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Abstract

Background: Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely
characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger
both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain
is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development.

Methodology/Principal Findings: Mice were injected intraperitoneally (i.p.) once a day from postnatal day (PND) 3 to
PND11 with endotoxin-free saline, a TLR2 agonist Pam3CSK, (5 mg/kg) or Lipopolysaccharide (LPS, 0.3 mg/kg). Pups were
sacrificed at PND12 or PND53 and brain, spleen and liver were collected and weighed. Brain sections were stained for brain
injury markers. Long-term effects on memory function were assessed using the Trace Fear Conditioning test at PND50. After
9 days of Pam3CSK, administration, we found a decreased volume of cerebral gray matter, white matter in the forebrain and
cerebellar molecular layer that was accompanied by an increase in spleen and liver weight at PND12. Such effects were not
observed in Pam3CSK4-treated TLR 2-deficient mice. Pam3CSK4-treated mice also displayed decreased hippocampus
neuronal density, and increased cerebral microglia density, while there was no effect on caspase-3 or general cell
proliferation at PND12. Significantly elevated levels of IL-1f, IL-6, KC, and MCP-1 were detected after the first Pam3CSK4
injection in brain homogenates of PND3 mice. PamsCSK, administration did not affect long-term memory function nor the
volume of gray or white matter.

Conclusions/Significance: Repeated systemic exposure to the TLR2 agonist PamsCSK, can have a short-term negative
impact on the neonatal mouse brain.
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Introduction

Improved neonatal and intensive care has enabled the survival
of preterm infants with very low birth weights. These infants are at
increased risk for nosocomial infection, and Staphylococcus epider-
midis is the predominant pathogen isolated from blood cultures
obtained in the neonatal intensive care unit [1,2,3,4,5]. Increasing
evidence suggests that neonatal brain injury is associated with
infection/inflammation, but the underlying mechanisms are
incompletely characterized [6,7,8]. Preterm infants in particular
have an increased risk of brain injury, which is predominantly
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located in the cerebral white matter, although recently a high
frequency of grey matter injury has also been reported [9].
Moreover, very low birth weight premature infants manifest
cerebellar abnormalities [6].

Infection/inflammation stimulates innate and subsequent adap-
tive immune responses via the Toll-like Receptor (TLR) family of
pattern-recognition receptors that can be stimulated with specific
agonists. TLRs exist in a wide range of tissues outside the immune
system, including the central nervous system (CNS). TLR2 forms
heterodimers with TLR1 and TLR6, and these receptor
complexes recognize molecules expressed on Gram-positive
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bacteria, such as peptidoglycan, lipopeptides, and lipoproteins,
and they also mediate recognition of whole bacteria such as
Staphylococcus epidermidis [10,11,12]. Of note, TLR2 is selectively
up-regulated in the peripheral blood mononuclear cells of human
newborns infected with Gram-positive bacteria [13]. With respect
to the CNS, a role for TLR2 signaling in adult mouse brain injury
has been suggested, as summarized by a most recent review [14]
but there are few reports that define the role of TLR2 signaling in
neonatal brain injury. However, there are studies that suggest that
TLR2 and TLR4 are the principal TLRs present on microglia
which are involved in the innate immune response to infection/
hypoxia-ischemia; for a most recent review, please see [15]. Of
note, neonates demonstrate a distinct functional expression of the
TLR system [16,17], and therefore studies of outcome in adult
models cannot be directly extrapolated to newborns. In the present
study, we hypothesized that stimulation of TLR2 during a critical
period of neonatal brain development would have a detrimental
effect on the immature brain, which may be measurable as
changes in adult behavior. We used a synthetic lipopeptide,
Pam;CysSerLys, (Pam;CSKy), as a specific TLR2 agonist [18],
that was administrated systemically to newborn wild-type and
TLR2 deficient mice from postnatal day (PND) 3 to PNDI1 to
evaluate short and long-term effects on the developing mouse
brain.

Methods

Ethics statement

The animal experiments were approved by the local Animal
Ethics Committee at the University of Gothenburg (Ethical
approval 350-2009).

