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Abstract

Background and Aims: Free radicals are implicated in the aetiology of some gastrointestinal disorders such as gastric ulcer,
colorectal cancer and inflammatory bowel disease. In the present study we investigated the antioxidant and genoprotective
activity of some rotenoids (i.e. boeravinones) isolated from the roots of Boerhaavia diffusa, a plant used in the Ayurvedic
medicine for the treatment of diseases affecting the gastrointestinal tract.

Methods/Principal Findings: Antioxidant activity has been evaluated using both chemical (Electron Spin Resonance
spectroscopy, ESR) and Caco-2 cells-based (TBARS and ROS) assays. DNA damage was evaluated by Comet assay, while
pERK1/2 and phospho-NF-kB p65 levels were estimated by western blot. Boeravinones G, D and H significantly reduced the
signal intensity of ESR induced by hydroxyl radicals, suggesting a scavenging activity. Among rotenoids tested, boeravinone
G exerted the most potent effect. Boeravinone G inhibited both TBARS and ROS formation induced by Fenton’s reagent,
increased SOD activity and reduced H2O2-induced DNA damage. Finally, boeravinone G reduced the levels of pERK1 and
phospho-NF-kB p65 (but not of pERK2) increased by Fenton’s reagent.

Conclusions: It is concluded that boeravinone G exhibits an extraordinary potent antioxidant activity (significant effect in
the nanomolar range). The MAP kinase and NF-kB pathways seem to be involved in the antioxidant effect of boeravinone G.
Boeravinone G might be considered as lead compound for the development of drugs potentially useful against those
pathologies whose aetiology is related to ROS-mediated injuries.
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Introduction

Free radicals are (usually) highly reactive atomic or molecular

species with an unpaired number of electrons. Free radicals have

been implicated in the aetiology of various human diseases,

including gastrointestinal disorders (such as gastric ulcer,

colorectal cancer, inflammatory bowel disease, etc.) [1–5] and

play an important role as mediators of inflammation [6]. The

gastrointestinal tract is particularly well endowed with the

enzymatic machinery necessary to form large amounts of oxygen

radicals, e.g. mucosal xanthine oxidase and NADPH oxidase,

which occur in resident phagocytotic leukocytes of the lamina

propria. A number of studies have shown that certain indices of

oxidative stress (e.g. malondialdehyde, phospholipase A2 and

myeloperoxidase) are increased in intestinal tissues of patients

with disorders of the digestive system [7–10]. Other studies have

reported a relationship between glutathione depletion and gut

diseases [11–13]. Therefore, a new approach for the treatment of

gastrointestinal diseases could involve the use of antioxidants (to

prevent and neutralise toxic oxygen intermediates) or drugs

which increase the functionality of endogenous antioxidant

systems (such as superoxide dismutase, catalase or glutathione

peroxidase).

Boerhaavia diffusa is a herbaceous member of the Nyctagina-

ceae family which has a long history of use by indigenous and

tribal people of Brazil and India [14]. In particular, roots and

leaves of this plant have been widely used in the folk medicine

to treat several illnesses including those affecting the gastro-

intestinal tract (dyspepsia, abdominal pain, etc.). Experimental

studies have demonstrated that B. diffusa could be effective

in the prevention and treatment of diseases in which oxidants

or free radicals are implicated (i.e. inflammation, cancer,

diabetes, etc.) [15–19]. The main chemical ingredients of this

plant include alkaloids (punarnavine), rotenoids (boeravinones

A to J) and flavones [20]. In light of these data, in this paper we

evaluated the antioxidant/genoprotective effect of B. diffusa

and tried to identify the active ingredients responsible of its

activity.

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19628



Results

Preparation of the methanol extract and isolation of
rotenoids

Roots of Boerhaavia diffusa (2.20 lbs) were extracted with

methanol (363 L) at room temperature and the obtained extract

was subjected to Kupchan partitioning to obtain four different

fractions (n-hexane, CCl4, CHCl3, n-BuOH). Preliminary antiox-

idant assays showed that the CCl4 fraction possessed high

antioxidant activity, therefore, this fraction was further separated.

ESR-guided (see below) purification through sequential silica gel

column chromatography and HPLC as detailed in the Exper-

imental Section led to the isolation of boeravinone D (1, 6.4 mg),

boeravinone G (2, 7.5 mg) and boeravinone H (3, 5.2 mg) (Fig. 1).

The structures of these molecules were identified on the basis of

the comparison of their spectral data with those reported in the

literature [21,22].

Electron spin resonance spectroscopy
As shown in Figure 2, the reaction of Fe2+ and H2O2 in the

presence of the spin trapping agent DMPO, generated a 1:2:2:1

quartet of lines in the ESR spectrum with the hyperfine coupling

parameters (aN and aH = 14.9 G). BDME (0.1–5 mg/ml) produced

a concentration-dependent inhibition of the ESR signal intensity

of DMPO-OH spin adduct (antioxidant activity (AA) %: BDME

0.1 mg/ml 12.260.51, BDME 0.5 mg/ml 26.5560.62, BDME

1 mg/ml 52.3260.98, BDME 3 mg/ml 66.960.57, BDME

5 mg/ml 71.2260.43, n = 3) (Fig. 2). Among the four fractions

(n-hexane, CCl4, CHCl3, n-BuOH) obtained from BDME through

a modified Kupchan partitioning procedure (see Materials and

Methods), the CCl4 and the n-BuOH ones were able to reduce the

ESR signal intensity, with the former more active (Table 1). The

carbon tetrachloride extract produced a total elimination of

hydroxyl radical (AA = 100%) at the concentration of 0.7 mg/ml.

