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Abstract

Background: Understanding the structure of complex networks is a continuing challenge, which calls for novel approaches
and models to capture their structure and reveal the mechanisms that shape the networks. Although various topological
measures, such as degree distributions or clustering coefficients, have been proposed to characterize network structure
from many different angles, a comprehensive and intuitive representation of large networks that allows quantitative
analysis is still difficult to achieve.

Methodology/Principal Findings: Here we propose a mesoscopic description of large networks which associates networks
of different structures with a set of particular curves, using breadth-first search. After deriving the expressions of the curves
of the random graphs and a small-world-like network, we found that the curves possess a number of network properties
together, including the size of the giant component and the local clustering. Besides, the curve can also be used to evaluate
the fit of network models to real-world networks. We describe a simple evaluation method based on the curve and apply it
to the Drosophila melanogaster protein interaction network. The evaluation method effectively identifies which model
better reproduces the topology of the real network among the given models and help infer the underlying growth
mechanisms of the Drosophila network.

Conclusions/Significance: This curve-shaped description of large networks offers a wealth of possibilities to develop new
approaches and applications including network characterization, comparison, classification, modeling and model
evaluation, differing from using a large bag of topological measures.
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Introduction

Networks have been widely used as a concise mathematical

representation of the structure of systems with interacting objects

[1–4]. Protein-protein interaction networks, brain networks,

scientific collaboration networks, the Internet and the World

Wide Web are a few examples.

Decades ago, the study of graph theory focused on the analysis

of small networks, or regular graphs such as a lattice. One could

easily lay out the network on a piece of paper and visually

investigate its features. However, real-world networks studied in

recent years often involve thousands or millions of vertices and

edges. Networks on this scale cannot be easily represented in a way

that allows quantitative analysis to be conducted by eye [5].

Instead of network drawing, the current understanding of network

structure relies mainly on specific properties, measures or statistics,

such as degree distributions [6,7], community structure measure-

ments [8–10], or motif counts [11]. But one may note that specific

properties characterize the structure of networks point-by-point.

We are used to carrying a large bag of measures to describe a

network. A good description or representation of network which

holds more complete topological information in one bag may

provide a clear intuitive understanding of network and reflect

some special structural features, such as the curved landscape of

the World Wide Web [12], cartographic representation of

complex networks [13] and circular perspective drawings of

protein interaction networks [14].

With this view in mind, we propose a mesoscopic description of

large networks by using breadth-first search. It serves as a bridge

linking networks of different structures with a set of particular

curves. We use curves of this kind to represent the corresponding

networks and refer to them as the characteristic curves. Then we apply

this curve shaped description to both random graphs and lattice

embedded random regular graphs, and derive the expressions of

their curves. The curve expression possesses a number of network

properties in one bag, such as the size of the giant component and

the local clustering. Interestingly, it shows that not only

homogeneous random graphs appear to have a power-law degree

distribution P(k)*k{1 under traceroute sampling [15,16], but a

small-world-like network also does.

Moreover, characteristic curves or functions shaped by

network structures can be used to compare networks compre-
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hensively, e.g., the mesoscopic response function [17] resembling

fingerprints. The network structural comparison has many

applications. A useful one is to evaluate how well a network

model fits a real-world network by comparing the network

generated by the model with that of the real world. In recent

years, network modeling has been attracting tremendous

attention. Various models have been proposed to reproduce the

topology of the real-world networks to infer their underlying

growth mechanisms. Among the notable ones are the preferential

attachment model [18,19] and the small-world model [20]. Even

a specific real-world network often has a variety of well-fitting

models. Take protein-protein interaction (PPI) networks as an

example, there are multiple models of widely varying mechanisms

(e.g. [21–25],) that perfectly fit the real PPI data in terms of

selected network properties, such as the degree distributions or

the clustering coefficients. However, questions arise: among so

many good models, which one best reproduces the structure of

the real data? Which one best reveals the underlying growth

mechanisms? It’s clear that comparing the well fitted network

properties mentioned above is not sufficient to identify the best-

fitting model. It needs a discriminative method for network

comparison to evaluate the fit of the models to the data.

Recent studies of structural comparison for PPI networks show

that the comparison methods based on local structural properties,

such as graphlet counts [26–28] or subgraph census [29], have a

strong power in discriminating the differences between networks.

However, the methods paying too much attention on local

network properties may fail to distinguish some obvious global

differences between two networks (see section ‘‘Evaluation

Results’’ for detailed discussions), and they usually require a large

amount of computation time and will be computationally

infeasible for large networks with high average degree.

To deal with these issues, we use a fast method to compare

large networks that works by comparing their characteristic

curves, which are shaped by both the local and global structures

of the network. First, we introduce a simple graph distance to

evaluate the structural difference between two networks by

comparing their curves. The graph distance can then be used to

evaluate the fit of a network model to the real data. We apply this

evaluation method to the Drosophila melanogaster PPI network [30]

along with three network models, including linear preferential

attachment model [19] and two biologically motivated network

models [21,22]. The evaluation results then determine which

model better reproduces the topology of Drosophila’s network. We

also compare our results with that achieved by a method using

subgraph census and machine learning techniques [29]. And at

the same time, we examine the strengths and weaknesses of the

two methods.

Methods

In this section, we first describe a network representing method.

Then we apply the method to random graphs and lattice

embedded random regular graphs, and derive the expressions of

their characteristic curves. For the structural comparison between

large networks, we introduce a graph distance based on the curve,

and apply it to the Drosophila PPI network to evaluate the fit of the

selected models to it.

