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Abstract

The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale
structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that
gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models
based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an
enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary
atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of
evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially
clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve
the same molecular species). For the Earth’s atmospheric network and the human metabolic network, we look into more
detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather
there are several concurrent factors. By examining quantities relating to the modular-functional organization of the
metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric
networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved
functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which
emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction
system than does natural selection.
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Introduction

Reaction systems are, at many levels of the universe, motors

driving the creation of higher structure. From the metabolism in our

bodies, via reactions in planetary interiors and atmospheres, to the

nuclear reaction systems in stars; these are all systems shaped by the

physical properties of constituents—the atoms and molecules.

Among these systems, metabolism is special in the sense that its

control has evolved by natural selection. But the physical properties

of molecules and the relative abundance of elements constrain the

evolution of this genetic control. Perhaps these constraints explain

that very different reaction systems—reactions in planetary

atmospheres and the organismal metabolism—share large-scale

features (like the right-skewed probability distributions of degree,

which roughly speaking reflects the number of molecules a molecule

can react with) [1,2]. Still, as we will see, there are differences

between these two types of systems and in this paper we will focus on

what these differences are and what they can tell us of the evolution

of metabolism. To put it short, we explore the idea that the reaction

systems of planetary atmospheres can be null-models for studying

metabolic networks in an evolutionary perspective.

The study of reaction-system topology (the set of all participat-

ing reactions) has long been restricted, by lack of data, to small

subsystems. These systems, like e.g. the citric acid cycle of

metabolism [3] or the carbon-nitrogen-oxygen cycle of stellar

nuclear reactions [4] (two systems that were, coincidentally, both

discovered in the mid-1930’s), have been modeled in great detail

with e.g. differential equations. It has, however, not until recently

been possible to investigate the system-wide organization of any

type of reaction system. Since about a decade, we do have

methods to infer the entire set of reactions (again coincidentally)

both in metabolism and planetary atmospheres. Still these datasets

are so crude that our conclusions in this paper will be rather

hypothetical in nature. On the encouraging side, however, the

early conclusions mentioned above—that reaction network are

right-skewed and fat-tailed [1,2]—still hold for contemporary

datasets. If we go beyond the topology, even less is known. A full

picture of reaction rates and concentrations for a traditional

kinetic modeling is far into the future. One complication comes

from the fact that metabolites (and also molecular species in

atmospheres) are distributed heterogeneously in space [5] and

sometimes so few in number that concentration based models do

not apply. This means that when investigating the global

organization of reaction systems, we will have to rely on graph-

based analysis techniques for still some time. Even though graph-

based methods need to discard much of the knowledge we have
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about reaction kinetics, one can still encode much information into

the graph. The molecular species present determine the vertices of

the network; the catalysts present define the reactions. But what

should the edges represent? Should one also include separate

vertex-types for reactions and catalysts? The fundamental trade-off

is between a graph representation including more information and

a simpler representation that suits a larger variety of analysis

methods. Much of the recent development in the graph structure

of reaction systems has focused on either adapting analysis

techniques to complex and informative graph representations

[6–9], or to find simple graph representations encoding as much

relevant information as possible [10–12]. In this paper, we will

focus more on the latter developments and study the topology of

two simple graph representations: one substance graph where the

vertices are molecular species and an edge represents that two

vertices participate in the same reaction, and a reaction graph where

vertices symbolize reactions and two vertices are linked if they

share some molecular species. In addition to these representations

we also study the reaction systems as a bipartite graph with two

classes of vertices, one for reactions and one for molecular species

with edges connecting substances to the reactions they participate

in. (Note that this representation, although more informative, still

means a reduction of the information from the entire reaction

system since one no longer can see which reactants that need to be

present for a reaction to occur, or which products that are

produced.) We investigate several topological properties of such

graphs from reaction systems of planetary atmospheres and

organismal data sets. Apart from degree distributions, we study

network modularity (reflecting how well a graph can be

decomposed into dense sub-graphs that are relatively weakly

interconnected), currency substances (abundant molecular species

that can react with a broad spectrum of other substances) and

degree correlations (if edges primarily go between vertices of

similar degree, or if the degrees are unbalanced with many edges

between high- and low-degree vertices).