Chromatographic purification of the CCl4 fraction through

column chromatography on silica gel (see Materials and Methods)

led to the formation of 13 sub-fractions whose antioxidant activity

was evaluated through ESR assay (Table 2). HPLC purification of

the most active sub-fractions (BOE4, BOE6, BOE 8 and BOE 9)

led to the isolation of boeravinone G, boeravinone H and

boeravinone D (structures in Fig. 1) which, at the concentration

of 0.5 mg/ml, showed a scavenger activity of 65.963.3%,

50.262.4% and 48.661.4%, respectively.

Lipid peroxidation
The treatment with H2O2/Fe2+ (1 mM) produced a significant

(p,0.001) threefold increase in TBARS formation (Fig. 3).

Boeravinone G (0.1–1 ng/ml) significantly and in a concentra-

tion-related manner (p,0.001) reduced H2O2/Fe2+-induced

TBARS formation (Fig. 3). Boeravinone G given alone (i.e. in

absence of H2O2/Fe2+ treatment), at all concentrations used, did

not modify the TBARS levels (pmol MDA/mg protein: control

168.5621.35, boeravinone G 0.1 ng/ml 175.8613.54, boeravi-

none G 0.3 ng/ml 173.3617.21, boeravinone G 1 ng/ml

171.8614.16; n = 6).

Intracellular ROS
Exposure of Caco-2 cells to H2O2/Fe2+ (2 mM) produced a

significant (p,0.001) increase in ROS formation (Fig. 4). A pre-

treatment for 24 h with boeravinone G (0.1–1 ng/ml) reduced the

ROS formation significantly (p,0.05-0.001) and in a concentra-

tion dependent manner as measured by the inhibition of DCF

fluorescence intensity (Fig. 4). Boeravinone G (0.1–1 ng/ml), given

alone (i.e. in absence of H2O2/Fe2+ treatment), did not affect the

formation of ROS (Fluorescence intensity: control 2.4560.09,

boeravinone G 0.1 ng/ml 2.4560.14, boeravinone G 0.3 ng/ml

2.3660.17, boeravinone G 1 ng/ml 2.4260.09; n = 6).

DNA damage
Boeravinone G (0.1–1 ng/ml) did not produce DNA damage

detected by the Comet assay in Caco-2 cells (% tail intensity:

control 5.3760.26, boeravinone G 0.1 ng/ml 5.2960.19, boer-

avinone G 0.3 ng/ml 5.2160.22, boeravinone G 1 ng/ml

5.3260.25; n = 4), excluding a genotoxic effect. Exposure of the

Caco-2 cells to H2O2 (75 mM) produced a significant (p,0.001)

DNA damage (Fig. 5), expressed as comet tail intensity. Tail DNA

fluorescence of H2O2-damaged Caco-2 cells was about 43%, while

the control was about 5%. A pre-treatment with boeravinone G

(0.1–1 ng/ml) reduced significantly (p,0.001) and in a concen-

tration dependent manner the DNA damage induced by H2O2

(Fig. 5). Consistent with the TBARS assay, a significant in-

hibitory effect was achieved for the 0.1–1 ng/ml (boeravinone G)

concentrations.

SOD activity
Twenty-four hours exposure of Caco-2 cells to H2O2/Fe2+

(1 mM) produced a significant (p,0.001) decrease in SOD activity

which was concentration-dependently counteracted by boeravi-

none G (Fig. 6). Interestingly, boeravinone G, at the highest

concentration tested (1 ng/ml), resulted in a SOD activity which

was significantly higher than the value measured in untreated cells

(i.e. cells not treated with H2O2/Fe2+) (Fig. 6). Boeravinone G

(0.1–1 ng/ml), used alone (i.e. in absence of H2O2/Fe2+

treatment), did not modify the activity of SOD [SOD activity

(ng/mg protein): control 17.760.64, boeravinone G 0.1 ng/ml

18.0260.90, boeravinone G 0.3 ng/ml 17.8660.96, boeravinone

G 1 ng/ml 17.260.79; n = 6].

Figure 1. Chemical structure of the most potent antioxidant rotenoids. Rotenoids were obtained from Kupchan partitioning of the
methanol extract of B. diffusa root following by sequential silica gel column chromatography and HPLC.
doi:10.1371/journal.pone.0019628.g001
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pERK1/2 and phospho-NF-kB p65 expressions
Fenton’s reagent (H2O2/Fe2+ 1 mM) elicited a significant

increase in the levels of phosphorylated ERK1 (pERK1), ERK2

(pERK2) and NF-kB p65 (Figure 7 and 8). Boeravinone G (at 0.3

and 1 ng/ml) significantly reduced the levels of pERK1 and

phospho-NF-kB p65 (Figure 7 and 8). However, at the lower

concentration of boheravinone G tested (i.e., 0.1 ng/ml), increased

levels of both pERK1 and phospho-NF-kB p65 were observed

(Figure 7 and 8). By contrast, boeravinone G, at all the

concentration evaluated (0.1–1 ng/ml), did not affect H2O2/

Fe2+ -induced pERK2 up-regulation (Figure 7).

