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Abstract

Background: Visco-elastic properties of the (neuro-)musculoskeletal system play a fundamental role in the control of
posture and movement. Often, these properties are described and identified using stiffness-damping-inertia (KBI) models. In
such an approach, perturbations are applied to the (neuro-)musculoskeletal system and subsequently KBI-model
parameters are optimized to obtain a best fit between simulated and experimentally observed responses. Problems with
this approach may arise because a KBI-model neglects critical aspects of the real musculoskeletal system.

Methodology/Principal Findings: The purpose of this study was to analyze the relation between the musculoskeletal
properties and the stiffness and damping estimated using a KBI-model, to analyze how this relation is affected by the nature
of the perturbation and to assess the sensitivity of the estimated stiffness and damping to measurement errors. Our
analyses show that the estimated stiffness and damping using KBI-models do not resemble any of the dynamical
parameters of the underlying system, not even when the responses are very accurately fitted by the KBI-model.
Furthermore, the stiffness and damping depend non-linearly on all the dynamical parameters of the underlying system,
influenced by the nature of the perturbation and the time interval over which the KBI-model is optimized. Moreover, our
analyses predict a very high sensitivity of estimated parameters to measurement errors.

Conclusions/Significance: The results of this study suggest that the usage of stiffness-damping-inertia models to
investigate the dynamical properties of the musculoskeletal system under control by the CNS should be reconsidered.
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Introduction

It is widely acknowledged that visco-elastic properties of the

(neuro-)musculoskeletal system play a fundamental role in the

control of posture and movement. Visco-elastic properties arise

from reflexive pathways and intrinsic properties of the muscle-

tendon complex. Reflexive pathways influence dynamics through

feedback from, for example, muscle spindles and Golgi-tendon

organs, the gain of which is regulated by the central nervous

system (CNS) [1-3]. Intrinsic visco-elasticity originates from the

force-length-velocity relationship of the contractile element (CE)

and the force-length relationship of the tendon. It has been shown

that by co-contracting muscles, the CNS can adapt the properties

of the musculoskeletal system to task requirements [4–6].

Undoubtedly, it is important to adequately describe and identify

the dynamic properties of the musculoskeletal system. Often, this is

done by using spring-damper-inertia (KBI) models; for example

that of the ankle joint (e.g. [7–9]) elbow joint (e.g.[10–12]) or the

whole arm (e.g.[13–15]). A KBI-model consists of a stiffness

element (K), a damping (B) element, and an inertia (I) element.

Stiffness and damping are typically identified experimentally by

perturbing the human musculoskeletal system and optimizing

parameter values of the KBI-model to obtain a best fit between

model responses and responses observed experimentally (e.g.

[9–14]). Using such an approach (from now on referred to as

‘‘KBI-approach’’), researchers investigated which properties of the

(neuro-)musculoskeletal system are controlled by the CNS.

Within the musculoskeletal system, the skeleton interacts with

an elastic tendon that is in turn connected in series with a visco-

elastic CE. In a KBI-model, such an elastic tendon is not present

(see Figure 1). Because it is known that a tendon greatly influences

the dynamics of a muscle and its interaction with the skeleton, this

difference raises a critical question: what information about the

musculoskeletal system is captured by the estimated stiffness and

damping using a KBI-model? Unfortunately, there is no simple

answer. For example, when muscle is quickly shortened, the force-

velocity relationship prevents rapid length changes of the CE; thus

muscle-tendon complex length change is attributed primarily

to changes in tendon length. Hence the stiffness estimated will

resemble tendon stiffness. For slow stretches, however, the force-

velocity relationship plays a minor role and hence the identified

stiffness will resemble the reciprocal of the sum of tendon and CE
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stiffness (CE and tendon now simply work as two springs in series).

Even though KBI-models are widely used, to our knowledge, no

study directly addressed which musculoskeletal properties are

captured by the parameter values of KBI-models determined using

the fitting-approach described above.

