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Abstract

Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless,
bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of
uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the
successful usage of models to predict experimental or field observations. This problem has been addressed over the years
by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty
analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic
biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like
influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and
Portugal.
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Introduction

Mathematical models have long played a key role in

understanding infectious disease epidemiology [1] as well as other

biological dynamical systems. Their ability to combine established

theory and data to predict empirical observation is unique and

cannot be easily achieved by other methods [2]. In such models,

data in the form of rate parameters and time-series, and theory in

the form of the model formulation, interact to provide insight

about each other. Parameter estimation and model selection

techniques allow us to improve theory with the help of data (model

selection) and estimate data which cannot be directly observed,

with the help of theory (parameter estimation).

Proper representation of the intrinsic uncertainty associated

with dynamic models of biological systems has been under

increasing scrutiny through the development of a number of

methods for parameter estimation and model calibration [3–10].

Such methods, to be effective, must strive to be as comprehensible

as possible in the treatment of all identifiable sources of

uncertainty related to a given mathematical representation of a

biological system [5]. In practice, however, many uncertainty

analysis methods fall short of this ideal. Some of the work in the

recent literature focus on developing exact methods for parameter

estimation, requiring, for instance, the derivation of the full

likelihood function for the model at hand. Exact methods,

however, tend to be closely coupled to a specific model or class

of models, being less generally applicable [11–14].

In this paper we introduce a Bayesian framework for parameter

estimation in dynamic models that is applicable to both deter-

ministic and stochastic models [15]. The framework extends

similar frameworks proposed for different types of models

[4,6,16,17] and focuses of the analysis of dynamic models where

full or partial time-series data are available for the model to be fit

against. The fitting process estimates the posterior probability

distributions for both the model’s parameters and output series.

To ensure generality, the dynamic model, from the point of

view of the inference machinery, is treated as a ‘‘black box’’ with

inputs (parameters) and outputs (time-series), and the full

uncertainty about each of these elements can be included in the

form of prior distributions which will get updated based on

observational data. Model comparison and selection analyses are

facilitated by the pluggable nature of the model in the framework.

To illustrate the use of this framework, seven-years long time-

series of influenza-like illness incidence data from Belgium,

Netherlands and Portugal [18] were used to as a basis for

parameter estimation of a deterministic influenza transmission

model.

Methods

The core of the analytical framework proposed was inspired on

the Bayesian Melding method [6] with modifications to make it

work with dynamic models, that is, with time-series as model

outputs. The Bayesian Melding method pioneered in providing a

formal inferential framework that took into full account informa-

tion available about a model’s inputs and outputs. We proceed to

give a brief description of the Melding method. For a complete

description, see the original work. Let H~fp1,p2, . . . ,png be the

set of n parameters which are the inputs to the model M. The pi

are random variables with a joint probability prior distribution
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Figure 1. Belgian incidence data and model fit. Incidence median curve (black line) and 95% credible intervals (shaded area) for the model-
generated incidence series. The model was fitted simultaneously to Influenzanet data (green circles) and EISN data (red triangles).
doi:10.1371/journal.pone.0019616.g001

Figure 2. Incidence data from the netherlands and model fit. Incidence median curve (black line) and 95% credible intervals (shaded area) for
the model-generated incidence series. The model was fitted simultaneously to Influenzanet data (green circles) and EISN data (red triangles).
doi:10.1371/journal.pone.0019616.g002
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denoted by q(H). Therefore, P(H~h)*q(H). Also let W be the

set of m outputs of M, W~fv1(t),v2(t), . . . ,vm(t)g.
Since W is a function of H, the prior distribution of H, q(H)

induces a prior probability on W, q(W):

W~M(H) ð1Þ

q(W)~M(q(H))

Let h and w be realizations of the model’s inputs and outputs,

respectively, such that w~M(H~h). The inferential problem

consists in finding the joint posterior probability distribution of H,

p(H), and that of W, p(W), given existing data (D). Data will enter

the inference in the form of time-series corresponding to the

models outputs. Data on the model’s parameters can also be used

to update H’s joint prior probability distribution. The observed

data used to fit the model may refer to only a subset of the model’s

outputs (W). The likelihood of the model’s outputs is given by:

L(W)~P( jW)~P( jM(H))~L(H) ð2Þ

From equation 2, we see that data on the outputs will inform the

likelihood of both W and H as they are connected by the model. In

practice this means that the most likely sets of parameters (h) will

be the ones which generated the most likely outputs (w). The

dependency of the outputs on inputs is given by the model so the

accuracy of the inference will depend of the model’s identifiability,

i.e. different h generate different w.

The posterior of H is updated according to equation 3.

p(H)!q(H)L(H) ð3Þ

As already mentioned, this work introduces some extensions to

the original Melding method. A couple of extensions stand out.

One of them is the ability to use time-series data, the Bayesian

Melding method made inferences based on data on single point in

time. The second was the use of a multi-chain Markov-chain

sampler to more efficiently tackle non-convex higher dimensional

parameter-spaces.