Results

The different degree distributions of the human
metabolic and Earth atmospheric networks

Since the degree of a vertex count the number of other vertices

it interacts with, it is a fundamental network quantity. The high-

degree vertices can, and in most situations will, interact with many

other vertices. The early findings that reaction systems have fat-

tailed degree distributions—i.e. most vertices interacts only with a

few others while some interact with a number far larger than the

average—points at a diversity of functions among the vertices. For

the metabolism, the common interpretation is that the high-degree

metabolites are supplying building blocks to metabolites with more

specialized functions, and lower degree. For atmospheric reaction

networks, the low-degree vertices typically correspond to more

complex molecules. We start our comparison of planetary and

metabolic reaction system by looking at the substance and reaction

graphs of Earth’s atmosphere and the human metabolism. In

Fig. 1A, we show the degree distributions of the substance graphs

of the human metabolism and Earth’s atmospheric reaction

system. These distributions are rather similar—peaked and right

skewed with tails of about the same slope. The degree distributions

of the reaction graph, seen in Fig. 1B, are strikingly different. The

human reaction graph is skewed and fat-tailed like its substance

graph (but with a smaller exponent), whereas the Earth reaction

graph has a degree distribution of an entirely different functional

form, suggesting a different organization. The graphs are too big,

however, for layout programs to give a hint of a deeper

explanation of this difference (Fig. 2). Indeed, it is difficult to

single out a more fundamental quantity causing the differences in

degree distributions, as we will see in the rest of this section.

In our quest for a more detailed explanation of the difference of

degree distributions in Fig. 1, we look closer at the bipartite

representations mentioned above. In Fig. 3 (panels A, B, E and F),

we plot the probability distribution of bipartite degree Ki for the

human metabolic (Figs. 3A and B) and Earth atmospheric (Figs. 3E

and F) networks in the substance (Figs. 3A and E) and reaction

(Figs. 3B and F) projections. (For the other data sets this

information can be found in Figure S1 and S2.) For substances,

the degree distributions are right skewed in a fashion similar to the

substance graph of Fig. 1A. For reactions, the two types of reaction

systems both show unimodal degree distributions. A slight

difference is that the Earth data gives a left-skewed distribution

while the human network is right-skewed. This also means that the

bipartite reaction-degree distribution, for the human data, is

radically different than the projected distribution of Fig. 1B. To

understand this better, we can decompose the degrees of the

projected networks into three quantities as follows (where the left-

Figure 1. Degree distributions of substance and reaction graphs of the human metabolism and Earth’s atmospheric reaction
system. Panel A shows the probability mass-function of the degree of the substance graph of the reaction system of the Earth’s atmosphere and the
human metabolic networks. B shows the same as A, but for the reaction network. The similar behavior in A is drastically different in B. The plots are
log-binned and plotted on double logarithmic scales.
doi:10.1371/journal.pone.0019759.g001

Atmospheric Networks as Null Models of Metabolism
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hand side is the degree of the projected network and the right-

hand side quantities refer to the bipartite representations):

ki~Si{Ki{Xi~Ki ki{1ð Þ{Xi, ð1Þ

where Si is the sum of degrees of i’s neighbors, Ki is i’s degree, Xi is

the number of four-cycles that i is a part of, and ki is the average

degree of i’s neighbors. If there are few four-cycles in the bipartite

network and there are no strong degree correlations (so ki can be

assumed constant with respect to ki), then i’s degree in the bipartite

network is a linear function of ki (according to Eq. (1)). This is thus

not the case for, at least, the metabolic reaction network where the

k- and K-degree distribution, as mentioned, differs much. Indeed,

Figure 2. Ridiculograms of the human metabolism and Earth’s atmospheric reaction system in bipartite, substance and reaction
graph representations. The areas of the vertices are proportional to their degree. White vertices are reaction vertices; black vertices are currency
vertices. For the other vertices the color represent different network modules. The colors of the edges are the same as their vertex of largest degree.
doi:10.1371/journal.pone.0019759.g002

Figure 3. Deeper investigations of the degree distributions. Panel A displays the degree distribution of substances in a bipartite
representation of the reaction system, i.e. the probability distribution of the number of reactions a substance participates in. Panel B shows the
corresponding plot for reactions and also the average degree of neighbors. The dashed line is a linear-regression line to highlight the trend in k. C
and G displays the values of the three bipartite-network terms of k—S (the sum of the degrees of neighbors), K (the degree) and X (the number of
four-cycles the vertex participates in). The diagonal line shows the k-value (so if you subtract the values of circles and squares from the values of
crosses you would get this line). Panel D and H shows the average degrees �kkof nodes with certain values of the three terms that contribute to the
degree in the projected reaction networks. �kk is averaged over logarithmic bins of S, K, and X values. The dashed line is a reference corresponding to a
linear �kk-dependence. Panels A–D are for the human metabolic reaction networks, E–H show the corresponding plots for the Earth atmospheric
reaction networks.
doi:10.1371/journal.pone.0019759.g003