Cytotoxicity assays
The exposure of Caco-2 cells to various concentrations of the

most active antioxidant rotenoid boeravinone G (0.1–1 ng/ml)

resulted in no effect on cell survival (% cell survival: control

Table 1. Antioxidant activity (AA), detected using ESR assay, of the fractions obtained from Kupchan partitioning of the methanol
extract of B. diffusa root.

Extracts AA (%)

0.1 mg ml21 0.5 mg ml21 1 mg ml21 3 mg ml21 5 mg ml21

n-Hexane 0 0 0 0 0

Chloroform 0 0 0 0 0

Carbon tetrachloride 59.8760.65 85.4562.26 10060 10060 10060

n-Butanol 15.5060,39 35.5660.88 61.2261.66 68.9061.85 78.161.69

doi:10.1371/journal.pone.0019628.t001

Figure 2. Effect of 5 mg/ml of Boerhaavia diffusa methanol extract on electron spin resonance spectroscopy. Representative ESR spectra of
DMPO-OH spin adduct signal (A) and DMPO-OH spin adduct signal in the presence of 5 mg/ml of Boerhaavia diffusa methanol extract (B).
doi:10.1371/journal.pone.0019628.g002
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10060, boeravinone G 0.1 ng/ml 97.264.21, boeravinone G

0.3 ng/ml 100.362.62, boeravinone G 1 ng/ml 99.763.69,

n = 6).

Boeravinone G (0.1–1 ng/ml) did not produce any increase in

the release of LDH from Caco-2 cell line (% LDH leakage:

control 11.560.51, boeravinone G 0.1 ng/ml 9.860.39, boer-

avinone G 0.3 ng/ml 10.460.46, boeravinone G 1 ng/ml

10.860.55, n = 6).

Discussion

Gastrointestinal diseases (such as gastric ulcer, colorectal cancer

and inflammatory bowel disease) are important public health

problems all over the world. There is a growing evidence that

oxygen-derived free radicals play an important role in the

pathogenesis of the digestive system disorders. Studies investigat-

ing the role of ROS in patients with IBD, have reported the

presence of abnormal high levels of these radicals [23,24].

Consistently, antioxidant compounds (e.g. polyphenols from green

tea) are believed to prevent a number of gastrointestinal diseases

[25–28] and drugs with antioxidant activity are currently used in

the treatment of these diseases [29–31].

In the present study, we have found that Boerhaavia diffusa, an

Ayurvedic herbal medicine used for the treatment of several

gastrointestinal diseases, possesses remarkable antioxidant and

genoprotective properties which could contribute to explain, at

least in part, its traditional use in gastrointestinal ailments;

moreover, for the first time, we have demonstrated that rotenoids,

mainly boeravinone G, are responsible of this activity.

One of the approaches to assess the antioxidant activity is to

examine directly free radical production and inhibition by using

the highly sensitive electron spin resonance (ESR) spectroscopy,

which is able to detect the presence and concentration of oxygen

free radicals directly. Since hydroxyl radicals are very unstable, an

exogenous spin trap reacting with the free radical species was used,

thus generating more stable adducts with characteristic ESR

profiles. In the present study, it was found that a methanol extract

of B. diffusa (BDME) reduced the signal intensity of ESR, thus

suggesting a scavenging activity. Crude extracts obtained from

different parts of the plant (i.e. leaves) have already been shown to

exert antioxidant activity in liver and kidney of alloxan-induced

diabetic rats and in the liver damaged by acetaminophen [32,33].

In order to disclose the chemical components of BDME

responsible for the antioxidant activity, we have partitioned the

Figure 3. Effect of boeravinone G (0.1–1 ng/ml) on Fenton’s reagent (H2O2/Fe2+ 1 mM)-induced malondialdehyde-equivalents
(MDA-equivalents) production. Effect observed in differentiated Caco-2 cells after 24-hour boeravinone G exposure. Data represent mean 6 SEM
of 6 experiments. #p,0.001 vs control (vehicle) and ***p,0.001 vs H2O2/Fe2+ alone.
doi:10.1371/journal.pone.0019628.g003

Table 2. Antioxidant activity (AA), detected using ESR assay,
of the fractions obtained from the carbon tetrachloride
extract of B. diffusa root.

CCl4 fractions AA (%)

0.01 mg ml21 0.15 mg ml21 1 mg ml21

BOE 1 26.3260.44 76.8761.28 91.5061.52

BOE 2 24.4160.41 78.0561.30 92.2061.55

BOE 3 23.2260.39 77.4561.29 88.4561.47

BOE 4 31.2460.52 82.9361.39 98.7560.48

BOE 5 20.1360.33 65.8561.09 82.3161.37

BOE 6 30.1260.50 81.7161.36 10060

BOE 7 24.1360.0.40 75.6161.26 86.7161.44

BOE 8 33.3460.55 82.3261.37 10060

BOE 9 32.9860.54 81.7161.36 10060

BOE 10 0 12.1960.20 51.2560.85

BOE 11 22.3260.37 75.6161.26 90.8161.51

BOE 12 15.1260.25 51.2260.85 75.2561.25

BOE 13 20.1260.33 75.6161.26 88.4561.48

doi:10.1371/journal.pone.0019628.t002
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methanol extract of B. diffusa roots to obtain four fractions (namely

n-hexane, CCl4, CHCl3, n-BuOH). An ESR-guided fractionation

of the most potent antioxidant fraction (CCl4) led to the isolation

of three rotenoids, boeravinone D [21], G [22] and H [22] with a

remarkable radical-scavenging activity. The chemical structures of

these compounds are reported in Figure 1. Since our previous

investigations revealed that the rotenoid mixture of B. diffusa roots

is actually made up by at least fifteen compounds [34,35], we were

surprised to notice that only boeravinones D, G, and H seemed to

play a major role in the antioxidant activity of the extract.