Prior Information
Before starting the inference, prior probability distributions for

the parameters in H, q(H), must be defined. The initial conditions

for the model can be fixed or included as members of H. If prior

information about the distribution of the outputs is available, it can

be pooled with the induced prior on the outputs as described by

Poole and Raftery [6]. In the particular application described

below, we have used uninformative priors – U(0,1) – for the

outputs of the models since we had no expectations about them

which could inform different prior distributions.

Likelihood Calculations
The exploration of the parameter space is done by Markov

Chain Monte Carlo, as described below until K samples are

accepted. For the application presented here, the error distribution

of wi, where i[f1, . . . ,Kg, is assumed to be Normal, N(m~w,s2).
Thus L(wi) is a Normal likelihood function with fixed variance s2.

Other parametric forms for the likelihood function can be

Figure 3. Portuguese incidence data and model fit. Incidence median curve (black line) and 95% credible intervals (shaded area) for the model-
generated incidence series. The model was fitted simultaneously to Influenzanet data (green circles) and EISN data (red triangles).
doi:10.1371/journal.pone.0019616.g003
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adopted. Parameters values (h) are retained with probability

proportional to the likelihood of M(h), as given by:

L(w)~ P
T

t~1
P( ½t�jw½t�) ð4Þ

Monte Carlo Simulations
A multi-chain differential evolution adaptive metropolis algo-

rithm (DREAM) [19] was used to sample the joint posterior

probability distribution of H, p(H). DREAM is a sophisticated

algorithm where multiple adaptive chains are run in parallel with

delayed rejection.

For the application presented, 16 chains (same as the

dimensionality of the parameter space) were started from 16

randomly chosen points in parameter space and moved around

with steps given by a gaussian proposal distribution centered at its

current position with covariance being adapted every ten steps as

described by Andrieu and Thoms [20]. Proposed hi are accepted

proportionally to their posterior probability. The chains are run

until the desired number of samples is reached after discarding a

pre-determined number of burn-in samples. Convergence of the

parallel chains was verified at every 100 iterations by the

calculation of the Gelman-Rubins’ R convergence diagnostic [21].

Application to Multi-Season Influenza Transmission
We used a deterministic model for influenza transmission,

adapted from the Susceptible-Infected-Recovered (SIR) frame-

work [1], to explain multi-season dynamics of influenza in Europe.

The model was fitted to two sets of influenza-like illness incidence

times-series (Influenzanet [18] and EISN [22]) collected between

from 2004 and 2010 in Belgium, Netherlands and Portugal. The

model differs from the standard SIR in that only a fraction, a, of

the infected individuals is symptomatic and infectious, the

remaining being asymptomatic and ineffective in passing on the

virus. A small infectious immigration rate (m) is also added. The

model is implemented as a set of ordinary differential equations:

l~b(aIzm)

dS

dt
~{lS

dI

dt
~lS{tI

dR

dt
~tI

where the recovery rate (t) is such that the infectious period last 5

days [23], and the migration parameter (m) is assumed to be

proportional to the number of susceptibles, considering that

infection is imported by susceptible individuals who acquire the

virus while traveling abroad.

To model the seasonality of influenza epidemics in Europe, the

transmission rate b is assumed to drop during the three summer

months (June, July and August), thus virtually interrupting

transmission of the disease, possibly due to school closure for

summer vacations. For the rest of the year b is assumed to be large

enough to allow for sustained transmission. During this period the

effective reproduction number, Re, is given by the expression:

Table 1. Model Parameters; posterior estimates.

Name Belgium Netherlands Portugal

m (95% interval) m (95% interval) m (95% interval)

S0,2004 0.246 (0.202, 0.49) 0.337 (0.245, 0.5) 0.215 (0.126, 0.498)

S0,2005 0.434 (0.302, 0.562) 0.805 (0.454, 0.93) 0.493 (0.363, 0.639)

S0,2006 0.644 (0.453, 0.766) 0.685 (0.411, 0.815) 0.265 (0.122, 0.5)

S0,2007 0.669 (0.423, 0.77) 0.543 (0.346, 0.657) 0.519 (0.374, 0.66)

S0,2008 0.645 (0.404, 0.775) 0.67 (0.385, 0.789) 0.316 (0.144, 0.5)

S0,2009 0.588 (0.416, 0.699) 0.664 (0.435, 0.764) 0.577 (0.43, 0.707)

S0,2010 0.299 (0.205, 0.523) 0.43 (0.326, 0.592) 0.336 (0.222, 0.609)

a2004 0.0186 (0.00148, 0.0901) 0.0776 (0.0032, 0.332) 0.152 (0.00227, 0.481)

a2005 0.258 (0.0768, 0.394) 0.279 (0.12, 0.395) 0.236 (0.0689, 0.396)

a2006 0.306 (0.0972, 0.444) 0.271 (0.112, 0.393) 0.245 (0.0409, 0.396)

a2007 0.278 (0.116, 0.395) 0.301 (0.108, 0.398) 0.263 (0.0893, 0.391)

a2008 0.228 (0.0447, 0.387) 0.258 (0.0909, 0.39) 0.249 (0.0698, 0.392)

a2009 0.152 (0.0426, 0.289) 0.088 (0.012, 0.278) 0.0591 (0.0136, 0.259)

a2010 0.107 (0.000647, 0.484) 0.0647 (0.00127, 0.424) 0.0929 (0.00248, 0.46)