Animals

Time-mated pregnant C57BL/6 wild-type mice were pur-
chased from Charles River Laboratories (Sulzfeld, Germany) and
gave birth in the animal facility (Experimental Biomedicine,
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University of Gothenburg, Gothenburg, Sweden). B6.129-
TIr2™%"/] (TLR2 —deficient) mice were purchased from the
Jackson Laboratory (US) and bred in the animal facility. The day
of birth was defined as postnatal day (PND) 0. Mice were housed
with a 12-hour light/dark cycle with ad libidium access to a
standard laboratory chow diet (B&K, Solna, Sweden) and drinking
water was provided.

Drug administration

Offspring of both genders of CG57BL/6 wild type mice were
randomly divided into three groups. i) Negative control mice
treated with endotoxin-free saline (10 pl/g, sh776, Sigma, USA,
n=12); i) Pam3;CSK, (5 mg/kg, Invitrogen, n=11) treated
mice; and iii) Lipopolysaccharide, (LPS, 0.3 mg/kg, Escherichia
coli 055:B5; Sigma, Stockholm, Sweden) injected mice (n=13).
LPS animals were used for comparison, as we have previously
shown that repeated administration of this dose of LPS from
PND3 to PNDII induces neonatal brain white/gray matter
injury [19]. Offspring of both genders of TLR2-deficient mice
were randomly divided into two treatment groups: i) Pam3CSKy,
treated (5 mg/kg, n=28) mice; ii) endotoxin-free saline treated
(10 pl/g, sb776, Sigma, USA, n=10). Mice were injected
intraperitoneally (i.p.) once a day from PND3 to PNDI11. Pups
were sacrificed at PND12 and PND53 and brain (including
cerebrum and cerebellum), spleen, and liver were collected and
weighed.

Immunohistochemical staining

Mice at PNDI12 and PND53 were deeply anesthetized and
perfused intracardially with saline followed by 5% buffered
formaldehyde (Histofix; Histolab, Gothenburg, Sweden). Brains
were removed and fixed in 5% buffered formaldehyde for 18—
24 hours and processed to paraffin. The cerebrum was cut into 10-
um coronal sections and collected at 50-section intervals. Serial
sections were used for histologic stains, as previously described
[20]. Briefly, nonspecific binding was blocked for 30 minutes with
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Figure 1. Pam3CSK4 alters brain, spleen and liver weights in neonatal mice. Quantitative analysis of the cerebral weight (A), spleen weight
(B), liver weight (C), body weight (D) at PND12 and PND53 after Pam3CSK4 administration from PND 3 to 11 in while type mice. *p<<0.05; ***p<0.001.

doi:10.1371/journal.pone.0019583.g001
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4% horse serum or 4% goat serum in phosphate-buffered saline.
The following primary antibodies were used: microtubule
associated protein-2 (MAP-2; clone HM-2, Sigma), rabbit anti-
myelin basic protein (MBP, Sternberger Monoclonal Incorporat-
ed, SMI 94, Lutherville, Massachusetts), active form of caspase-3
(557038, BD Bioscience Pharmingen); anti-neuronal nuclear
antigen (NeuN) (MAB377B, Chemicon), anti-Ki67 (NCL-KI-67-
MMI, Novocasta), and anti-Iba-1 (019-19741 Wako). Primary
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antibodies were incubated for 60 minutes at room temperature
followed by the corresponding biotinylated secondary antibodies
(all from Vector, Burlingame, California) also for 60 minutes at
room temperature. Visualization was performed using Vectastain
ABC Elite with 0.5 mg/mL 30-diaminobenzidine enhanced with
15 mg/mL ammonium nickel sulfate, 2 mg/mL B-D-glucose,
0.4 mg/mL ammonium chloride, and 0.01 mg/mL B-glucose
oxidase (all from Sigma).
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Figure 2. Pam3CSK4 alters brain development. Representative microphotographs of MBP staining in the subcortical area (A), Quantitative
analysis of subcortical white matter volume (B) cerebral gray matter volume (C) and the number of NeuN positive cells in both DG and CA of
hippocampus(D), at PND 12 after Pam3CSK, administration from PND3 to PND11 in while type mice. *p<<0.05; ** p<<0.01.

doi:10.1371/journal.pone.0019583.g002
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The cerebellum from PND12 mice was cut into 10 pm sagittal
sections and collected at 50-section intervals. Serial sections were
used for thionin/fuchsin acid staining as described previously [21].