The purpose of the present study was threefold: i) analyzing the

relation between the musculoskeletal properties and the estimated

stiffness and damping, ii) analyzing how this relation is affected by

the nature of the perturbation and iii) assessing the sensitivity of the

estimated stiffness and damping to measurement errors. Since the

real dynamical properties are not known exactly and are difficult to

control in an experiment, a musculoskeletal model (MSM) was used

to assess the validity of using a KBI- approach to estimate stiffness

and damping in vivo. Our analyses show that the estimated stiffness

and damping will not resemble any of the dynamical parameters of

the underlying system, not even when the responses are adequately

captured by the KBI-model. The analyses furthermore show that

the estimated stiffness and damping will be a non-linear mixture of

all the dynamical parameters of the MSM, influenced by the nature

of the perturbation and the time window over which the parameters

are estimated. Finally, our analyses predict a very high sensitivity of

estimated parameters to measurement errors. These results suggest

that the usage of stiffness-damping-inertia models to experimentally

investigate the dynamical properties of the musculoskeletal system

that are under the control of the CNS should be reconsidered.

Results

Overview
Since the real dynamical properties are not known exactly and

are difficult to control in an experiment, a musculoskeletal model

(MSM) was used to assess the validity of using a KBI- approach

to estimate stiffness and damping in vivo. As mentioned in the

Introduction, in the musculoskeletal system, the skeleton interacts

with the contractile element through a tendon, causing the system

as a whole to be of at least order three. The simplest model of such

a mechanical system consists of a single-joint segment, actuated

by a linearized Hill-type muscle model composed of a visco-elastic

CE and a series elastic element (SE; see Figure 1A). Note that we

do not want to imply that the real musculoskeletal system can be

adequately represented by such a model. Actually, we think that

also such a model grossly oversimplifies the musculoskeletal

system. However, our rationale here is that if a KBI-model

cannot describe/estimate the dynamical behaviour of a linearized

Hill-type muscle model that takes into account the interaction

of a compliant tendon, it can surely not do so for the real

musculoskeletal system.

In essence, we used the KBI-approach to try and estimate

stiffness and damping of a MSM for which the dynamical

parameters are known a-priori. To do so, we followed the ap-

proach identical to those described in the literature: we perturb

the system (our MSM model) and subsequently optimize the

parameters of the KBI-model to obtain a best fit between the

responses of the KBI-model and the MSM. This was repeated for

a realistic range of values of the dynamical parameters of the

MSM, for different response times and perturbations (see

Materials and Methods). In addition, we also derived analytical

approximations to the optimal fit between the responses of the

MSM and KBI-model. This allowed us to investigate the relation

between estimated and actual dynamical parameters. Finally, an

analysis was carried out to assess how sensitive estimated stiffness

and damping are for measurement errors.

Responses of the MSM and the KBI-model
The dynamics of the musculoskeletal model (MSM, Figure 1a)

and the KBI-model (Figure 1b) are formulated in terms of their

impedance, ZMSM and ZKBI respectively, in the Laplace domain

(see Materials and Methods and Supporting Information S1):

ZMSM (s)~
(KCEzBCEs)KSE

KCEzBCEszKSE

zIMSMs2 ð1Þ

ZKBI (s)~KzBszIs2 ð2Þ

For convenience, we take the parameters of each of the models

in a parameter vector and define pMSM = [KCE BCE KSE IMSM]T

(thus: contractile element stiffness; contractile element damping;

tendon stiffness; inertia) for the MSM, and pKBI = [K B I]T

(stiffness; damping; inertia) for the KBI-model. pKBI was optimized

by minimizing the following error criterion function that is only

sensitive to difference in the shape of the MSM (QMSM) and KBI-

model response (QKBI):

E~

ÐT
0

QKBI tð Þ{QMSM tð Þð Þ2dt

ÐT
0

QMSM
2(t)

ð3Þ

The value of E obtained with pKBI
* will be indicated as E* and

corresponds to the (minimal) value of the error criterion function

Figure 1. Schematic representation of the MSM model consisting of a 1 DOF segment that is actuated by a linearized Hill-type
muscle model (A) and the KBI-model consisting of a 1 DOF segment actuated by a spring and damper in parallel (B).
doi:10.1371/journal.pone.0019568.g001

In Vivo Estimation of Stiffness and Damping
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for a given set of pMSM. T is the time window over which the

response was fitted.