Network Representing Method
Consider a network of N vertices and M edges (the terms

network/graph, vertex/node and edge/link are interchangeable in

this paper). For the convenience of description, we assume that the

network is undirected and connected in this section, i.e., every

edge in the network is undirected and every pair of distinct vertices

can be connected through some path. The proposed representing

method is based on the algorithm of breadth-first search (BFS)

[31], where the root vertex is selected by taking one end of a

randomly chosen edge (different root selection schemes yield

different outputs, the affects of root selection are discussed in

details in section 3 in Supporting Information S1). One can

consider the process of BFS as exploring the graph one vertex at a

time in the order of first touch, first explore. At the beginning, the

root vertex is labeled pending, and all other vertices are

untouched. As an ongoing process (see Figure 1B), a pending

vertex will be explored and all its untouched neighbors will be

labeled pending and pushed into a queue named QueueT in a

random order. Each of them is assigned a position

x(0=NvxƒN=N) which is the ratio of its sequence in the queue

to N , and stores y, the position of its parent who brings it to the

queue, i.e., who touches it at first during the process of search.

Taking these two sets of positions as the coordinates (x,y) of the

vertices, the search tree is mapped into a two-dimensional plane

(see Figure 1C) and we refer to it as BFS-tree, where each edge is

represented by a straight line with one right angle and parallel to

each other.

Note that the BFS-tree is not a full representation of the original

graph since it has lost too many edges. To get the full linking

information, we now record all links of the graph during BFS.

Create k copies for each vertex of degree k, and replace each

undirected edge with two opposite directed edges connecting two

copies owned by the corresponding vertices. Unlike QueueT

which only accepts untouched neighbors of the vertex on

exploring, another queue named QueueG accepts the copies of all

its neighbors to preserve full linking information (see Figure 1B).

Meanwhile, it is similar to the vertices of QueueT that each copy

of QueueG is assigned a position X (the ratio of its order in

QueueG to N ) and stores Y (the position of its parent copy). Thus

the coordinates (X ,Y ) help to map a network into a two-

dimensional plane (see Figure 1D) which is referred to as BFS-

graph.

Both the BFS-tree and BFS-graph are in the two-dimensional

plane, and every vertex or copy can see its neighbors through a

mirror placed on the line y~x or Y~X . By associating vertex

and edge with optical element and light beam, respectively, such

a simple layout has potential applications in manufacturing

large-scale optical networks. For a large network, as illustrated

in Figure 2, the global picture becomes very clear where the

vertices or copies line up, and automatically forms a particular

curve. Since the BFS-graph holds more linking information than

the BFS-tree, we here use the curve of the BFS-graph to

represent the corresponding network and refer to it as the

characteristic curve.

Characteristic Curves
It is desirable to find the exact expressions of the characteristic

curves for various networks, and see whether the curves indeed

identify networks of different structures. To proceed, let us first

track the states of QueueT and QueueG. During the process of

BFS, network is explored one vertex at a time (can also be

explored one edge at a time, the conclusions are consistent, see

section 1 B in Supporting Information S1 for details). Consider a

vertex A to be explored at time T has graph degree G(T), and also

T=N is A’s position in QueueT. After A is explored at time Tz1,

it has one parent and H(T){1 newly touched children, where

H(T) is A’s degree on the search tree. The states of QueueT and

QueueG change as follows, probing the linking information of

network:

A Curve Shaped Description of Large Networks
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LQT (Tz1){LQT (T)~H(T){1,

LQG(Tz1){LQG(T)~G(T):
ð1Þ

where LQT (T) is the number of vertices that QueueT holds and

LQG(T) is the number of copies that QueueG holds right before

exploring A at time T . In the proposed representing method, each

vertex or copy is assigned a coordinates (x,y) or (X ,Y ) which

records the positions of it and its parent. Thus, when the network

is explored one vertex at a time, Eq.1 can be written as:

Dx

Dy
~H(yN){1,

DX

Dy
~G(yN): ð2Þ

where the initial values of x,y,X and Y are all zeroes, and y

increases at a rate of 1=N per time step. Hence, knowing the

values of every vertex’s graph degree G(yN), tree degree H(yN)
and its position y in QueueT are crucial for the derivation of the

curve expressions.

We then apply this approach to two undirected networks. One

is random graphs with arbitrary degree distributions, including

random regular graph (RRG), Poisson-distributed random graph

(PoissonRG) and power-law distributed random graph (PLRG).

The other is lattice embedded random regular graph (LERRG)

which is not only similar to many real-world networks, but also has

practical applications. We use y~f (x) and Y~F (X ) to represent

the function of the tree curve and graph curve, respectively, where

root vertex is in the giant component of the graph (a giant

component is a connected subgraph that contains a majority of the

entire graph’s vertices). In general, y~f (x) and Y~F (X ) are

nondecreasing and satisfy: x,y [ (0,1�, f (x)ƒx, X ,Y [ (0,SkT�
and F (X )ƒX , where SkT is the average degree of the graph. The

smallest positive root of x~f (x) is just the size of the giant

component.

Random Graphs with Arbitrary Degree Distributions.

Suppose the degree distribution of a random network is

P(k)~pk, defined as the probability that a randomly chosen

vertex has k edges. Meanwhile, consider the network is obtained

from the configuration model [3]: create k copies for each vertex

of degree k, and then choose pairs of these copies uniformly at

random and connect them to form the edges. Such network is a

multi-graph with self-loops and multiple edges permitted. To

derive the curve expressions of BFS-tree and BFS-graph for this

network, as Eq. 1 shows, we should at first know the values of

G(T) and H(T) varying with T .