Gray and white matter volume measurement

The forebrain gray matter area was determined by measuring
the MAP-2 immunoreactive area from 6 serial sections per animal.
The cerebral subcortical white matter area was determined by
measuring MBP immunoreactive area in 6 serial sections per
animal. The area of the molecular cell layer and granule cell layer
of the cerebellum were measured in thionin/fuchsin acid stained
sections in 8 serial sections. Micro Image, version 4.0 (Micro-
Macro AB, Gothenburg, Sweden) was used for all the above
measurements. The volume was calculated from area measure-
ments according to the Cavalieri’s Principal as described
previously [20], using the following formula: V=SA - p - T,
where V is the total volume, SA is the sum of the areas measured,
p is the inverse of the section sampling fraction, and T is the
section thickness.
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Cell counting

NeuN-positive cells were counted in all cornu ammonis (CA) fields
and dentate gyrus (DG) in 2 sections through the anterior
hippocampus and Iba-1 positive cells in the right hemisphere in 4
sections, using stereological principles (Stereo investigator 7,
System Inc, Magdeburg, Germany), with a counting frame of
40 x40 um per section for NeuN, and 150 x150 pum per section for
Iba-1. Ki67-positive cells were counted within the area of the
granule cell layer (GCL), including the subgranular zone (SGZ) in
the DG and CA of the hippocampus. Caspase-3 positive cells were
counted in the right hemisphere (4 levels) and subcortical white
matter (4 levels) and Purkinje cells in the posterior lobes in all 8
serial sections of the cerebellum. The average number of positive
cells/mm? was calculated.

Cytokine/chemokine assay

Cytokine/chemokines were measured in whole brain homogenate
supernatants from PND3 wild type mice sacrificed 6 hours
after i.p. treatment with endotoxin-free saline (10 pl/g, n=6), LPS
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Figure 3. Pam3CSK4 does not affect brain development in TLR2 deficient mice. Quantitative analysis of subcortical white matter volume
(A) cerebral gray matter volume (B) cerebral weight (C), body weight (D) spleen weight (E), and liver weight (F) at PND12 after Pam3CSK4

administration from PND 3 to 11 in TLR2 deficient mice.
doi:10.1371/journal.pone.0019583.9003
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(0.3 mg/kg; n=7) or PamsCSK, (5 mg/kg; n=7). Mice were
deeply anesthetized and perfused intracardially with saline and
brains were removed and snap frozen. Brains were homogenized by
sonication in ice-cold homogenization buffer containing 1% protease
inhibitor cocktail (P8340, Sigma-Aldrich) and 3% EDTA in 0.1 M
phosphate buffered saline, centrifuged at 4°C once at 900 xg for
10 minutes and then at 10,000 xg for 15 minutes, supernatants were
collected and stored at —80°C until use. Concentrations of IL-1f,
IL-6, KC, MCP1, IL-10, IL-17 and TNFo were measured using Bio-
plex Multiplex Cytokine Assay (Bio-Rad laboratories, Hercules, CA).
Results were normalized to the amount of protein per well, as
determined using a Bio-Rad DC protein assay.

Trace Fear Conditioning test

Long term memory function was measured via Trace Fear
Conditioning test at PND5O0, in an Automatic Reflex Conditioner
7531 (inside dimensions 390x95x165 mm; Cat No: 7530, Ugo
Basile, Italy) as previously described [22,23] with some modifica-
tions. Animals were timed for freezing within a 2 min time period
recorded by digital video cameras. Freezing was defined as
absence of movement except for respiration. The procedure was
conducted over 2 days. On day 1 freezing was scored prior to mice
receiving a pairing of a tone (20 seconds, 80 dB, 670 kHz) and a
shock (2 seconds, 0.5 mA). The time interval between the tone
and the shock was 2 seconds. On day 2, freezing was scored pre-
tone and the tone was then presented once for 30 seconds, 80 dB,
670 kHz. No shock was administered and freezing was scored for
2 minutes after the tone presentation (tone-elicited freezing, post-
tone freezing).