Figure 2 shows some typical examples of responses of the MSM

and that of the numerically optimized KBI-model. Figure 2A

depicts the response of the MSM with parameters pMSM = [32 3.2

100 .1] to a torque impulse perturbation for a time window T of

50 ms. As can be appreciated from the figure, for this pMSM and

response time, the KBI-model was very well capable of describing

the dynamic behavior, leading to an error E of practically zero.

The estimated stiffness K (55 Nm/rad) was somewhere between

the CE (32 Nm/rad) and SE (100 Nm/rad) stiffness and the

estimated damping B (0.36 Nms/rad) was about ten times lower

than the CE damping (3.2 Nms/rad). Figure 2B shows the results

for the exact same parameters of the MSM used in 2A, but now

a high-frequency sinusoid torque wave (period 30 ms, amplitude

20 Nm; identical to that used in an experimental study of Popescu

et al. [12] was used as a perturbation. Again, the KBI-model

was capable of adequately describing the dynamical behavior.

However, the optimized stiffness value found were markedly

different (Figure 2B): 55 Nm/rad in case of an impulse

perturbation and 88 Nm/rad in case of a sinusoid perturbation.

Figure 2C shows the response of the MSM with the same

parameters and perturbation as in Figure 2A, but now the time

interval over which the response was fitted was 100 ms instead of

50 ms. Again, the KBI-model was capable of adequately

describing the dynamic behavior, albeit with substantially different

estimated stiffness and damping. Figure 2D shows an example of

a response of the MSM (torque impulse and pMSM set to [32 10

320 .1]) that could not be captured well by the KBI-model

(E = 0.005).

Figure 3 shows a more general overview of the capability of the

KBI-model to describe the dynamical behavior of the MSM for a

realistic range of parameters. In this figure the matching criterion

E, which, as stated before, captures the difference between the

response of the MSM and that of the optimized KBI-model

(see Eq. 3), was plotted as a function KCE and BCE. For graphical

purposes, and based on the rationale that in the real musculo-

skeletal system KCE and KSE cannot be chosen independently (SE is

a passive non-linear spring and hence its stiffness depends on the

CE force), KSE was set to a fixed value of KCE (see also Methods

and Materials). Figure 3 shows the results for KSE set to 56KCE;

a more general overview of the results is given in Supporting

Information S1. Figure 3 shows that for some range of MSM

parameters the KBI-model is less closely matching the dynami-

cal behavior of the MSM. Nevertheless, matching errors were

in general small especially for smaller time windows (see also

Supporting Information S1), which is in accordance with

experimental results indicating that for small operating ranges

KBI-models can approximate the kinematic responses of the

musculoskeletal system quite well [16–18]. However, as will be

shown later in the sensitivity analysis, matching errors as small as

0.001 can result from a large range in values of estimated K and B.

Figures 4 depicts the estimated stiffness K as a function of the

MSM parameters. Like in Figure 3, KSE- was set to 56KCE (see

Supporting Information S1 for KSE- = 26KCE and 106KCE).

Clearly, the estimated K does not have a simple relation with

the dynamic parameters of the MSM, not even in the cases in

which the responses of the MSM and KBI-model were virtually

identical (i.e. small values of E in Figure 3). Only if BCE was set to

zero, K was linearly related to CE and SE stiffness (the stiffness of

CE and SE then work like two springs in series). For all other

(more realistic) combinations of MSM parameters, estimated

stiffness for a fixed perturbation depended non-linearly on all

parameters of the MSM. For example, for a fixed KCE of the

MSM, estimated stiffness could range from 1 to 6 times KCE,

depending on the damping of the CE.