Figure 1. An example of the network representing method. A: A random 3-regular graph of six vertices, where each vertex has three
neighbors randomly selected. B: A snapshot of the process of BFS: after vertex 3 has been explored, the pointer of QueueT moves to vertex 2. We
explore the neighbors of 2 in a random order 3, 5, 6. Only untouched vertex 6 is pushed into QueueT and assigned coordinates (5/6, 2/6). To preserve
all linking information of 2, we push the copies of 3, 5 and 6 into QueueG and assign them coordinates (5/6, 2/6), (6/6, 2/6) and (7/6, 2/6), respectively.
Then the pointer moves on to 4. C: BFS-tree. D: BFS-graph, we highlight the copies in black for their first appearances in QueueG. The line with one
right angle represents an edge connecting two vertices or copies. For example, in panel D, polylines (2/6, 1/6)-(2/6, 2/6)-(6/6, 2/6) and (4/6, 1/6)-(4/6,
4/6)-(12/6, 4/6) represent an undirected (bidirectional) edge connecting two vertices 2 and 5. So a vertex can see all its neighbors through a mirror
placed on the line Y = X. The dotted polylines (red) represent a pathway 3 - 4 - 1.
doi:10.1371/journal.pone.0019784.g001
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During the process of BFS, QueueT accepts newly touched

vertices one by one and assigns them positions. The term G(T)
stands for the number of edges possessed by a vertex with position

T=N . To trace the value of G(T) varying with T , consider a

situation when QueueT has accepted tN{1(0=NvtƒN=N)
vertices and is going to accept a new one A. The new vertex A will

be pushed into QueueT and assigned position t, our goal is to find

A’s degree G(tN).

Vertex A is selected from the (1{t)Nz1 untouched vertices.

Because in a random network, the copies of vertices are coupled

uniformly at random, the probability of vertex A having degree k

is proportional to kp’(k), where p’(k) is the degree distribution of

the (1{t)Nz1 untouched vertices. The distribution p’(k) varies

with (1{t)Nz1 when QueueT obtains untouched vertex one by

one. For the technical convenience to describe the relationship

between p’(k) and t, we use pke{zk=
P?

k’~0 pk’e
{zk’ to represent

p’(k), where z is a variable changes as a function of t:P?
k~0 pke{zk~1{tz1=N . Let

S0(z)~
X?
k~0

pke{zk,S1(z)~
X

?
k~0kpke{zk,

S2(z)~
X

?
k~0k2pke{zk:

ð3Þ

where z§0 (note that S0(0)~1 and S1(0)~SkT, which is the

average degree of the graph). Then we arrive at the distribution

p’(k)~pke{zk=S0(z), where z changes as a function of t in the

limit of large N (the term 1=N is omitted):

S0(z)~1{t ð4Þ

Let g(t)~E½G(tN)� be the expected graph degree of the newly

touched vertex A. Since the probability of vertex A having degree

k is proportional to kp’(k)~kpke{zk=S0(z), we can write:

g(t)~
X?
k~0

k
kpke{zk

S1(z)
~

S2(z)

S1(z)
ð5Þ

Next, we trace the value of the tree degree H(T). Suppose xN
vertices have been touched before exploring a vertex A with

position y. In the limit of large N , the expected number of

untouched vertices that A will meet through its (G(yN){1) edges

(except one edge connecting its parent) is:

E½H(yN)�{1~
2M{

P
x
t~0G(tN)

2M{
P y

t~0G(tN)
(G(yN){1) ð6Þ

where M is the total number of edges, see section 1 A in Supporting

Information S1 for the detailed explanation of this equation. This

equation is also valid for random graphs with extremely dense edges

(SkT*N), which have numerous self-loops and multi-edges (see

section 1 B in Supporting Information S1 for details).

In the limit of large N , we use a mean-field approximation

where G(tN) and H(tN) are represented by their expectations

g(t) and h(t), respectively. Substituting Eqs. 2 and 5 into Eq. 6 and

associating it with Eqs.3 and 4, the curve function y~f (x) of BFS-

tree satisfies (see section 1 C in Supporting Information S1 for the

detailed derivation):

x~1{S0(z(x)),

y~1{S0(z(y)),

z(x)~ln
SkT

S1(z(y))
{z(y):

ð7Þ

where 0ƒyƒxƒtendƒ1, tend~1{S0(z(tend )). z(tend ) is the

smallest positive root of 2z~lnSkT{ln S1(z). Note that tend is

simply the size of the giant component of the graph, which is

Figure 2. Diagrams of a random r-regular graph of size N~105 and r~3. A: BFS-tree, where vertices are closely located around the curve
(1{x)~(1{y)2 . Each small square (green) represents the last vertex of its tree level of the BFS tree. B: BFS-graph, where copies of vertices are closely
located around the curve (1{X=3)~(1{Y=3)2 . In the two diagrams, the shaded areas (yellow) represent the edges, and the polylines with right
angles (red) represent a same shortest path between the root and a destination node.
doi:10.1371/journal.pone.0019784.g002
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consistent with the size derived in different forms by Molloy and

Reed [32] and Newman et al. [33] for random graphs with

arbitrary degree distributions.