Statistics
Statistical Package for the Social Sciences (SPSS 17.0) and
StatView (5.0.1) were used for all analyses. One-way ANOVA
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followed by LSD post hoc test was used for comparison of data
from more than two groups. For all other analysis, Student’s
unpaired t-test was used for comparison. Results are presented as
mean * standard error of the mean (SEM). P<0.05 was
considered statistically significant.

Results

Brain, liver, and spleen weight changes at PND12

After repeated administration of 5 mg/kg Pam3CSK4 once a
day from PND3 to PND11, brain weight was decreased compared
with endotoxin-free saline-treated animals at PND12. In contrast,
there was no difference between endotoxin-free saline-treated
animals and LPS-treated animals (Figure 1A). We found no
infarctions, dilatation of the cerebral ventricles, or morphological
signs of cell death in any of the brain regions examined after
administration of Pam3CSK, or LPS.

There was a significant increase in both the absolute spleen and
liver weights in animals treated with Pam;CSK; and LPS
compared with those treated with endotoxin-free saline at
PNDI12 (Fig. 1B, 1C) as well as the relative spleen and liver
weight to body weight ratio (data not shown). The whole body
weight was not different between groups at PND12 (Fig. 1D). No
mortality or other signs of morbidity were found during the entire
study period.

Gray and white matter changes in the cerebrum at
PND12

To examine the gray matter and white matter changes after
Pam3;CSK, treatment, the cerebral gray matter volume was
measured using immunohistochemical staining for the neuronal

marker MAP-2, and subcortical white matter volume was
measured using the myelin marker MBP (Fig. 2A). At PNDI12,
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Figure 4. Pam3CSK4 has no effect on proliferation or apoptosis. Representative photomicrographs and quantitative analysis of Ki67 (A), and
active Caspase-3(B) at PND 12 after PamsCSK, administration from PND 3 to PND11 in while type mice. ** p<<0.01. The pictures show representative

positive staining of Ki67 (A) and caspase-3 (B).
doi:10.1371/journal.pone.0019583.9g004
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significantly decreased cerebral white matter (Fig. 2B) and gray
matter volume (Fig. 2C) were found both in the Pam;CSK, and
LPS-treated mice compared with saline-treated mice. In contrast,
Pam3;CSK, administration to TLR 2 -deficient mice from PND3
to PND11 once a day did not result in any significant differences
between the PamsCSK, treatment group and saline controls, with
respect to both the white (Fig. 3A) and gray (Fig. 3B) matter
volume. Similarly, brain weight (Fig. 3C), body weight (Fig. 3D),
spleen weight (Fig. 3E) and liver weight (Fig. 3F) also did not
change in the PamsCSKy-injected TLR2-deficient animals
compared to endotoxin-free saline-treated animals. These findings
further confirm that the observed white/gray matter changes
following Pams;CSK, administration in wild type mice are TLR2-
dependent.

LPS-induced inflammation reduces hippocampal neurogenesis
in adult rats [24]. To investigate the specific impact of Pam3;CSKy-
exposure on post-mitotic neurons in the hippocampus, NeulN
positive cells were counted in the dentate gyrus (DG) and the CA
fields. The density of NeuN-positive cells in the CA fields was
significantly decreased both in Pam3;CSK, and LPS-treated mice
compared with endotoxin-free saline-treated animals at PND12
(Fig. 2D). There was no difference in the density of NeuN positive
cells in the DG between groups (Fig. 2D). Cell proliferation and
apoptosis at PND12 were examined by staining brain sections with

LiB L6
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cell proliferation marker Ki67, and the apoptosis marker active
caspase-3. There were no significant differences in number of
Ki67 positive cells (Fig. 4A) or number of active caspase-3 positive
cells in either the cerebral gray matter or the subcortical white
matter among the three groups (Fig. 4B).

