 2–402 of human Spir-1

(isoform 2). Cttn 1–84 was made by amplification of the N-

terminal 84 amino acids of murine cortactin using primers

59-gagagaattcatgtggaaagcctctgc-39 (forward) and 59-gagagtcgaca-

tagccgtgggaagcctt-39 (reverse) and cloning into EGFP-MBD-C2.

The sequence encoding the actin-binding domain of a-actinin

comprising both calponin homology domains [64] was amplified

from EGFP-a-actinin [65], using the following primers: 59-

gagagaattcatggaccattatgattctc-39 (forward) and 59-gagagtcgac-

tgctgtctccgccttctgg-39 (reverse). The PCR fragment was fused into

EGFP-MBD-C2 or EGFP-C2 as control. MBD-VV (amino acids

392–460 of murine N-WASP) was amplified from EGFP-VVCA

[60] using primers 59-gagagaattccatcaagttccagctcct-39 (forward)

and 59-gagagtcgacagtgggtgcgggtgttgg-39 (reverse), and MBD-VVC

(amino acids 392–483 of murine N-WASP) using primers 59-

gagagaattccatcaagttccagc-39 (forward) and 59-tgtcgtcgacttattcatct-

gagga-39 (reverse). Both fragments were ligated into EGFP-MBD-

C2. To obtain N-WASPDA, amino acid residues 1–483 of murine

N-WASP [60] were amplified with primers 59-gagagaattcat-

gagctcgggccagcag-39 (forward) and 59-gagagtcgacttattcatctgag-

gaatga-39 (reverse) and were cloned into EGFP-C2. All PCR

fragments were sequenced to ensure correct amplification.

Cells, transfections and western blotting
Mouse melanoma cells (B16-F1) were purchased from Amer-

ican Type Culture Collection (ATCC CRL-6323) and were

cultured in DMEM (Invitrogen, Germany) with 10% FCS (PAA

Laboratories, Austria) and 2 mM glutamine (Invitrogen) at 37uC
in the presence of 7.5% CO2. Cells were transfected using

Superfect (Quiagen) according to manufacturer’s instructions. One

day after transfection, B16-F1 cells were seeded onto coverslips

coated with 25 mg/ml laminin (Sigma-Aldrich) and either

examined by video microscopy or fixed and processed for

immunolabeling or electron microscopy. Ectopic expression of

EGFP-tagged proteins was analyzed by western blotting using

standard protocols. Monoclonal anti-GFP antibody (clone 101G4)

is available from Synaptic Systems (Göttingen, Germany). N-

WASP-deficient cells [60] were maintained and transfected as

described.
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Shigella actin tail formation
Infections with S. flexneri were performed as described [60].

Briefly, N-WASP-deficient cells were seeded onto fibronectin-

coated coverslips, transfected and infected with Shigella (M90T

wild-type invasive strain serotype 5) two days after plating.

Bacteria were slowly centrifuged to bring them in close proximity

to the host cell layer, and allowed to infect for 1.5 h before

extracellular bacteria were killed using 50 mg/ml gentamicin

(Sigma). Cells were fixed for 20 min with 4% paraformaldehyde

(PFA) and 0.1%Triton X100 in phosphate-buffered saline (PBS),

and subjected to immunolabeling.

Light and video microscopy
Phalloidin stainings and immunolabeling experiments were

performed as described [66]. Transfected cells were seeded onto

glass coverslips coated with laminin (25 mg/ml) or fibronectin

(25 mg/ml, for N-WASP2/2 cells), and fixed with 4% paraformal-

dehyde (PFA) in PBS (37uC) for 20 min followed by extraction with

0.1% Triton X100 for 1 min. Subsequently, samples were stained

with Alexa594- or Alexa350-labelled phalloidin to detect actin

filaments, anti-a-tubulin (clone 3A2, Synaptic Systems), monoclonal

anti-p16A antibody (clone 323H3 [30]) for staining of the Arp2/3

complex or polyclonal anti-Shigella antibody (Abcam), followed by

secondary, Alexa594-labelled goat anti mouse antibody or

Alexa350-labelled goat anti rabbit antibody (both Invitrogen).

Light microscopy was performed on an inverted microscope

(Axiovert 100TV; Carl Zeiss, Jena, Germany) using standard

epifluorescence illumination (light source HXP120, Zeiss) and

636/NA1.4 or 1006/NA1.4 plan-apochromatic objectives.

Images were acquired with a back-illuminated, cooled charge-

coupled-device camera (CoolSNAP HQ2, Photometrics, Tucson,

AZ, USA) driven by Metamorph software (Molecular Devices

Corp., Downingtown, PA, USA).