Figure 5 shows the estimated damping B as a function of the

MSM parameters. The resemblance between CE damping and

estimated damping is in general very non-linear. More impor-

tantly, the damping estimated depends greatly on the stiffness

of the CE and SE. By changing CE stiffness, but not its damping,

estimated damping can change 100-fold! Furthermore, the

Figure 2. Four examples of responses of the MSM (QMSM) and optimized responses of the KBI-model (QKBI). The table on the right-hand
side depicts the MSM parameters used and the optimized stiffness K and damping B of the KBI-model. A. Impulse responses of the MSM and
optimized KBI-model. B. Same as in A, but now a sinusoid torque wave was used as a perturbation, instead of an impulse. C. Impulse response same
as in A, but now the time interval over which the parameters were optimized was set to 100 ms instead of 50 ms. D. Typical example of an impulse
response of the MSM for which the optimized KBI response showed marked differences.
doi:10.1371/journal.pone.0019568.g002
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estimated stiffness and damping in general do not resemble any of

the parameters of the musculoskeletal model, not even in those

cases for which the responses of the KBI-model were virtually

identical to those of the MSM. Above that, estimated stiffness and

damping greatly depended on the time interval over which the

response were optimized and on the type of perturbation applied.

Analytically approximated KBI parameters
As can be appreciated from Figures 2, 3, 4, 5 and Supporting

Information S1, estimated parameters depend non-linearly on all

parameters of the MSM. To gain insight in this relationship, we

approximated the relationship between pMSM and pKBI analytically

for low and high frequencies (see Methods and Materials). Table 1

gives the stiffness and damping for the low frequency approximation

([KLF BLF]) and high frequency approximation ([KHF BHF]).

Under low-frequency conditions, the identified stiffness KLF is

obtained by the well-known expression for the stiffness of two

springs connected in series. As tendon stiffness in reality never

reaches infinity, the identified stiffness is always lower than the CE

stiffness. (If KCE is negative, as might occur in muscles above

optimum length, and assuming that ||KSE||.||KCE||, CE yielding

tends to be amplified by the SE.) In the expression for the

estimated damping BLF, the same factor KSE /( KCE+KSE) occurs to

the power of two. This means that SE stiffness reduces the

estimated damping even more than the estimated stiffness.

Under high-frequency (HF) conditions, we found a very

different set of parameters for the KBI-model. The effective

stiffness corresponds to the SE stiffness. This can be readily

understood as for very fast perturbations CE damping prevents

elongation of the CE. In that case, all muscle length changes is due

Figure 3. The minimal error (E*) between the responses of the optimized KBI-model and MSM as a function of KCE and BCE . KSE was
set to 56KCE . Results are shown for impulse torque perturbations for three different time intervals (T = 50, 100 and 200 ms) over which the
responses were optimized. Every grid point in the graph represents an optimization; a total of 300: KCE ranging from 10 to 200 Nm/rad in 20 steps and
BCE ranging from 2 to 30 Nms/rad in 15 steps.
doi:10.1371/journal.pone.0019568.g003

Figure 4. The estimated stiffness (K) as a function of KCE and BCE . As with Figure 3, KSE was set to 56KCE . Results are shown for impulse torque
perturbations, for three different time intervals (T = 50, 100 and 200 ms) over which the responses were optimized.
doi:10.1371/journal.pone.0019568.g004

In Vivo Estimation of Stiffness and Damping
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to changes in tendon length and hence stiffness estimated is the

stiffness of the tendon. The expression for the estimated damping

constant BHF is quite remarkable: the effective damping constant

increases with SE stiffness and decreases with CE damping! The

higher CE damping, the less it will change its length for a given

perturbation force. As a result, relatively more of the rate of

change in muscle length is taken up by SE (which has zero

damping), and hence estimated damping will be less. Conversely, a

high SE stiffness enforces CE stretching and hence will increase

the estimated damping. In general, in vivo estimated stiffness and

damping will be somewhere between the low and high frequency

approximation depending on the parameters values of the

musculoskeletal system and on the type of perturbation applied.