Atmospheric Networks as Null Models of Metabolism
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in Fig. 3B we see a positive correlation between K and k, stronger

than the corresponding correlation for the Earth network in Fig. 3F

(which is almost absent). This means that S = Kk grows super-

linearly with K so the tail of p(K) gets stretched into the distribution

of Fig. 1B. Here, we still assume that the number of four-cycles

does not contribute to k significantly, which we justify below. This

is justified to some extent in Fig. 3C (and 3G for the Earth

network)—the k-scaling of S and X is similar, so S – X scales like S

(and thus the arguments above still hold). That S (and thus S – X)

scales like X is also true for the atmospheric network (Fig. 3G),

which explains that the shape of Fig. 1B is to a large degree

determined by K (so the hump shape of p(K) gives a hump-shaped

p(k)). Another view of S, K and X is given in panels D and H where,

we plot the average degrees of nodes given their S-, K- and X-

values. We can see that, as expected, S is the best predictor of �kk
(showing close to a linear relationships for the metabolic data, and

a clear correlation for the atmospheric network). Another

observation is that X shows more structure (apart from the scaling

itself) in the metabolic network compared to the atmospheric

network. This can perhaps be explained by the more pronounced

modular structure of the metabolic network (that we will discuss

further below). From Fig. 3D and H we also learn that �kk shows a

strong positive K-dependence for the metabolic network, but not

for Earth’s atmospheric network. This is reflected in Figs. 3B and F

too—since k grows with K for the metabolic network, S and K will

be positively correlated, and since �kk grows with S then it will also

grow with K.

In summary, the difference between the degree distributions of

the reaction graphs of the metabolic and atmospheric networks

cannot be explained by one single feature of the original reaction

system’s topology. Instead it can be traced to a combination of the

slightly different skewness of the distribution of a reaction’s

number of participating substances and the different correlation

properties between the degree of a vertex and the average degree

of its neighbors. In Figures S3 and S4), we plot the bipartite degree

distributions of all the planets and organisms. Essentially, the

conclusions for the Earth’s atmospheric network extends to other

planets, except that the data sets are smaller and the degree

distributions does not have the same negative trend similar to

power-laws.

Comparing degree distributions of planetary
atmospheric and organismal metabolic networks

So far, we focused on finding lower-level causes for the degree

distributions of projected networks of the human metabolic and

Earth atmospheric networks. We now turn to the question how

much these observations can be generalized to the other networks.

To this end, we will use more rigorous methods for analyzing

probability distributions than we used so far. We will analyze the

data using methods from Ref. [11]. First, we test the hypothesis

that degrees are power-law distributed by (roughly speaking,

details in the Methods section) finding parameter values for the

power-law distribution that fits the data best, then draw as many

series of numbers from this distribution with the same size as the

raw data and check the likelihood that the synthetic and real data

come from the same distribution. We also check which is the most

likely distribution generating that degree distribution—power-law

or log-normal (a right-skewed distribution with a more narrow tail

than a power-law that is visually similar to the Earth reaction

graph of Figure. 1B). The results of these measurements are shown

in Table 1. As hypothesized above, the reaction graphs are

unanimously inconsistent with power-laws. Of the substance

graphs, only planetary atmospheric networks are consistent with
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power-laws. This does not mean that it is fair to describe them as

power-laws; especially since most of them fit better to a log-normal

form. Since the planetary data sets are relatively small, the relative

errors are larger and it is harder to refute the possibility of another

functional form. The substance graphs are, on the other hand,

closer to log-normals than power-laws. The reason is seen for the

human metabolic network in Fig. 1 (and for the other datasets sets

in Fig S1), that they are even more fat-tailed than a power-law—

they have more vertices of highest degrees than the best-fitting

power-law does. Thus they are even further from log-normals than

power-laws. The reaction graphs are more similar to power-laws

than log-normals for the metabolic networks, but the other way

around for the planetary atmospheres, which is also in line with

our observations. This study cannot, however, strengthen the

observation that the substance graphs are similar to the metabolic

networks except for Earth’s network that falls into the same

category as the metabolic networks. There are two possibilities—

either the difference can be explained by a difference in sizes and

that the other planetary atmospheres have to be measured by

indirect methods, or the Earth network is radically different (more

than just the sizes). Ref. [2] makes the latter hypothesis, and argues

a difference from the influence on the biosphere on the Earth’s

atmosphere creates a visible difference. On the other hand, many

reactions typical for Earth (e.g. involving molecular oxygen) are

also present in the other datasets.