From Eqs.3 and 4, we get d z~d t=S1(z), substituting this into

Eqs. 2 and 5, the curve function Y~F (X ) of the BFS-graph

satisfies:

X~SkT{S1(z(y)),

Y~SkT{S1(z(f (y))):
ð8Þ

where 0ƒYƒXƒTendƒSkT, Tend~SkT{S1(z(tend )). As men-

tioned above, tend is the size of the giant component and z(tend ) is

the smallest positive root of 2z~lnSkT{ln S1(z). When x reaches

tend , the BFS explored all vertices in the giant component and the

mapping comes to the end (we here only consider the curves of the

giant component since it retains the significant structural features

of the graph).

As examples, we now introduce three commonly studied graphs.

(1) Random r-regular graphs. In a graph of this kind, each vertex has

a fixed degree r, G(T):r. The curve functions are:

1{x~(1{y)r{1,

1{X=r~(1{Y=r)r{1:
ð9Þ

where 0ƒyƒxƒ1, 0ƒYƒXƒr, and r§3 which implies

that the graph is connected with high probability [34,35].

(2) Poisson-distributed random graphs. This is one of the best studied

graph models [34], and is also known as Erdös-Rényi random

graph that has a Poisson degree distribution in the limit of

large graph size, as given by pk~SkTke{SkT=k!. The curve

functions are (see section 1 D in Supporting Information S1

for the detailed derivation):

y~{
ln(1{x)

SkT
,

X~SkTy{(1{y) ln(1{y),

Y~ln
1

1{y
{

ln(1{y)

SkT
z1

� �
ln

ln(1{y)

SkT
z1

� �
:

ð10Þ

where 0ƒyƒxƒtendv1, and tend is the smallest positive root

of t~1zLambertW ({SkTe{SkT)=SkT. LambertW is Lam-

bert’s function, defined as LambertW (u)~w where wew~u.

(3) Power-law distributed random graphs. It was found that a wide

range of real networks, such as the Internet and science

collaboration graph, display power-law degree distributions,

also known as scale-free networks [1]. In Figure 3, we only

consider a random graph possessing a power-law degree

distribution given by

pk~Ck{a for 1ƒkminƒkƒkmax

:0 otherwise

where a is a constant and C~1=
Pkmax

k~kmin
k{a. kmin and kmax

are the minimal and maximal degree of the graph,

respectively. The curve expressions are the same as Eqs.7

and 8.

Lattice Embedded Random Regular Graphs. A graph of

this type is formed from a superposition of an r-RRG and a d-

dimensional finite lattice with periodic boundary conditions, i.e.,

each vertex has 2d nearest lattice neighbors and r long-range

neighbors chosen uniformly at random from the lattice. This is

similar to the small-world model proposed by Watts and Strogatz

[20], in which there are many local links and a few long-range

links connecting local clusters together. These links lead to both

small path lengths and high clustering called small-world property

and have been observed in a wide range of real-world networks,

such as the collaboration graph of film actors and the power grid.

Moreover, the LERRG is not only similar to a number of real-

world networks, it also has practical applications. For example,

Korniss et al. [36] and Guclu et al. [37] found that two typical

graphs of LERRGs have remarkable advantages in constructing a

parallel discrete-event simulation scheme since the processing

elements can carry out the tasks distributed on them at a nonzero,

near-uniform rate without requiring global synchronization.

In the LERRG, G(T):2dzr, and in the limit of large network

size N??, E½H(T)�{1~l1(1{x)=(1{y), where l1 is the

largest real root of (l{1)d~r(lz1)d{1 (see section 2 in

Supporting Information S1 for the detailed derivation). In

association with Eq. 2, the curve functions are:

1{x~(1{y)l1 ,

1{
X

2dzr
~(1{

Y

2dzr
)l1 :

ð11Þ

Interestingly, they have a similar form as that of RRGs (Eq.9), and

are consistent with Eq.9 when d~0.

Graph Distance
Each of the example networks studied above corresponds to a

particular curve. We here use the curve as a discriminating feature

for network comparison. To evaluate the structural difference

between two networks, we describe a simple graph distance DG by

comparing their curves

DG(G1,G2)~
XSkT

X~0

jG1(X ){G2(X )j 1

2M

G(X )~
Y=SkT, 0ƒXƒTend

X=SkT, TendvXƒSkT

( ð12Þ

where G(X ) represents the characteristic curve. G1(X ) and G2(X )
stand for the curves of a pair of graphs to be compared. The

distance DG is simply the area between the two curves. Note that

Onnela et al. define a graph distance based on mesoscopic

response function in a similar fashion and performs well for

network taxonomy [17]. Because the BFS-graph holds more

linking information than the BFS-tree, we chose the curve of the

BFS-graph to calculate the difference. The two-tuple (X ,Y ) is the

coordinates of vertex’s copy in the BFS-graph, and X increases at

a rate of 1=2M, where M is the total number of edges in the

graph. To align two graphs with different average degrees SkT, we

assign Y=SkT to G(X ) until X reaches Tend , that is, until the BFS

has explored all vertices in the giant component. To ease the

calculation of the distance DG between two graphs with different

sizes of the giant components, we assign X=SkT to G(X ) when the

value of X exceeds Tend . We only consider the giant component

since it retains the significant structural features of the graph. For

graphs which consist of small isolated groups of connected vertices,

that is, whose giant components are too small (e.g., Tendv0:1) to

represent the significant structural features of the entire graphs, the

A Curve Shaped Description of Large Networks
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distance DG is not suitable to measure the structural difference for

them.

As an example, we use DG to evaluate the differences between

the four example graphs in Figure 3. If we take RRG as the center

graph, PoissonRG is the most similar graph with DG&0:019 from

the RRG. The LERRG is the second similar with DG~0:05 and

PLRG is the most different with DG&0:063. The results agree

with the common understanding of the four types of graphs.