Common features of compounds 1–3 are a planar ring C, the

presence of free hydroxyl groups on ring A and at position 11, and

the presence of a methoxy group at position 6. Remarkably, in the

pool of rotenoids present in B. diffusa roots [34,35], boeravinones

D, G, and H are the only ones to possess, at the same time, all

these features. Moreover, the higher activity of boeravinone G

compared to H and D could be ascribed to the absence of the

methyl group at position 10 (see figure 1). Since boeravinone G

exhibited a higher activity compared to boeravinones D and H,

further experiments were performed on this plant compound.

Using the Caco-2 cell line (a human cell line which mimics, after

differentiation, the intestinal epithelium) and H2O2 as a free

radical generator, we further investigated the antioxidant effect of

boeravinone G by evaluating the lipid peroxidation, assessed as

MDA-equivalents, and the production of ROS.

Lipid peroxidation is a complex process that occurs in biological

membranes that contain oxidation-susceptible polyunsaturated

fatty acids, and leads to the production of lipid hydroperoxides and

their metabolites. The cytosolic levels of malondialdehyde and its

reactive equivalents are adequate indicators of lipid peroxidation.

In the present study, we not only report for the first time the

antioxidant activity of boeravinone G in the intestinal cells using

the TBARS assay, but also confirm the antioxidant activity using a

more specific assay. Specifically, through a fluorescent approach,

we have demonstrated that boeravinone G reduced the ROS

formation generated by Fenton’s reagent. Indeed, although

Figure 5. Effect of boeravinone G (BG, 0.1–1 ng/ml) on DNA
damage. DNA damage (tail intensity) was detected by the Comet assay
in Caco-2 cells exposed to 75 mM H2O2 for 5 min in absence or presence
of boeravinone G. a = control; b = H2O2 75 mM; c = H2O2 75 mM+BG
0.1 ng/ml; d = H2O2 75 mM+BG 0.3 ng/ml; e = H2O2 75 mM+BG 1 ng/ml.
Data represent mean 6 SEM of 4 experiments. #p,0.001 vs control
(vehicle) and ***p,0.001 vs H2O2 alone.
doi:10.1371/journal.pone.0019628.g005

Figure 6. Effect of boeravinone G (0.1–1 ng/ml) on superoxide
dismutase (SOD) activity. SOD activity was evaluated in Caco-2 cells
exposed to Fenton’s reagent (H2O2/Fe2+ 1 mM) without or with
boeravinone G (0.1–1 ng/ml). Data represent mean 6 SEM of 4
experiments. #p,0.001 vs control (vehicle); *p,0.05 and ***p,0.001 vs
H2O2/Fe2+ alone; up,0.05 vs control.
doi:10.1371/journal.pone.0019628.g006

Figure 4. Effect of boeravinone G (0.1–1 ng/ml) on Fenton’s
reagent (H2O2/Fe2+ 2 mM)-induced reactive species (ROS)
production. Effect observed in differentiated Caco-2 cells after 24-
hour boeravinone G exposure. Data represent mean 6 SEM of 6
experiments. #p,0.001 vs control (vehicle); *p,0.05, **p,0.01 and
***p,0.001 vs H2O2/Fe2+ alone.
doi:10.1371/journal.pone.0019628.g004
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sensitive, the TBARS assay is not specific since many other

biological species can react with thiobarbituric acid [35].

Importantly, the antioxidant activity of boeravinone G occurs at

nanomolar concentrations, while other well known antioxidant

compounds, such as vitamins C and E exert antioxidant activity in

the micromolar range [36,37].

A great number of in vitro experiments showed that ROS

damages DNA, which appears to represent the major target

involved in mutagenesis, carcinogenesis and aging cell responses

[38,39]. Therefore, we also evaluated the potential genoprotective

effect of boeravinone G on ROS-induced DNA damage. DNA

damage, induced by using H2O2 (a well-known genotoxic agent

able to induce oxidative DNA damage) was evaluated by the

Comet assay, which is a very sensitive method for the evaluation of

genotoxic/genoprotective effects [40]. Even if we used different

concentrations of H2O2 in the various assays, our experiments

suggest that the protective action of boeravinone G, assessed by

the TBARS and the ROS assays (see above), could be related to

reduction of DNA damage induced by H2O2. Indeed, boeravi-

none G was able to reduce H2O2-induced DNA damage

significantly at the concentration of 0.1–1 ng/ml.

In order to investigate the potential targets involved in the

boeravinone G antioxidant/genoprotective action, we have

analyzed the effect of this plant ingredient on an antioxidant

defence enzyme (SOD) and on two signal transduction pathways

(MAP kinase and NF-kB) that play a pivotal role in the oxidative

stress-induced gastrointestinal disorders [41,42].

SOD is one of the most effective intracellular enzymatic

antioxidants and it acts catalyzing the dismutation of superoxide

into oxygen and hydrogen peroxide. According to previous work

[43,44], we have shown a significant decrease in SOD activity in

intestinal epithelial cells treated with H2O2/Fe2+. Boeravinone G

counteracted the decreased SOD activity thus suggesting a

stimulatory effect of this compound on the defence mechanisms

of the cells.