The substances’ degrees in the bipartite representation do not

separate the planetary and metabolic data so well (both types of

datasets contain degree distributions consistent with power laws,

and not). Similar to the observations in the detailed studies above,

the projections to substance or reaction graphs create the

difference. However, the planet-network distributions are more

similar to log-normal than power-laws, whereas it is the other way

around for the metabolic networks.

Modularity and currency metabolites
Biological systems are commonly described as modular—being

composed of different subunits, or modules, which perform some

specific task relatively independent of the rest of the system. Some

modules are quite conspicuous—a cell is a prime example—but

also more nebulous systems, like metabolism, are thought to

consist of modules. If we treat all reactions equal (the essence of the

graph theoretic approach), then independence means that the

connections within the network module should be denser than the

connections out of the module. A module on a graph-level

resolution of metabolism is thus equal to what is commonly known

as a network cluster or community [13]. This is not quite the

whole story however. The most abundant metabolites (like water,

carbon dioxide and so on) do not put any restriction on the

reactions, and would not contribute to the specialized function of a

module. It is thus common to preprocess the graph by identifying

such currency metabolites and removing them from the network,

considering only a network of other less frequent molecular species

that are more of bottlenecks in the metabolic machinery. There

are methods to identify both network clusters and currency

metabolites (described in the Methods section) from the topology

of substance graphs. Although these definitions have been

developed for metabolic networks, there is nothing that stops us

from applying them to networks of planetary atmospheres. A priori,

since atmospheric reaction system has not evolved through natural

selection, we expect them to have less distinct modules and

currency metabolites. This is indeed the case as can be seen in

Fig. 4—there is a size-difference between the metabolic and

atmospheric networks, but it is less pronounced than both the

relative modularity and the number of currency vertices. Thus

there seems to be a stronger tendency for the metabolic networks

to be organized into modules supplied by currency vertices than

the networks of planetary atmospheres.

Discussion

In this article, we have directly compared functionally

informative network characteristics of metabolic reaction systems

of a wide variety of organisms and the reaction systems of planets

and moons of the solar system. One such quantity is degree—the

number of other nodes a node interacts with. (Where ‘‘interact’’ is

defined via the network in question.) In most types of networks,

degree indicates the importance of a node, but in biochemical

networks, where both low- and high-degree vertices can be

essential for the cell’s functionality, then degree rather separates

chemical substances of different functionality—at least in meta-

bolic substance networks, the high-degree vertices are typically

light molecules that supply atoms and molecular groups to the

functionally more specialized low-degree vertices [14]. For

Figure 4. Relative modularity and the number of currency vertices separate networks of metabolism from networks of planetary
atmospheres more than their sizes do. To show that the maximal relative modularity separates metabolism from reaction systems of planetary
atmospheres, we display (panel A) the relative modularity D as a function of the number of vertices N. The shaded areas indicate the standard
deviation and means of the respective quantities. Similarly, in B, we show another quantity related to the functional organization, the number of
currency vertices c, as a function of the number of edges M in the network. Note that axes are linear and logarithmic respectively.
doi:10.1371/journal.pone.0019759.g004

Atmospheric Networks as Null Models of Metabolism

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19759



reaction networks one can assume a similar interpretation—high-

degree vertices are reactions supporting many subsystems of the

reaction system. All substance projections, for both atmospheric

and metabolic networks, do indeed have relatively broad degree

distributions. This supports the above-mentioned picture of

functional differentiation by degree. Using statistical tests, we

can separate organisms from planet fairly well. The networks of

planetary atmospheres are typically consistent with power-laws,

but the metabolic networks are not. The planetary networks are,

however, statistically more similar to log-normal distributions,

which suggests that the fact they are deemed consistent with

power-laws is an effect that they are, on average, smaller than the

metabolic systems (and thus does not provide enough data to give

statistical significance).

We note that in the substance-network projection, the Earth

atmospheric and human metabolic networks have rather similar

degree distributions, but for the reaction-network projection the

distributions are strikingly different. We investigate lower-level

explanations for this observation in terms of degree distributions of

a bipartite representation of the reaction system and degree

correlations. It is however not easy to single out a low-level cause

for this difference, rather it seems to be a combined effect of a

slightly difference in the distribution of reaction-degrees and

degree correlations in the bipartite representation.