Inflammation after Pam3CSK4 administration

To characterize the inflammatory response after PamsCSK,
treatment, we first analyzed the cytokine/chemokine production
by multiplex ELISA in brain homogenate samples at 6 hours after
the first Pam3;CSK, treatment at PND3, in comparison with saline
and LPS treated mice. It was found that 5 mg/kg Pam3CSK4
treatment induced elevated levels of IL-18, IL-6, KC, MCP-1,
similar to those cytokines and chemokines induced by 0.3 mg/kg
LPS (Fig. 5). IL-16 was an exception in that a significant increase
was noted in Pam3;CSKy-treated pups compared with LPS-treated
pups. Of note, IL-6 was significantly increased by Pam;CSK, but
not by LPS. TNF-a levels did not change in either of the two
treatment groups. IL-10 and IL-17 levels were below the limits of
detection in all brain homogenate samples tested.

To further examine the inflammatory response, we stained
brain sections for the microglia marker Iba-1 (Fig. 6A). There was
a significant increase of Iba-1 positive cells in the Pam;CSKy-
treated group compared with endotoxin-free saline treated
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A5 Rak Krk 40 X
— m-
— 30 = —
E =— E
B — o 2
E — E
151 —
— 10-
M" R = ) o_
Saine Pam 1PS Sdane Pam
MCP1
B, KKK

T

m-
g
E 150 -
feee
200- 5
- i
0- s

et B S
200 :
d
J

- 4

Saine Pam 1PS

Saline Pam LPS

Sdine Pam IPS

Figure 5. Pam3CSK4 induces brain cytokine production. Cytokine/chemokine changes in brain homogenates at 6 hours after the first
Pam3CSK4 administration at PND3 in while type mice. ¥, p<<0.05; **, p<<0.01; ***, p<<0.001.

doi:10.1371/journal.pone.0019583.g005
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Figure 6. Pam3CSK4 induces microglial activation. Representa-
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positive cells counts (B) at PND 12 after PamsCSK, administration from
PND 3 to PND11 in while type mice. **p<0.01.
doi:10.1371/journal.pone.0019583.g006

animals, while there was no difference between the LPS-treated
group and endotoxin-free saline group (Fig. 6B).

Cerebellar changes at PND12

To investigate the effect of PamsCSK, administration on the
neonatal cerebellum, molecular cell layer and granule cell layer
volumes were measured and the density of Purkinje cells was
counted (Fig. 7A). There was a significant decrease in the
molecular cell layer volume in Pam3;CSKy-treated mice but not
LPS treated mice compared with saline-treated pups (Fig. 7B),
while there were no differences in the granule cell layer volume
(Fig. 7C) or the number of Purkinje cells between the three groups
(Fig. 7D).

Long-term effects of neonatal Pam3CSK4 administration

Since we found a decrease in gray and white matter volumes
and a decrease in the number of neurons in hippocampus at PND
12 after Pam3CSK, administration, we examined whether these
early brain alterations persisted to young adulthood and related to
hippocampus-dependent learning and memory deficits. To
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examine any long term effect of Pam3;CSK, administration and
associated neonatal brain injury on learning and memory function,
the Trace Fear Conditioning test was conducted at PND50
(Fig. 8A). At PND53, mice were killed and the weight of the
cerebrum, liver, spleen and the whole body were measured. In
addition, signs of brain injury for both gray and white matter
injury were examined.

For the Trace Fear Conditioning test, no significant differences
were found between the three groups (Fig. 8B). At PND53, the
weight of the cerebrum, liver, spleen, and body were not different
between groups, except for a decreased liver weight in the LPS-
treated group (P=0.025, Fig. 1C). Neither gray matter nor white
matter volumes were different among all three groups (data not
shown).

Discussion

In the present study, we found that repeated systemic
administration of a TLR2 agonist induced elevated cytokine/
chemokine levels in brain homogenates, reduced neonatal gray
and white matter volume and hippocampal neuron density, and
increased number of microglia cells. By adulthood, brain injury
had recovered and there was no detectable long-term change in
memory function. To our knowledge, this is the first report of the
role of TLR2 agonists on short and long term neonatal brain
development. The present study provides important direct
evidence that systemic inflammation via TLR2 may exert negative
effects on neonatal brain development.