When generation of ROS exceeds the capability of the cellular

defence systems, several signalling protein kinases and transcrip-

tion regulatory factors are activated [41,42,45]. Indeed, oxidative

stress leads to activation of extracellular-signal-related kinases

(ERKs) [46–48], which are members of the mitogen-activated

protein kinase (MAPK) family, and nuclear factor kB (NF-kB) [49].

NF-kB and MAPK are distinct signalling transduction pathways,

although, recently, in several situations including oxidative stress,

it has been demonstrated a considerable cross talk between these

two pathways [50,51]. We have observed that exposure of Caco-2

to Fenton’s reagent leads to an activation of ERK1 and ERK2.

More importantly, we have shown that boeravinone G, at the

concentrations of 0.3 and 1 ng/ml, counteracted the increased

ERK phosphorylation induced by H2O2/Fe2+-exposure. Surpris-

ingly, the effect of boeravinone G on the ERK phosphorilation

was significant only for the 44-kDa isoform pERK1 (and not for

the pERK2 isoform) suggesting a selectivity of action. A differential

role for the two kinases in cell signalling has been previously

documented [52]. The down-regulation in ERK phosphorylation

after boeravinone G exposure is consistent with the observed effect

of this compound on SOD activity. Indeed, it is well known the

strict correlation existing between Cu-Zn SOD enhancement and

ERKs phosphorilation inhibition [53]. Further studies are needed

Figure 7. Effect of boeravinone G (0.1–1 ng/ml) on pERK1 (A) and pERK2 (B) expression. Quantitative analysis and representative western
blot analysis of pERK1 and pERK2 in Caco-2 cells exposed to Fenton’s reagent (H2O2/Fe2+ 1 mM) without or with boeravinone G (0.1–1 ng/ml). The
results were normalized with anti-ERK2 (pERK1/2/ERK2). #p,0.01 vs control (vehicle); ***p,0.001 vs H2O2/Fe2+ alone.
doi:10.1371/journal.pone.0019628.g007
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to established if boeravinone G selectively counteracts ROS-

mediated ERK and NF-kB activation or, alternatively, if

boeravinone G affects the activation of ERK and NF-kB induced

by other stimuli (for example, EGFR/RTK-mediated activation).

Similarly, we have here found an increase in phosphorylated

NF-kB p65 levels in differentiated Caco-2 cells during the

oxidative stress and such increase was counteracted by boeravi-

none G. The inhibitory effect of boeravinone G on Fenton’s

reagent-induced phosphorylated p65 up-regulation suggests an

involvement of this pathway in the boeravinone G antioxidant

activity.

Since boeravinones belong to the chemical class of rotenoids,

widely used as botanical insecticides and generally characterized

by high toxicity [54], we carried out additional experiments to

ensure that boeravinone G, at the concentrations used in our

experiments, did not exert any toxic effects. Cytotoxicity was

assessed quantitatively by both MTT and LDH assays. We

observed no decrease in the cell viability and no increase of LDH

release when Caco-2 cells were incubated in the presence of

boeravinone G. Moreover, the lack of boeravinone G toxicity has

also been demonstrated by the Comet assay since the rotenoid,

administered alone (i.e. in absence of damage induced by H2O2)

did not affect DNA integrity. Collectively, these results suggest that

boeravinone G was neither cytotoxic nor genotoxic in Caco-2

cells. Accordingly, an interesting study aimed at establishing the

‘‘toxophore’’ of rotenoid molecules, revealed that a prenyl-derived

ring attached at ring D and a dimethoxy substitution on ring A are

essential requirements [55]. Luckily, both these features are

missing in B. diffusa rotenoids.

In conclusion, the results obtained in this study demonstrate

that BDME exerts antioxidant activity; boeravinone G, H and D

appear to be the major compounds responsible for the antioxidant

activity, with boeravinone G playing a major role. The

genoprotective effect of boeravinone G was associated to a

reduction of Fenton’s reagent-induced up-regulation of pERK1

and NF-kB levels.

In the light of the importance of antioxidant/genoprotective

activity in the treatment or prevention of gut disorders and since

our experiments were performed on isolated intestinal cells, it is

suggested that the antioxidant activity here reported could explain,

at least in part, the traditional use of this Ayurvedic remedy in

treatment of gastrointestinal disorders (including inflammatory

bowel disease and colorectal cancer). Obviously, in vivo studies,

using well-established animal models of inflammatory bowel

disease and colon cancer, are needed to further confirm our

hypothesis. The relatively simple chemical structure of boeravi-

nones and the preliminary structure-antioxidant activity relation-

ships presented here should be helpful in this task.