Data Set
We use a protein-protein interaction data derived from Drosophila

melanogaster based on yeast two-hybrid screening [30]. A PPI network

can be constructed from the data by taking proteins as vertices, and

observed interactions between proteins as undirected edges. The

degree or connectivity of a protein is defined as the number of its

interaction partners. Because the data has numerous false positives,

Giot et al. [30] assign each interaction a confidence score Pc[½0,1�,
measuring how likely the interaction occurs in vivo. To exclude

unlikely interactions, they suggest a confidence threshold P�c~0:5.

An edge appears only if its confidence score PcwP�c . We also present

results for a higher threshold P�c~0:65 which is suggested by

Middendorf et al. in ref. [29], and P�c~0:0 which includes all

interactions observed. After removing the multiple edges and self-

loops from the network [38] and eliminating isolated vertices, the

resulting networks consist of 3,279/4,508/6,823 vertices and 2,728/

4,569/19,630 edges for P�c~0:65=0:5=0:0, respectively.

Network Models
We select three network models and compare their generated

networks with that of the Drosophila to determine which model better

describes the evolutionary processes of the Drosophila. The first two

models are biologically motivated, and have been argued as the best

two models to reproduce the Drosophila network among seven candidate

models [29] including the linear preferential attachment model and the

small-world model. The last one is the linear preferential attachment

model. All the three models start with a small seed graph and grow the

network one vertex at a time following these steps:

Duplication-mutation-complementation model (DMC).

The model proposes a gene duplication followed by mutations

(divergence) which preserve functional complementarity [22]. At

each time step, a new vertex vnew is added. It then chooses an

existing vertex vold at random, and copies all links of vold , i.e.,

places edges between vnew and all neighbors of vold . For each pair

of their links connected to a same neighbor u, one randomly selects

one of the two links (vnew, u) or (vold , u) and deletes it with a

probability qdel . It ensures that if one of the duplicate genes loses

one of its functions (links), the other preserves the same function

(the link to the same neighbor). The duplicate pair vold and vnew

are themselves connected with a probability qcon, representing an

interaction of a protein with its own copy. The parameters qdel and

qcon are sampled uniformly in ½0,1�.
Duplication-mutation using random mutations model

(DMR). The model has a different duplication algorithm from

Figure 3. BFS-trees, BFS-graphs and auxiliary views of four example networks. Random regular graph (RRG, r~5), Poisson-distributed
random graph (PoissonRG, average degree SkT~5), LERRG (d~2, r~1, l1~3) and power-law distributed random graph (PLRG, a~2:41, kmin~2,
kmax~1,000, SkT&5:02) with edges not shown. In BFS-trees (panel A) and BFS-graphs (panel B), each solid line represents the vertices or copies
resulted from one run of BFS on the associated network of size N~106 , and the dots are the theoretical values. C: h(y)~d x=d yz1, the expected
tree degree of a vertex on BFS tree varies with its position y in QueueT. D: g(y)~d X=d y, the expected graph degree. E: Here the expected search
efficiency g(y) is defined as E½(H(yN){1)=(G(yN){1)� measuring the efficiency of a vertex exploring new ones through its edges (the g of vertices
with one degree are set to zero). In panels C–E, the tiny dots are sampled uniformly from simulated results averaged over 104 runs of BFS on the
associated networks, and the lines are the analytic results.
doi:10.1371/journal.pone.0019784.g003
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that of the DMC. It emphasizes the creation of new advantageous

functions by random mutations in gene and neglects possible

interactions between duplicate pairs [21]. At each time step, a

newly added vertex vnew chooses an existing vertex vold at random,

and copies all links of vold . For each link of vnew inherited from vold ,

one deletes it with a probability qdel . New links can be created

between vnew and any other existing vertices with a probability

qnew=Nt, where Nt is the total number of existing vertices,

introducing new viable interactions between proteins. The

parameters qdel and qnew are sampled uniformly in ½0,1�.
Linear preferential attachment model (LPA). At each

time step, a newly added vertex preferentially attaches to existing

vertices with probabilities proportional to their degrees [19]. This

simple probabilistic model can give rise to scale-free degree

distribution which is one of the most important features that many

real-world networks exhibit, including the PPI networks.

Network Classification Method
Given a network G and a set of network classes, a network

classifier should find which class the network G belongs to. The

graph distance (Eq.12) can be used to design a simple and efficient

network classifier. Consider a given set of network classes which is

composed by network instances, that is, each class possesses a

number of networks. If the given set of network classes is

composed by network models, we generate a certain amount of

network instances for each class. For each of the network classes,

the classifier calculates the graph distance DG between G and

every network in this class. We simply use the median graph

distance ~DDG to represent the distance between G and the class,

where the median graph distance is a value separating the closer

half from the farther half. Finally, the classifier obtains all the

median graph distances and classifies G as the class which has the

minimal ~DDG from G.

To validate the proposed classification method, we use four

network models, including the DMC, DMR, LPA and PoissonRG,

by following steps. First, generate 1,000 instances for each of the

four models and obtain their graph curves. Second, build a

network G by using one of the four models, and calculate the

graph distance between G and the 4|1,000 graphs generated in

the first step. Classify G as the class which has the minimal ~DDG
from G. Repeat the second step 1,000 times for each of the four

models, and we obtain a classification accuracy table at last (see

Table 1).

The overall classification accuracy is high, around 98:7%, and

most of these networks can find back their generative models.