For video microscopy and FRAP experiments, cells were mounted

in an open, heated chamber (Warner Instruments, Reading, United

Kingdom) at 37uC. Actin assembly and Arp2/3 complex accumu-

lation induced by VVCA, VVC versus VV were quantified using live

cell imaging, scoring cells as detailed in the legend to Figure S10.

Statistical analyses were done using OriginPro 8.5 (OriginLab

Corporation, Northampton, USA). FRAP experiments were per-

formed with minor modifications as described before [7] using a

double-scan-headed confocal microscope (Fluoview1000, Olympus,

Hamburg, Germany) equipped with a 1006/1.45 PlanApo TIRF

objective (Olympus). Circular regions drawn around individual

microtubules were bleached with a 405 nm diode using ‘‘tornado

mode’’. Movies were acquired at a scanning rate of 1.644 s per frame.

Average fluorescence intensities of microtubules or background were

measured with Metamorph software (Molecular Devices Corp.)

before and after bleaching. The fluorescence intensity of the last

frame before bleaching was defined as maximum and normalized to

1. Background fluorescence was subtracted and data were analyzed

using SigmaPlot 11.0 and Microsoft Excel 2000. Exponential curves

in Figure 4 corresponded to best fits of means. Fitted data followed

equation y = a(12exp(2bx))+c(12exp(2dx)), with a = 0.5628,

b = 0.1583, c = 0.3708 and d = 0.0253 for MBD-VVCA and

a = 0.2743, b = 0.3601, c = 0.6246 and d = 0.0164 for actin. Half

times of recovery (t1/2) were calculated by solving the corresponding

equations at 50% of the maximal recovery value derived from each

fitted curve.

Electron tomography
Correlated live cell imaging and electron tomography was

performed essentially as described in [67]. Briefly, B16-F1

melanoma cells were co-transfected with EGFP-MBD-VVCA and

mCherry-actin and plated onto formvar-coated coverslips. Cells

expressing both constructs were located by fluorescence microscopy

and imaged before and after fixation in a mixture of 0.5% Triton

X100 and 0.25% glutaraldehyde in cytoskeleton buffer (10 mM

MES, 150 mMNaCl, 5 mM EGTA, 5 mM glucose and 5 mM

MgCl2, at pH 6.1). After an initial fixation of 1 min the cells were

post-fixed in 2% glutaraldehyde containing 10 mg/ml phalloidin

and stored in the same mixture at 4uC. The film was subsequently

peeled from the coverslip, an EM grid positioned over the area

containing the cell of interest and the grid negatively-stained with

6% sodium silicotungstate containing 10 mg/ml phalloidin and a

10 nm gold sol. The cell was relocated in the electron microscope

(FEI Tecnai F30 Polara operating at 300 kV) and tomographic

series recorded around two orthogonal axes. Re-projections from

the tilt series were generated using IMOD software from the

Boulder Laboratory for 3D Electron Microscopy of Cells, using the

gold particles as fiducials for alignment [68].

Supporting Information

Figure S1 MBD or VVCA alone do not target actin to
microtubules. Epifluorescence images of cells co-expressing (A)

EGFP-tagged MBD-VVCA and mCherry-actin as control or (B)

EGFP-tagged MBD and mCherry-actin or mCherry-p16B as

indicated. Note that MBD-VVCA and actin co-localize, whereas

no overlap of MBD with actin or MBD with p16B is visible. Bar,

10 mm. (C) Phalloidin staining (blue in merge) and immunolabel-

ing with anti-a-tubulin antibodies (red in merge) of a cell

transfected with EGFP-VVCA (green in merge). Merge corre-

sponds to boxed regions in left panels. Since VVCA does not

target to microtubules, they are completely devoid of actin

filaments. Bar, 10 mm. (D) Immunoblot confirming expression of

EGFP-tagged MBD and MBD-VVCA at appropriate molecular

weights.

(TIF)

Figure S2 The WH2-domains of N-WASP cannot nucle-
ate actin filaments on microtubules. Selected frames from

time-lapse movie of B16-F1 cell co-expressing EGFP-tagged MBD-

VV and mCherry-actin (upper panel) or mCherry-p16B (lower

panel). Insets on the left are magnified in merged images on the

right, revealing the absence of co-localization of MBD-VV (green in

merge) with actin or Arp2/3 complex (red in merges). Bar, 10 mm.

(TIF)

Figure S3 Subcellular localization of the actin-binding
domain of a-actinin (ABD) and its expression compared
to MBD-tagged ABD and fascin. (A) Phalloidin staining of a

B16-F1 cell ectopically expressing EGFP-ABD revealing that the

ABD of a-actinin robustly associates with actin networks and

bundles located in the lamellipodium and the lamella behind, as

expected. Bar, 5 mm. (B) Verification of correct expression of

EGFP-tagged MBD-fascin, ABD and MBD-ABD as indicated.