Materials and Methods

Chemicals
5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydrogen peroxide

(H2O2), FeCl2?4H2O, trichloroacetic acid (TCA), thiobarbituric

Figure 8. Effect of boeravinone G (0.1–1 ng/ml) on phospho-NF-kB p65 expression. Quantitative analysis and representative western blot
analysis of phospho-NF-kB p65 in Caco-2 cells exposed to Fenton’s reagent (H2O2/Fe2+ 1 mM) without or with boeravinone G (0.1–1 ng/ml). The
results were normalized with anti-bactin antibodies. #p,0.001 vs control (vehicle); *p,0.05 and ***p,0.001 vs H2O2/Fe2+ alone.
doi:10.1371/journal.pone.0019628.g008
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acid (TBA), malondialdehyde (MDA), 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT), 2–7-dichlorofluorescein

diacetate (DCFH-DA) and Phosphate buffered saline (PBS) tablets

were purchased from Sigma-Aldrich (Milan, Italy). Monoclonal

primary antibodies for pERK1/2, ERK2 and phospho-NF-kB p65

were obtained from Santa Cruz Laboratories (DBA S.r.l, Italy)

while peroxidase-conjugated (HRP) anti-mouse IgG antibody was

obtained from JacksonImmunoResearch (LiStarFish, Italy). All

reagents for cell culture and western blot analysis were obtained

from Sigma Aldrich S.r.l. (Milan, Italy), Amersham Biosciences

Inc. (UK), Bio-Rad Laboratories (USA) and Microglass Heim

S.r.l. (Naples, Italy). All chemicals and reagents employed in this

study were of analytical grade.

Plant material, extraction and isolation
Roots of Boerhaavia diffusa L. (Nyctaginaceae), collected in

Bangalore (India), were kindly provided by Dr. Carlo Sessa,

Milan. Fresh whole plants (2.20 lbs) including rootstocks and roots

were extracted (363 L) with methanol at room temperature.

Evaporation of the pooled extracts left a brown material (16.4 g)

that was then subjected to a modified Kupchan’s partition scheme

[56] as follows. This crude methanol extract (BDME) was

dissolved in MeOH-H2O 9:1 and then partitioned against n-

hexane (36500 ml) to yield an apolar fraction weighing 1.55 g.

Subsequently, the water content of the hydromethanolic phase was

adjusted to 20% (v/v) and 40% (v/v) and the solutions partitioned

against carbon tetrachloride (CCl4, 36500 ml) and chloroform

(CHCl3, 36500 ml), respectively, affording CCl4 (g 0.56) and

CHCl3 (g 0.90) fractions. Finally, all the MeOH was evaporated

from the hydromethanolic layer, and the water solution thus

obtained was partitioned against n-BuOH to yield butanol (1.32 g)

and water (7.0 g) fractions. The CCl4 fraction was chromato-

graphed by MPLC on silica gel (230–400 mesh) column

(750625 mm), using a linear gradient system (400 ml for each

solvent) from n-hexane to EtOAc to MeOH-EtOAc (1:1). The

obtained fractions were pooled on the basis of their TLC behavior

to afford 13 fractions called BOE-1 to BOE-13. Fractions BOE-4,

BOE-6, BOE-8, and BOE-9, were further separated by HPLC.

Both fractions BOE-4 (n-hexane-EtOAc, 8:2) and BOE-6 (n-

hexane-EtOAc, 7:3) were purified by HPLC on an analytical

column (25064.6 mm) using n-hexane-EtOAc 75:25 as eluent

(flow rate 1.0 ml/min) and afforded as the main component

boeravinone D (1, Figure 1, 6.4 mg). The BOE-8 fraction (eluted

with hexane/EtOAc 6:4) was purified by HPLC on an analytical

column using hexane/EtOAc 7:3 as eluent, flow rate 1.0 ml/min,

obtaining boeravinone G (2, Figure 1, 7.5 mg). Finally, the BOE-9

fraction (eluted with hexane/EtOAc 1:1) was purified by HPLC

on an analytical column using hexane/EtOAc 6:4 as eluent, flow

rate 1.0 ml/min, obtaining boeravinone H (3, Figure 1, 5.2 mg).

The chemical structures of these molecules were identified on

the basis of the comparison of their spectral data with those

reported in the literature [21,22]. Boeravinone G was dissolved in

dimethylsulphoxide (DMSO) to obtain a final concentration of

0.1% (w/w) in the culture medium; this drug vehicle had no effect

on the responses under study.

Cell culture
Human colon adenocarcinoma Caco-2 cells were purchased

from the American Type Culture Collection (LGC Promochen,

Italy) and used between passages 30 to 50. The cells were routinely

maintained in 75 cm2 polystyrene flasks in growth media

consisting of DMEM (Dulbecco’s Modified Eagle Medium)

containing 10% Fetal Bovine Serum (FBS), 100 U/ml penicillin,

100 mg/ml streptomycin, 1 M Hepes [4-(2-Hydroxyethyl)-

1-piperazineethanesulfonic acid] 2.5%, non-essential amino acid

(NEAA) 16, 2 mM L-glutamine at 37uC in a 5% CO2

atmosphere. The medium was changed every 48 h. For cell

vitality, lactate dehydrogenase leakage, TBARS and ROS assays

cells were led to differentiation, (cells were used at post-confluence

stage as a model of human enterocytes); preliminary experiments

showed that a 7-day time of incubation was required for Caco-2

cells to undergo differentiation.