Classification errors among DMC, DMR, and PoissonRG

networks are due to equivalence of the models in specific

parameter regimes and correspondingly show overlaps. For

example, when the growth parameter qnew of a DMR network

approximates to zero, the growth of such a network is dominated

by the duplication mechanisms, which is similar to that of the

DMC model. Therefore, a small fraction of DMR networks are

classified as DMC.

To test the robustness of our classification method against

noise, we carried out a sensitivity analysis by perturbing the

structure of the original networks by using two kinds of edge

random mechanisms [17,29]. The first is to replace some

percentage of original edges in the network by random ones

(noise1), and the second is to randomly rewire some percentage of

edges while maintaining the degree distribution of the original

network (noise2). The numerical results show that the classifica-

tion performs well for small and intermediate amounts of the

noises on the DMC, DMR and LPA networks (see section 4 in

Supporting Information S1 for details). Meanwhile, the robust-

ness again the second noise is better than the first one since the

second noise maintains the degree distribution of the original

network.

Results and Discussion

Properties of Graph Curves
As an example shown in Figure 3, the characteristic curves

coupled with auxiliary views identify networks of different

topologies and reflect several local and global structural

features. Among the four example networks with close average

degree SkT, PLRG is the most special because it has an

inhomogeneous degree distribution, where a small fraction of

vertices (hubs) are richly connected while many other vertices

are not. At an early stage of BFS on PLRG, a small fraction of

vertices with high degree are firstly touched. They explore the

majority of vertices and leave few opportunities for latter

vertices to touch new ones. The h(y), g(y) and g(y) of PLRG

decline with y much faster than those of the other three

homogeneous networks, in which the vertices have approxi-

mately the same number of edges. Such decline of LERRG is

the slowest due to its high local clustering, where h(0)vSkT and

g(0)v1. The two homogeneous random graphs RRG and

PoissonRG are the most similar.

Now we turn to characterize the structure of local clustering by

the use of search efficiency g. It is known that a highly clustered

group of vertices has more links between them than expected by

chance. A simple effect of such a structure related to BFS is that,

the search explores many links but harvests less new vertices (see

an example in Figure 4 A). In contrast, the search on a random

graph gets more new vertices with the number close to the links

explored (see Figure 4 B). Therefore, the search efficiency g of a

vertex in a lattice is smaller than that in a random graph at the first

stage of search process.

Furthermore, observe that the search efficiency g of a lattice or

an LERRG is lower than that of its random counterpart (a

random network with the same degree distribution allowing self-

loops and multiple edges, here it is an RRG) at the early stage of

the search process, but becomes larger than its counterpart later

(see Figures 3 E and 4 D). That is, although the search process

catches less new vertices in a clustered network than its random

counterpart at first, it still has chance to meet new ones much later

for its local clustering structure.

Guided by these observations, we conjecture that the larger the

difference of g between a network G with its random counterpart

G’, the higher the degree of local clustering of G is. We then use a

relative difference of g between G and G’ to measure the degree of

local clustering of G:

Table 1. Classification accuracy (%) for four network models.

Classification

Original DMC DMR LPA PoissonRG

DMC 99.0 1.0 0.0 0.0

DMR 3.4 95.7 0.0 0.9

LPA 0.0 0.0 100.0 0.0

PoissonRG 0.0 0.0 0.0 100.0

The (i, j) entry is the probability of classifying class j given that the original class
is i. The networks built by models are based on the size of the Drosophila
protein network with a confidence threshold of P�c~0:5.
doi:10.1371/journal.pone.0019784.t001
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Cg~

P
1
t~0jgG(t){gG’(t)jP
1
t’~0gG(t’)zgG’(t’)

ð13Þ

which is simply the area between two g variation curves of G and

G’ (see Figure 4 D for an example, corresponds to the shaded area

between two curves), normalized by the sum of their areas.

To validate this measure, we apply it to small-world networks

[20] and regular lattices which are known to have high local

clustering, finding that the measure performs similar to the

average clustering coefficient for small-world networks (see Figure 4

E), and can catch the local clustering of lattice network where its

average clustering coefficient equals to zero (see Figure 4 F).

Next, we consider a series of characteristic curves:

1{x~(1{y)a,

1{X=b~(1{Y=b)a:
ð14Þ

where a§2,b§az1 and SkT~b. Both RRGs and LERRGs fall

into this category (Eqs.9 and 11) though they are very different

since the latter have high local clustering (b§az1) but the former

have none (b~az1).

Eq. 14 can illustrate what the associated networks look like

under a single-source, all-destination traceroute sampling. In the

study of Internet mapping, traceroute sampling is widely used to

infer the topology of the Internet, typically by collecting paths

from a small number of sources to a large number of destinations

through the network. However, Lakhina et al. [39], Petermann and

De Los Rios [40] independently showed that traceroute sampling

can significantly bias the observed degree distribution since it only

samples a fraction of links. In particular, they found that the

sampled subgraphs have power-law degree distributions while the

substrate networks are Poisson distributed. Later, Clauset and

Moore [15] presented an analytical approach to derive the power

law observed in ref. [39]. Achlioptas et al. [16] and Dall’Asta et al.

[41] studied the bias of traceroute sampling analytically and

systematically for random graphs. Interestingly, Achlioptas et al.

found that RRGs also have apparent power laws under traceroute

sampling.