When we look closer at quantities designed to characterize the

modular functionality, we see higher network modularity and

more currency metabolites in metabolic networks than atmo-

spheric networks. On the other hand, the differences are not larger

than that they can almost be explained by the sizes of the networks

alone. Furthermore, fundamental structures such as the shape of

some of the degree distributions are skewed in a qualitatively

similar way. Our conclusion is thus that the main structure of

metabolic networks is probably shaped by the same fundamental

stoichiometric constraints as all chemical reaction systems, but

there are also traces of evolution in the network structure of

metabolism. At the same time the network-modular structure, the

traces of evolution, is not so clear as the picture the analogy to

engineering paints—there are more than a couple of in- and

output terminals. Maybe the largest open question is not why

metabolic networks are modular but why they are not more

modular? How can we reconcile the logical picture of evolution

operating by adding and deleting of modules with the modular-

but-not-very-much-so picture of metabolic networks? We believe

the approach we take in this paper, to use a natural system as a

null-model for the metabolism can be fruitful.

Methods

Datasets for metabolic and chemical networks
Reaction sets for planetary atmospheres are described in Ref.

[5], except the ‘‘solar system’’ data that was obtained from the

UMIST database [15]. The metabolic networks come from the

KEGG [16] and BiGG [17] database and are described in Ref.

[7]. We select nine datasets from the KEGG and BiGG databases

to match the number of planetary atmosphere datasets. To get a

rough error estimate of sampling effects, we also analyze the

human data both from BiGG and KEGG, and two independent

datasets from Jupiter’s atmosphere. Our selection criterion is that

the datasets should be a diverse selection among the most well-

studied model organisms.

Network representations
To choose the graph representation of a reaction system

involves a trade-off between information content and usefulness.

One can use a complex representation with substances, catalysts

and reactions as separate classes of vertices and directed edges

representing the general direction of the matter flow. The

advantage with such a representation is that all topological aspects

of the reaction system are encoded into the graph. But the price for

this is that there few general analysis methods can be applied to it;

they would need to be modified, something that is not always

possible. Alternatively, one chooses a simple-graph representation

with one type of vertices and one type of (undirected) edges,

without multiple edges or self-edges. Such a representation can be

analyzed by a multitude of off-the-shelf methods. A disadvantage

with simple graphs, except that they encode less information, is

that there is no obvious way of reducing the reaction system to a

simple graph. We choose a substance graphs as our main graph

simple-graph representation. In such a graph one put an edge

between all substances that can participate in the same reaction, so

if the reaction 2H2O R 2H2 + O2, would contribute with three

edges—(H2O,H2), (H2,O2) and (O2,H2O)—to a substance graph.

There is some evidence that substance graphs are good simple-

graph representations of metabolic networks [11,18], but to the

best of our knowledge, no corresponding studies for other

categories of reaction systems. In addition, we use a reaction

graph representation that is in some sense dual to the substance

graphs—every reaction is a vertex in this network and two

reactions that have a substance in common is connected.

Testing degree distributions
We use the approach in Clauset et al. [11] to test the degree

distributions for the hypothesis that they follow power-laws. This

method starts from the real data and obtains the exponent of a

best-fitting power-law, a, by maximum likelihood estimation.

Then one draws sets of random numbers, of the same cardinality

as the original data, from the probability distribution

pk~
Lk{a if0vkƒkmax

0 otherwise

�
ð2Þ

where L is a normalization constant. Finally, one use the

Kolmogorov–Smirnov test statistics (the maximal difference, for

all k-values, between the cumulative density functions of the real

and synthetic data) to estimate the p-value of the hypothesis that

the real data was drawn from pk.

Ref. [19] also adapts a method by Vuong [20] to compare

different heavy-tailed distributions. We use it to test which

distribution of power-law and log-normal distribution functions

that best fits our data. The log-normal distribution is defined by

the probability density function

pk~
A0

k
exp {a0(lnk{m)2
� �

ð3Þ

where A0, a0 and m are positive constants (A0 is a normalization

factor, a0 and m are parameters giving the shape of the curve).

Vuong’s method takes the likelihoods, L1 and L2, of the two

functional forms generating the observed data as its starting point.

The method uses the result that V~ln(L1=L2) is normally

distributed for large data sets to compute a p-value for the

hypothesis that the data was generated by distribution 1 rather

than distribution 2.