(TIF)

Figure S4 MBD-VVCA and polymerized actin dissociate
instantly from shrinking microtubules. Selected frames

from time-lapse movie of B16-F1 cell co-expressing EGFP-tagged

MBD-VVCA and mCherry-actin as indicated. Arrowheads point

to a shrinking microtubule. Time is in seconds; bar, 2 mm.

(TIF)

Figure S5 Expression control of MBD-Cttn and MBD-
Cttn 1–84. Expression of EGFP-tagged MBD-Cortactin (MBD-

Cttn) and its N-terminal 84 amino acids (MBD-Cttn 1–84) as

verified by immunoblotting.

(TIF)
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Figure S6 Cortactin is recruited to Arp2/3 but not Spir-
NT-induced actin assemblies. Epifluorescence images of live

cells co-transfected with (A) mCherry-MBD-VVCA and EGFP-

cortactin (false-colored in merge for clarity) or (B) EGFP-Spir-NT

and mCherry-cortactin. Merged image and arrows in (A) show

significant accumulation of cortactin at MBD-VVCA-stimulated

actin structures. In contrast, no targeting to microtubules

decorated with Spire-NT was discernible. Bar, 5 mm.

(TIF)

Figure S7 Actin polymerization on microtubules by
MBD-Drf3DDAD and MBD-Spir-NT. Live cell imaging of

B16-F1 cells co-expressing mCherry-actin and (A) EGFP-tagged

MBD-Drf3DDAD or (B) MBD-Spir-NT. Merged images and

arrows indicate robust co-localization of respective MBD-con-

struct with actin. Bar, 5 mm.

(TIF)

Figure S8 MBD-Drf3DDAD and MBD-Spir-NT nucleate
actin filaments on microtubules independently of Arp2/
3 complex. Immunolabeling experiments showing Arp2/3

complex localization (p16A) in (A) non-transfected control cell or

in cells expressing EGFP-tagged (B) MBD-Drf3DDAD or (C)

MBD-Spir-NT. Bar, 5 mm.

(TIF)

Figure S9 Immunoblot showing expression of EGFP-
tagged MBD-VV and MBD-VVC compared to MBD and
MBD-VVCA. Asterisk marks an additional, truncated product

detected by anti-GFP antibodies (MBD-VVC lane) with an

approximate size of 50 kDa, thus unable presumably to interfere

with microtubule targeting and thus actin assembly induced by the

full length fragment (Figure 1A).

(TIF)

Figure S10 MBD-VVCA co-localizes more frequently
with actin and p16B compared to MBD-VVC and MBD-
VV. Cells were transfected with MBD-VVCA, MBD-VVC or

MBD-VV and additionally with either actin or p16B. Living cells

were classified into categories: actin (A) or p16B (B) co-localizing

or not co-localizing with the respective MBD-construct on

microtubules, as indicated. Cells in which actin or p16B

accumulation on microtubules could not be determined due to

overexpression of either construct were classified ‘‘ambiguous’’.

Data are means and standard errors of means (error bars) and n

values correspond to number of cells analyzed. The differences

between MBD-VVCA- and MBD-VVC-expressors co-localizing

with actin or p16B were confirmed to be statistically significant by

two-sided two-sample t test.

(TIF)

Movie S1 MBD-VVCA induces actin assembly on the
surface of microtubules.
(MOV)

Movie S2 MBD-VVCA-induced actin assembly on
microtubules is accompanied by Arp2/3 complex
recruitment.
(MOV)

Movie S3 MBD alone fails to attract actin assembly to
microtubules.
(MOV)

Movie S4 Arp2/3 complex is not targeted to microtu-
bules associated with MBD alone.
(MOV)

Movie S5 MBD-VV cannot stimulate actin assembly on
microtubules.
(MOV)

Movie S6 MBD-VV cannot recruit Arp2/3 complex to
microtubules.
(MOV)

Movie S7 Actin is instantly assembled at the tips of
growing microtubules.
(MOV)

Movie S8 Actin is abruptly disassembled at the tips of
shrinking microtubules.
(MOV)

Movie S9 MBD-cortactin cannot stimulate actin assem-
bly on microtubules.
(MOV)

Movie S10 MBD-cortactin cannot recruit Arp2/3 com-
plex to microtubules.
(MOV)

Movie S11 MBD-tagged, N-terminal cortactin cannot
target actin to microtubules.
(MOV)

Movie S12 MBD-tagged, N-terminal cortactin cannot
target Arp2/3 complex to microtubules.
(MOV)
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