Here we find that even a LERRG, which is small-world-like and

homogeneous, appears to have a power-law degree distribution

P(k)*k{1 under traceroute sampling (see Figure 5). Since this

sampling essentially generates a BFS tree under the common

assumption that Internet routing protocols approximate shortest

paths [15,16], we turn to calculate the degree distribution of the

BFS-tree. Use h(t)~E½H(tN)� to represent the expected tree

degree of a vertex with position t in QueueT. Eqs. 2 and 14 give

h(t)~a(1{t)a{1z1 ð15Þ

Since h(t) is a monotonic decreasing function, a rough estimate of

the tree degree’s density ~PP(h(t)) can be given by only considering

the expected tree degrees during the search process

~PP(h(t))*{
d t

d h(t)
ð16Þ

Figure 4. Measure the degree of local clustering. A: The first few steps of a BFS on a two-dimensional lattice. The blue, pink and white vertices
stand for the explored, pending and untouched vertices, respectively. B: A BFS on a 4-RRG. C: Search efficiency. D: Search efficiencies of a network
(lattice) with its random counterpart (RRG) vary with the vertices’ position t in QueueT. E: Average shortest path length L(p), average clustering
coefficient Ct(p) and Cg(p) vary with the random rewiring probability p for a family of small-world networks, where the p transforms a regular ring
lattice (N~1,000 and each vertex has 10 nearest neighbors) to random graphs from 0:0 to 1:0. Each data point is averaged over 100 random
realizations of the rewiring process, and have been normalized by the values L(0), Ct(0) and Cg(0) of the regular lattice. F: Clustering coefficient Ct

and Cg vary with d , the dimension of regular lattice. Each data point is averaged over 5 realizations of lattices with network size N*250,000.
doi:10.1371/journal.pone.0019784.g004
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substituting from Eq. 15 and letting ~kk be the tree degree give

~PP(~kk)*
(~kk{1){1z1=(a{1)

a1=(a{1)(a{1)
ð17Þ

where 1v
~kkƒaz1. In the limit of large a, ~PP(~kk)*(~kk{1){1. For

RRGs with ~kk§3, this approximate result agrees with a more

rigorous one derived by different means by Achlioptas et al. [16].

Furthermore, our result is valid not only for RRGs but also for

other networks described in Eq.14, including LERRGs. Therefore,

even a LERRG, which is small-world-like and homogeneous,

displays a power-law degree distribution P(k)*k{1 (in the limit of

large a) under traceroute sampling.

Evaluation Results
Comparing large networks by their graph curves gives an

intuitive understanding of the topological differences between the

networks of Drosophila and each of the three models (see Figure 6,

Table 2, and section 5 in Supporting Information S1 for more

details). The results suggest that the DMR model better

reproduces the topology of Drosophila’s network than the DMC

and LPA for high confidence thresholds P�c~0:65=0:5. To test the

robustness of this result, we artificially introduce two kinds of

noises into the original Drosophila network (P�c~0:5), finding that

the result still holds for small and intermediate amounts of the

noises (see Figure 7).

For the DMC networks, their characteristic curves are far from

that of the Drosophila, a result which indicates that the structures of

the DMC networks are very different from that of the Drosophila.

This result is completely opposite to the result achieved by a

method based on subgraph census [29], which suggests that the

DMC best reproduces Drosophila’s network among seven candidate

models, including the DMR and LPA (see Table 3).

These contradictory results are due to the different angles

from which subgraph census and BFS-graph characterize the

structure of a network, where the former focuses on the

substructures of the network, while the latter cares about a

Figure 5. The degree distribution of a BFS tree in a LERRG
(d~10, r~80). The power-law behavior P(k)*k{1 extends up to a
cutoff at degree k~2dzr. The hollow dots are results from one
numerical simulation on a network of size N~410, and the solid dots
are our analytic results.
doi:10.1371/journal.pone.0019784.g005

Figure 6. Comparisons between the model networks and the Drosophila PPI network for P�c~0:5. A–C: BFS-graphs. In each diagram, the
thick red curve represents Drosophila’s network, and the thin blue curves represent the 1,000 generated model networks. D: The size distribution of
the giant components of the 1,000 DMC networks. In Drosophila’s network, 66% of the vertices are in the giant component (red vertical bar). E: Graph
distance distributions. Each vertical bar represents a median graph distance ~DDG which is a value separating the closer half from the farther half to the
center graph, i.e., the Drosophila network. F: Degree distributions. Each distribution of the three models is averaged over the 1,000 generated
networks. Although their degree distributions are similar to that of the Drosophila, their curves vary widely.
doi:10.1371/journal.pone.0019784.g006
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global view of the network. Because subgraph census counts

every occurrence of a set of small subgraphs in the network, it’s

clear that the census can reveal more local network properties

than the BFS-graph. However, subgraph census so deeply

concerns the local network properties that it may fail to

distinguish some obvious structural differences between two

networks. The most obvious difference between the DMC and

Drosophila is that the size of the giant component of the DMC

network is much smaller than that of the Drosophila for high

confidence thresholds P�c~0:65=0:5, where the former is around

0:045=0:18 (i.e., 4:5%=18% of the nodes are in the giant

component), while the latter is more than nine/three times

larger, 0:44=0:66 (see Figure 6 D, and section 5 in Supporting

Information S1). For the higher confidence threshold P�c~0:65,

the DMC network consists of small isolated groups of connected

vertices, a structure which is very different from that of the

Drosophila. This failure of subgraph census implies that although

the census knows every occurrence of the particular subgraphs

in the network, it lacks a general assembly drawing of how these

amounts of subgraphs are assembled into the original large

network. The same amount of subgraphs may form a network

different from the original network, resembling using the same

building blocks to construct different buildings.