Network Modularity
The concept of network modularity, cluster, or community

structure strives to capture the large-scale organization of networks
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PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19759



into dense subnetworks that are relatively weakly interconnected

[21]. There is no unique way of deriving a measure for network

modularity or dividing a graph into such dense subgraphs; rather,

there is a number of different methods each capturing some

certain aspect of network modularity. The method in this work is

based on the popular method of maximizing Newman and

Girvan’s Q-modularity. For this measure, one assume the graph is

divided into a number of subgraphs and let eij be the fraction of all

edges going between subgraph i and j, and defines

Q~
X

i

eii{
X

j
eij

� �2
� �

ð4Þ

A class of module-detection methods starts by assuming that the

division maximizing Q is a sensible decomposition into subgraphs.

Already from the Equation (4) one can see that edges within a

subgraph give a positive contribution to Q, and edges between

communities decrease Q. The advantages with this clustering

algorithm are that Q is easy to interpret and closely matching the

verbal definition of a network module above; and furthermore the

maximal Q, Q̂Q, is a crude measure of the network modularity of an

entire graph. The two disadvantages with Q-maximization methods

are the following. First, it fails to divide some subgraphs into what

looks like obvious clusters. This is roughly speaking because the

second sum compares a division i with all other divisions j, even if it

does not matter (for a visually good clustering) if i and j are far apart

[22]. Second, it is technically hard to find the maximizing division—

Q is a very flat function (in sub-division space) near its maximum

[23]. For our purpose these latter two objections are not so serious—

there is no general biological argument that the modules that look

like they can be further subdivided are not sensible clusters, and

there is no need to find the actual subdivision into modules, we just

want a good estimate of Q̂Q, which we do have if we only get close to

the mentioned plateau in subdivision space.

As a measure of the modularity of a graph, Q̂Q, is not ideal. On

one hand Q̂Q close to zero would mean a low modularity and Q̂Q
close to one would imply modularity. On the other hand, the

intermediate values depend on many factors regarded as more

fundamental (like the number of vertices and edges and the degree

distribution) than modularity. To compensate for such effects as

much as possible we rather measure Q̂Q relative to the average

value of Q̂Q in an ensemble, or null-model, of graphs (obtained by

standard edge rewiring [24]) with the same sizes N and M and the

same degrees as the substance graph G, but everything else

random. So we define

D~Q̂Q{�QQ ð5Þ

where �QQ is the average of the maximal modularity over 1000

rewired graphs.

Currency vertices
The hubs in metabolic networks—e.g. H2O, NADH, ATP and

CO2—are typically also the most abundant metabolites through-

out the cell. These are the workhorses of metabolism, supplying

functional groups to proteins and other molecules with more

specialized functions. Since these currency metabolites are present

throughout the cell and do not put much of constraints on the

reactions they participate in, one can learn more about the

functionality of the network if one exclude them from the graph

representation. The circumstance that they are common through-

out the cell and participate in many reactions also means that they

connect network modules and effectively lower the modularity.

This observation, along with the fact they have a high degree, has

been used as a definition of currency metabolites [10]. If one

deletes vertices in order of their degree (starting from large

degrees) and monitor D, then for metabolic networks, D typically

first increase to a maximum and later decrease. Ref. [10] defines

currency metabolites as those that give the largest D before D
reached a value larger than in the original graph. This definition is

general enough to apply to other reaction-system networks, and

one can speak of currency vertices also for atmospheric or nuclear

reaction systems [14].

Supporting Information

Figure S1 Degree distributions for the substance net-
works. The data is log-binned and plotted in log–log scale.

(TIF)

Figure S2 Degree distributions for the reaction net-
works. The data is log-binned and plotted in log–log scale.

(TIF)

Figure S3 Degree distributions for the substances in the
bipartite representations. The data is log-binned and plotted

in log–log scale.

(TIF)

Figure S4 Degree distributions for the reactions in the
bipartite representations. The data is log-binned and plotted

in log–log scale.

(TIF)

Figure S5 A plot corresponding to Fig. 3C, D, G and H
for substance networks. Panels A and C display the values of

the three terms of k—S, K and X. The diagonal line shows the k-

value. Panels B and D show the average degrees �kk of nodes with

certain values of the three terms that contribute to the degree in

the projected networks. �kk is averaged over logarithmic bins of S,

K, and X values. Panels A and B is data for the human network; C

and D are the corresponding plots for the Earth atmospheric

network.

(TIF)
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