Re 1.1(1.09, 1.16) 1.11, (1.1, 1.18) 1.08, (1.06, 1.15)

m 1.78E-06 (1.35E-07, 2.95E-06) 1.98E-06 (1.05E-07, 2.97E-06) 2.84E-06 (8.98E-07, 3.92E-06)

t 1.4 1.4 1.4

Parameters of the SIR model. Single numbers are values of fixed parameters. The rest are posterior means and their 95% band. S0,� are the initial fraction of susceptibles
at each year; a� are the fraction of symptomatics for each year; re is the effective reproductive number at the beginning of the season; m is the infectious immigration
constant; t is the recovery rate.
doi:10.1371/journal.pone.0019616.t001
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Re~
ba

t
S0, ð5Þ

where S0 is the number of susceptibles at the beginning of each

transmission season.

The model is parameterized in such a way that total population

is normalized to 1 and S, I , and R are fractions of the total

population. The initial fraction of susceptibles, S0, was estimated

along with other parameters of the model for each year while the

initial fraction infected was set to match the prevalence of the first

week of data. The remainder of the population was placed in the R
compartment. The symptomatic fraction of I , denoted by a, was

also estimated for each year. The output of the model, as

represented by a � I(t) was fitted against the data.

For each country, we have estimated S0 and a as season specific

parameters, while Re and m where fixed across the multiple

seasons. From these 16 estimated quantities, bh can be calculated

by manipulating expression 5 if desired.

The model was fitted to the three countries’ datasets. Uniform

priors were attributed to all parameters: S0 had U(0,1) priors for

all years; a had U(0,0:4) priors for all years; Re had U(1,1:4) and

m, U(0,4e{6). The posterior distribution for parameters and

series were obtained from 2000 samples generated by the

DREAM algorithm after 2000 burn-in samples were discarded.

Results and Discussion

Figures 1, 2 and 3 show the fit of the model against data from

both Influenzanet and EISN for the three countries. The model

was able attain a good fit to the data, allowing for reasonably

precise estimate of the parameters (table 1). We have performed

some consistency checks on the estimates obtained (not shown). In

particular we have found a positive correlation between the

fraction of infections that are symptomatic in a given season (a)

and the time of the epidemic peak (measured from September 1st),

suggesting a role of weather factors in the performance of

influenza surveillance systems, which is further explored in van

Noort et al. [24] by combining data from other sources. Although

here we chose the simplest model formulation for the purpose of

illustration of the parameter estimation method, the results are

compatible with other studies. Moreover, the procedure is readily

applicable to more elaborate models.

The estimates of the basic reproductive number (R0) for each

season and country, can be obtained by dividing the Re estimated

for each country by the S0 estimated for each year (table 1). Its

values range from 1:64{4:58 for Belgium, 1:38{3:26 for the

Netherlands, and 1:86{5:14 for Portugal. These values, are in

accordance to previously reported estimates of R0 for influenza

[25–27].

This work proposes a methodological framework to perform

parameter estimation in dynamical models where time series data

is available for the model to be fit against. The method described

can be applied to a wide range of dynamical models, taking its

utility beyond the application described in this paper. Currently,

its applicability is limited in practice by the robustness of the

MCMC samplers available in handling complex high-dimensional

parametric spaces. This limitation can be reduced in the future by

the development of more powerful posterior sampling methods.

The pluggable nature of the model, in the framework, allows for

a simple way to compare multiple models and select which one fits

best the available data. Goodness of fit statistics such as AIC [28],

BIC [29] or DIC [30], provided by the framework, can be used for

this. Model comparison and selection techniques are, however, not

discussed in this paper but can be found in the literature [31].

For this work, an open-source software library [32] was

developed which allows for the immediate application of the

framework proposed here to other models by means of a simple

Python script (as decribed in the library’s documentation). The

library can also be used from within a Sage worksheet [33],

requiring little programming knowledge.

Acknowledgments

The authors acknowledge the helpful comments from the reviewers.

Author Contributions

Conceived and designed the experiments: FCC CTC MGMG. Performed

the experiments: FCC. Analyzed the data: FCC CTC MGMG.

Contributed reagents/materials/analysis tools: FCC MGMG. Wrote the

paper: FCC CTC MGMG.

References

1. Anderson RM, May RM (1979) Population biology of infectious diseases: Part i.

Nature 280: 361–367.

2. Ness RB, Koopman JS, Roberts MS (2007) Causal system modeling in chronic

disease epidemiology: a proposal. Annals of Epidemiology 17: 564–8.
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