In the rodent, there is a major growth spurt of the brain in the
first postnatal week [25], which equates to the second-third
trimester in human pregnancy, a developmental window when
white matter damage or deficiency of white matter growth is
presumed to occur in the human. We used a repeated Pam3;CSK,
exposure model from PND3 up to PND11, therefore, covering the
period of rapid brain growth in rodents.

To ensure a biologic effect, we used a relatively high dose of
Pam3CSK, (5 mg/kg) compared with other in vivo studies in the
adult, that range from 5 pg/kg to 2 mg/kg [26,27,28,29].
However, 5 mg/kg Pam3;CSK, and 0.3 mg/kg LPS treatment
produced almost identical levels of KC and MCP-1 in brain
homogenates, and despite this relatively high dose, we found no
mortality or other signs of morbidity. Similarly, in previous studies
we found no adverse effects using the same dose of the TLR2
agonist Lipoteichoic acid (LTA) [30]. These observations suggest
that TLR2 agonists have relatively lower potency in neonatal mice
compared with the TLR4 agonist LPS.

TLR2 mRNA and protein is expressed in the cortex in
embryonic and early postnatal stages of development [31], with
relatively low expression before birth that increases during the first
2 weeks of life [32]. Loss of TLR2 does not appear to result in
direct defects in cerebral development [31]. However, TLR2
mRNA is expressed constitutively in the adult mouse brain [33]
and TLR2 deficiency results in impaired neurogenesis in the
hippocampus by adulthood [34]. TLR2 mRNA and genes related
to the TLR2 signaling pathway was shown to be induced in the
ipsilateral mouse brain hemispheres after transient middle cerebral
artery occlusion (MCAO) [35,36]. Moreover, adult TLR2-
deficient mice demonstrated reduced brain damage and improved
functional outcome after MCAO [35,36,37], though contradictory
results have demonstrated a TLR-2 dependent increased brain
infarct size after cerebral ischemia/reperfusion injury [38].
Further, in adult mice, hyaluronan blocks oligodendrocyte
progenitor maturation and remyelination through TLR2 pathway
[39]; Intrathecal administration of Pams;CSK, induces the

May 2011 | Volume 6 | Issue 5 | 19583



TLR2 and Neonatal Brain Development

-~ o
1 L
*

o
1

Y
r
'
1
]
L)
'
1
)
A
S

wn
1

-
L

|
LPS

NO. of Putkinje 10 (fnm9 O Molecular Layer (fmm%) 0

Saline  Pam
C
? 357
210‘
5 0 30
g
2 8 2,57
-
o 2,01
T T ] | | |
Saline Pam LPS Saline Pam  LPS

Figure 7. Pam3CSK4 decreases cerebellar molecular layer volume. Representative microphotograph of the cerebellar lobe (A) with arrow
indicating Purkinje cell under higher magnification. Quantitative analysis of the total volume of molecular cell layer (B), granule cell layer (C), and
Purkinje cell counts (D) in cerebellum at PND 12 after Pam3CSK, administration from PND 3 to PND 11 in while type mice. Arrow indicates Purkinje

cell with higher magnification. *p<<0.05.
doi:10.1371/journal.pone.0019583.g007

pathophysiological hallmarks of bacterial meningitis and neuronal
damage in a TLR2-dependent fashion in adult rats [40]. Overall,
these observations suggest that activation of TLR2 may be
detrimental in acute CNS injury, and together with our
observations that a TLR2 agonist causes neonatal brain injury,
1s suggestive that TLR2 antagonists may have potential as novel
neuroprotective agents.