On the other hand, the BFS-graph presents a global view of the

network by assembling the vertices one by one, which reflects a

complementary aspect of the network to that reflected by the degree

distribution and subgraph census. The degree distribution counts

the degrees of all vertices and shows their distribution. Similarly,

subgraph census counts the occurrences of a set of small subgraphs

and shows their distribution. The two clearly know the amounts of

the building blocks, but lack a general assembly drawing of how to

assemble them into the original network. In contrast, the BFS-graph

possesses the assembling information of the network through BFS,

which strings up the vertices one by one from the bottom up, and at

last, gives a global view of the network. Thus, the structural

information reflected by BFS-graph and subgraph census comple-

ment each other. Applying both of them can provide a more

comprehensive understanding of the network structure, which will

improve the accuracy of the structural comparison.

Except for the DMC, the two methods based on BFS-graph

and subgraph census agree well on the DMR and LPA, that is,

the DMR better reproduces the topology of the Drosophila

network than the LPA for P�c~0:65=0:5. It is worth noting that

the method based on BFS-graph (with time complexity

O(NzM)) is fast for large networks with high average degree

SkT, for which the subgraph census (with time complexity at least

O(MSkT7)) may be computationally infeasible. For example,

subgraph census will cost a great deal of time for the Drosophila

network when it includes all interactions observed (P�c~0:0),

which has many more vertices and edges than that for

P�c~0:65=0:5. But the BFS-graph can quickly figure out the

differences between the Drosophila network and the networks

generated by the models (see section 5 in Supporting Information

S1 for details). It shows that the fits of the three models to the

data are relatively poor for P�c~0:0 (see Table 2), a result

probably due to the presence of strong additional noise in the

data when including low confidence value interactions.

Figure 7. Robustness test against noises for Drosophila PPI network (P�c~0:5). A fraction of edges in Drosophila network are replaced by
random ones (noise1, panel A) or randomly rewired while maintaining the degree distribution of the original network (noise2, panel B). Classify the
noised network as one of the four classes which has the closest median graph distance. Each data point is averaged over 100 different realizations of
the randomization procedure. As validation, the networks are confidently classified as a PoissonRG with the increasing of noise1.
doi:10.1371/journal.pone.0019784.g007

Table 2. Median graph distance ~DDG between the model
networks and the Drosophila PPI network for different
confidence thresholds P�c , and the model with the minimal
distance wins.

P�c = 0.65 P�c = 0.5 P�c = 0.0

Rank Model ~DDG Model ~DDG Model ~DDG

1 DMR 0.0162 DMR 0.0183 LPA 0.0351

2 LPA 0.0230 DMC 0.0851 DMR 0.0651

3 DMC 0.0310a LPA 0.0963 DMC 0.2181

aFor P�c~0:65, the DMC network consists of small isolated groups of connected
vertices. Its giant component is too small (only around 4:5% of the vertices are
in the giant component, nine times smaller than that of Drosophila, 44%) to
represent the significant structural features of the entire graph. Though we
give the distance value, the graph distance is not suitable for this case.

doi:10.1371/journal.pone.0019784.t002

A Curve Shaped Description of Large Networks

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e19784



In summary, none of the three models is simultaneously ranked

as the best by both the methods based on BFS-graph and subgraph

census, implying that there is still room for improvement for these

models. The DMC gets a higher rank than the DMR and LPA

when using subgraph census, a result indicating that the gene

duplications that preserve functional complementarity and facil-

itate the connections between duplicate pairs are good at

reproducing the substructures of Drosophila’s network. When using

the BFS-graph, the DMR has a closer graph distance to

Drosophila’s network than those of the other two for high

confidence thresholds P�c~0:65=0:5, a result showing that the

gene mutations that create new interactions between proteins are

important for keeping the global connectivity of the PPI networks.

These results suggest that a model integrating several mechanisms

might be able to fit the Drosophila PPI network more accurately.

Conclusions
We have presented a mesoscopic description of large networks

which associates networks with a set of curves. Specific examples

show that the curves can reflect a number of structural features

commonly shared by a series of networks. Moreover, the curve can

be used to classify networks and evaluate the fit of network models

to real-world networks. After evaluating the fit of three network

models to the Drosophila protein interaction network, we found that

the model DMR better reproduces the topology of the Drosophila

network than the DMC and LPA, although there is still room to

improve the three models. We also compared our evaluation

method and results with that of Middendorf et al.’s in ref. [29],

where they identify the best-fitting model based on subgraph

census, and found that the structural information reflected by

characteristic curve and subgraph census complement each other.

Applying the two together can provide a more comprehensive

understanding of the network structure, which will improve the

accuracy of the structural comparisons and model evaluations.

Using the characteristic curve, we preliminarily investigated the

network properties and the fit of network models. Our further

work will include the relationship study between the network

structure and the curves, conditions that make this relationship

one-to-one and the general algorithm (if there is one) that could

recover the networks from the characteristic curves. With this

algorithm and the well designed curves or functions one could

generate networks with required topological features. The network

describing method, in essence, utilized the process of BFS and

depicted its trace on the network to capture network structure.

Other processes such as random walks may also be useful to

develop new approaches and applications including network

characterization, comparison, classification, modeling and model

evaluation.

Supporting Information

Supporting Information S1 Supporting Information S1 in-

cludes the detailed derivations of characteristic curves of random

graphs and LERRGs, discussion on the effects of root selection,

robustness test of the network classification method and more

network comparison results.

(PDF)
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