Hydroxyl radical generation and detection (electron spin
resonance spectroscopy)

Hydroxyl free radicals were obtained by the Fenton reaction:

0.2 ml H2O2 (10 mM) and 0.2 ml FeCl2?4H2O (10 mM) mixed

with 0.2 ml 5,5-dimethyl-1-pyrroline-N-oxide (DMPO, 0.3 M)

used as spin trap (blank). Hydroxyl radicals production was detected

by the ESR spectrometer Bruker 3000E (Rheinstetten, Germany)

with the following settings: field modulation 100 kHz, modulation

amplitude 0.512 G, receiver gain 26105, time constant 81.92 ms,

conversion time 163.84 ms, center field 3440.00 G, sweep width

100.00 G, x-band frequency 9.64 GHz, power 20 mW, tempera-

ture 23uC [57]. The influence of BDME and its fractions/

constituents on the formation and transformation of hydroxyl

radicals was investigated by adding the extract to the Fenton

reaction system in the range of concentrations 0.10–5 mg/ml and

0.01–1 ml for BDME and fractions, respectively. The ESR spectra

were recorded after 5 min. The antioxidant activity (AA) value of

the extract was defined as: AA = 1006(h02hx)/ho (%) where ho and

hx are the height of the first peak in the ESR spectrum of DMPO-

OH spin adduct of the blank and the probe, respectively.

TBARS assay
Lipid peroxidation products [thiobarbituric acid reactive

substances (TBARS) also known as malondialdehyde-equivalents

(MDA-equivalents)] from Caco-2 cells were measured by the

thiobarbituric acid colorimetric assay. Briefly, Caco-2 cells were

seeded in 6-well plates at the density of 3.06106 and led to

differentiation. Differentiated cells were treated with boeravinone

G (0.1–1 ng/ml corresponding to 0.28–2.8 nM) for 24 h and then

washed with PBS and incubated with the Fenton’s reagent (H2O2/

Fe2+ 1 mM) for 3 h at 37uC. The 1 mM concentration was

selected on the basis of our preliminary experiments, which

showed submaximal effects of H2O2/Fe2+ in this assay (pmol

MDA/mg protein: control 182.1617.90, H2O2/Fe2+ 0.25 mM

182.6620.68, H2O2/Fe2+ 0.5 mM 298.5617.62, H2O2/Fe2+

1 mM 628.5634.58, H2O2/Fe2+ 2 mM 985.5662.5, H2O2/

Fe2+ 4 mM 1039662.3; n = 8. EC50: 0.9660.07 mM, Emax:

1052650.37%). After incubation, the cells were washed and

scraped in ice cold PBS. The cells were lysed by six cycles of

freezing and thawing in PBS and then centrifuged at 162006g for

10 min at 4uC. Trichloroacetic acid (TCA, 10% w/v) was added

to the cellular lysate and, after centrifugation at 162006 g for

10 min, 0.67% (w/v) thiobarbituric acid (TBA) was added to the

supernatant and the mixture was heated at 80uC for 30 min. After

cooling, MDA-equivalents formation was recorded at the

wavelength of 532 nm, using a Beckman DU62 spectrophotom-

eter. A standard curve of MDA was used to quantify the levels of

MDA-equivalents formed during the experiments, and the results

are presented as mmol of MDA-equivalents/mg of cell protein

previously determined by the Bradford method [58].

Detection of reactive oxygen species (ROS) generation
Generation of intracellular reactive oxygen species (ROS) was

estimated by a fluorescent probe, DCFH-DA [59]. DCFH-DA
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diffuses readily through the cell membrane and is enzymatically

hydrolyzed by intracellular esterases to form non-fluorescent

DCFH, which is then rapidly oxidized to form highly fluorescent

DCF in the presence of ROS. The DCF fluorescence intensity is

paralleled to the amount of ROS formed intracellularly. For

experiments, cells were plated in a 96 multiwell plate at the density

of 16104 cells/well and led to differentiation. Confluent Caco-2

cell monolayers were incubated for 24 h at 37uC with boerhavi-

none G (0.1–1 ng/ml). Then, the cells were rinsed and incubated

for 30 min with 100 mM DCFH-DA in Hanks’ Balanced Salt

Solution (HBSS) containing 1% FBS. Finally, cells were rinsed and

incubated with the Fenton’s reagent (H2O2/Fe2+ 2 mM) for 3 h at

37uC. The 2 mM concentration of H2O2/Fe2+ induced a

submaximal increase in ROS production (control 2.2660.19,

H2O2/Fe2+ 0.5 mM 2.6160.19, H2O2/Fe2+ 1 mM 10.2961.27,

H2O2/Fe2+ 2 mM 27.3461.29, H2O2/Fe2+ 3 mM 39.4363.13,

H2O2/Fe2+ 4 mM 44.2362.31; n = 8. EC50: 2.2960.07 mM,

Emax: 54.4069.11%). The DCF fluorescence intensity was

detected using a fluorescent microplate reader (Perkin-Elmer

Instruments), with the excitation wavelength of 485 nm and the

emission wavelength of 538 nm.

DNA damage assay
The presence of DNA fragmentation was examined by single

cell gel electrophoresis (Comet assay), as previously described [60].

Briefly, Caco-2 cells were seeded in the 25 cm2 flasks at a density

of 46105 cells and incubated with boeravinone G (0.1–1 ng/ml) at

37uC for 24 h. After incubation the cells were treated with H2O2

(75 mM) for 5 min on ice and then centrifuged at 10006 g for

5 min. This concentration of H2O2 produced a submaximal

damage of DNA (data not shown). The supernatant was discarded

and the pellet was mixed with 85 ml of 0.85% low melting point

agarose (LMA) in PBS. Cells were added to previously prepared

gels of 1% normal agarose (NMA). The gels on frosted slides were

maintained in lysis solution (2.5 M NaCl, 100 mM Na2EDTA,

10 mM Tris and 1% Triton X-100, pH 10) at 4uC for 1 h, and

then electrophoresed in an appropriate buffer (300 mM NaOH,

1 mM Na2EDTA, pH.12) at 26 V, 300 mA for 20 min. After

running, the gels were neutralized in 0.4 M Tris–HCl, pH 7.5

(365 min washes) and stained with 20 ml of ethidium bromide

(2 mg/ml) before scoring. Images were analyzed using a fluores-

cence microscope (Nikon) interfaced with a computer. DNA

damage was analyzed and quantified by measuring the percent of

fluorescence intensity in the tail (tail intensity) through the Komet

5.0 image analysis software (Kinetic Imaging). Each treatment was

carried out in duplicate, and 100 random selected comets from

two microscope slides were analyzed.