Pam3;CSK, is a synthetic tripalmitoylated lipopeptide that
mimics the acylated amino terminus of bacterial lipoproteins, such
as 1s found on the nosocomial pathogen Staphylococcus epidermidis.
Pam;CSK, is specifically recognized by a heterodimer of TLR2 and
TLR1, stimulation then resulting in the activation of intracellular
signaling events. Although there are few studies on the role of TLR2
in immature brain injury, the TLR2 pathway is thought to play a
role in Group B streptococcus-induced neurodegeneration [41].
Moreover, in postnatal day 11 rats, intracisternal injection with
0.5 pg of PamsCSK, in the infant rat model of experimental
pneumococcal meningitis is capable of inducing a neuroinflamma-
tory response but does not induce hippocampal apoptosis [42].
However, the TLR2 agonist LTA, does not affect vulnerability to
hypoxia-ischemia in immature rats [30] and deletion of the gene
encoding the adaptor protein MyD88, important for signaling
downstream of TLR2 and other TLRs, did not protect the
immature brain from hypoxic-ischemic brain injury [14]. Together
with our present findings, showing that forebrain and cerebellar
volume were recovered by PND53, this suggests that the role of
TLR2 in brain injury may be context dependent, with a role in
neurodegeneration by whole bacteria that may require engagement
of multiple pattern recognition receptors, including several TLRs,
NOD-like receptors (NLRs), and complement systems, but a more
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limited, reversible effect in the context of a pure TLR2 agonist.
Similarly, following prenatal stimulation of TLR4 by LPS, there is a
transient decrease in myelination and functional outcome which is
reversed later in development [43].

Demonstrating the transient effects of PamsCSK, on brain
mjury, the Trace Fear Conditioning test did not detect any
learning and memory deficit in young adulthood. Trace Fear
Conditioning to either a cue or a context represents a form of
associative learning and memory test that has been well
characterized in many species [44], and used as a sensitive
method to detect hippocampus-dependent learning and memory
including in mice [45]. We have previously shown that this is a
sensitive test to detect learning and memory function recovery
after neonatal hypoxia-ischemia induced brain injury [46].
However, we cannot exclude the possibility of long-term subtle
changes in brain structure and functions in the present studies that
were not detectable with the present methods, and this will need to
be further investigated in the future.

Injury to the cerebellum is becoming increasingly recognized in
preterm infants [47,48]. Also in animal models, reduced number
of neurons in cerebellum has been reported in the postnatal
guinea-pig [49] and fetal sheep [50] following intrauterine growth-
restriction. Moreover, a recent study found a diffuse pattern of
cerebellar white matter damage in animals exposed to LPS while
there was no obvious injury to the cerebellar cortex or of Purkinje
cells [51]. In the present study, we found a significant decrease in
the volume of the molecular layer after Pam3;CSK, treatment
while there were no differences in the granule cell layer or number
of Purkinje cells between groups. These observations suggest that
TLR effects on the cerebellum may be region specific.
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tone freezing in the Trace Fear Conditioning test at PND50 (B) in while
type mice.
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We found a significant increase in the number of microglia in
Pam3CSK, treated mice, but we saw no such increase in LPS
treated animals. It is generally accepted that microglia are
responsible for the innate immune response and that microglia
express all TLRs, including TLR2 and TLR4, at readily
detectable levels [52]. Thus, direct TLR2 stimulation could lead
to the activation of microglia and release of pro-inflammatory
cytokines, chemokines and free radicals, which could cause toxicity
to neurons or oligodendrocytes [53,54]. Indeed, levels of IL-18,
IL-6, KC and MCP-1 significantly increased at 6 hours after the
first Pam3CSK, injection at PND3, indicating that the observed
gray/white matter changes in the neonatal brain might be at least
partly due to cytokine/chemokine toxicity to neurons/oligoden-
drocytes. Similar levels of most cytokines were seen after both
Pam3CSK, and LPS treatment, except for 1L-18 and IL-6, which
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In conclusion, we found that systemic administration of a TLR2
agonist to neonatal mice caused transient gray and white matter
injury in both the cerebrum and cerebellum. This suggests that
engagement of the TLR2 pathway can have detrimental effects on
the developing brain, and may play a role in neonatal brain injury
associated with bacterial sepsis. However, neonatal brain injury is
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broader inflammatory response following Gram-positive bacterial
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