Preparation of cytosolic fractions
Caco-2 cytosolic extracts were prepared as previously described

[60]. Briefly, after boeravinone G (0.1–1 ng/ml) incubation for

24 hours followed by a treatment with H2O2/Fe2+ 1 mM for

3 hours, the medium was removed and cells were washed with ice

cold PBS. The cells were collected by scraping for 10 min at 4uC
with lysis buffer [50 mM Tris-HCl pH = 7.4, 0.25% sodium

deoxycholate, 150 mM NaCl, 1 mM EGTA, 1 mM NaF, 1% NP-

40, 1 mM PMSF, 1 mM Na3VO4 containing complete protease

inhibitor cocktail (Roche Diagnostics, Mannheim, Germany)].

After centrifugation at 16,2006 g for 15 min at 4uC, the

supernatants were collected and protein concentration was

determined by Bradford method [58]. Cytosolic lysates were used

for the evaluation of SOD activity, and pERK1/2 and phospho-

NF-kB p65 levels.

Superoxide dismutase (SOD) assay
A modified version of the Kuthan and colleagues method was

used to detect SOD activity [61]. In this method, superoxide

radicals were generated using a xanthine oxidase/hypoxanthine

system, and the ability of cells to scavenge superoxide radicals was

measured spectrophotometrically. Cytosolic lysates were incubated

at 25uC for 20 min with a reaction mixture containing 1.2 mM

xanthine, 0.03 mM nitro blue tetrazolium (NBT), 0.26 U/mL

xanthine oxidase. Absorbance readings at 560 nm were recorded

using a Beckman DU62 spectrophotometer. Superoxide radical-

scavenging capacity of boeravinone G (0.1–1 ng/ml) at the end of

30 min were expressed as ng SOD/mg proteins contained in the

cell lysates.

Western blot analysis
Proteins (50 mg) were subjected to electrophoresis on an SDS

12% polyacrylamide gel and electrophoretically transferred onto a

nitrocellulose transfer membrane (Protran, Schleicher & Schuell,

Germany). The immunoblots were developed with 1:1000 dilution

for pERK1, pERK2 and phospho-NF-kB p65, and the signals were

detected with the ECL System according to the manufacturer’s

instructions (Amersham Pharmacia Biotech). The membranes

were probed with an anti-ERK2 and anti-bactin antibody, to

normalize the results, which were expressed as a ratio of

densitometric analysis of pERK1/2/ERK2 and phospho-NF-kB

p65/b-actin bands, respectively.

Cell viability
Cellular viability was assessed by the MTT [3-(4,5-dimethylthia-

zol-2-yl)-2,5-diphenyltetrazolium bromide] assay as described by

Mosmann [62]. Caco-2 cells were plated in a 96 multiwell plate at

a density of 16104 cells/well. After differentiation the cells were

treated with vehicle (DMSO 0.1% v/v) or boeravinone G (0.1–

1 ng/ml) for 24 h and, then, incubated with the MTT solution

(0.25 mg/ml) for 1 h at 37uC. The supernatant was removed and

the formed formazan crystals were dissolved in DMSO (100 ml/

well) at room temperature for 10 min. The absorbance was read at

the wavelength of 490 nm in a multiwell plate reader (Bio-Rad,

Model 550). The mean absorbance, taken from cells grown in the

absence of the extracts (vehicle alone), was taken as 100% cell

survival (control).

Lactate dehydrogenase (LDH) leakage assay
The injury to Caco-2 cells was quantitatively assessed through

the measurement of lactate dehydrogenase (LDH) levels. Caco-2

cells were seeded in 6-well plates at the density of 3.06106 and

led to differentiation. Differentiated cells were treated with

vehicle (DMSO 0.1% v/v) or boeravinone G (0.1–1 ng/ml) for

24 h. An aliquot of the medium was removed from the culture

plates and then analyzed for LDH leakage into the culture media

by using a commercial kit (Sigma Diagnostics). The total LDH

activity was determined after cells were scraped and thoroughly

disrupted by Ultra Turax for 30 seconds. The percentage of

LDH leakage was calculated to determine membrane integrity.

The LDH leakage was expressed as a percentage of the total

activity: (activity in the medium)/(activity in the medium+activity

of the cells)6100.

Statistical analysis
Statistical analysis was carried out using GraphPad Prism 4.01

(GraphPad Software, San Diego, CA, USA). All data were

expressed as mean 6 SEM of duplicate determinations and are

representative of at least three determinations. Groups of data
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were compared with the analysis of variance (ANOVA) followed

by Tukey’s multiple comparison tests. Values of P,0.05 were

regarded as significant. The IC50 and Emax values were calculated

by nonlinear regression analysis using the equation for a sigmoid

concentration– response curve (GraphPad Prism).
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