Sensitivity
In an experiment, inherent errors occur in both the applied

perturbation and the measured response. To directly explore the

sensitivity of estimated stiffness and damping to such errors, a

sensitivity analysis was carried out. Any given difference between

actual and measured joint angle time histories can be expressed by

a corresponding value of the error criterion E. In this sensitivity

analysis, we calculated the maximal change in parameter values of

the KBI-model that led to an arbitrarily small DE of 0.001, and

hence assessed the sensitivity of parameters that can be expected

on the basis of measurement errors. In figure 6 it is explained how

the maximal change in KBI parameters was found.

Figures 7A–D show the responses of the MSM that are identical

to those plotted in figure 2A–D. In contrast to figure 2, the KBI-

model responses now were obtained using the optimally estimated

pKBI
* plus the DpKBI leading to a small increase in matching

error DE of 0.001. Evidently, the small additional matching error

of 0.001 changed almost unnoticeably the responses of the KBI-

model. In an experimental study, these responses would clearly

have been marked as being excellent fits of those observed

experimentally. Yet, such a small difference in response can

correspond to very large differences in estimated stiffness and dam-

ping. As an example (see Figure 7A), an increase in matching error

of 0.001 can lead to a change in stiffness of about 200% and a

change in damping of over 900%. In contrast with the value

for the estimated stiffness and damping, it was found that the

sensitivity to measurement errors did not depend on the type of

perturbation applied.

Figure 8 shows the sensitivity of the estimated stiffness for a

small change in matching error (DE = 0.001) as a function of KCE

and BCE (again, KSE = 56KCE). As with the four examples depicted

in Figure 7, the general sensitivity of the estimated stiffness was

considerable and tended to increase with decreasing time intervals

over which the responses were optimized. The mean relative

change of K (DK/K) was 65% (613%) when the time interval was

set to 50 ms, and 12% (67%) and 7% (61%) when the time

interval was set to 100 and 200 ms, respectively.

Figure 9 shows the sensitivity of the estimated damping for a

small change in matching error (DE = 0.001) as a function of KCE

and BCE (again, KSE = 56KCE). As with the sensitivity of the

estimated stiffness, the general sensitivity of the estimated damping

was considerable and tended to increase with decreasing time

intervals over which the responses were optimized. The mean

relative change of B (DB/B) was 880% (61350%) when the time

interval was set to 50 ms, and 65% (699%) and 4% (62%) when

the time interval was set to 100 and 200 ms, respectively.

Different types of perturbations
Most of the results shown were obtained using torque impulse

perturbations (except for sinusoidal perturbations in Figs. 2B and

7B). Simulations were repeated for torque pulses, for torque step

perturbations and for sinusoidal torque perturbations. It was found

that the estimated stiffness and damping depended critically on the

type of perturbation used (compare, for example, Fig. 2A and B, or

7A and B). Importantly, none of the perturbation types was superior

to the others with respect to i) the ability of the KBI-model to

Figure 5. Same as Figure 4, but now estimated damping (B ) is shown as a function of KCE and BCE .
doi:10.1371/journal.pone.0019568.g005

Table 1. Analytical low and high frequency approximations
of KBI parameters.

Low frequency High frequency

KLF ~KCE

KSE

KCEzKSE
KHF ~KSE

A

A

BLF ~BCE

KSE

KCEzKSE

� �2

BHF ~
IMSM KSE

BCE

1

1

� �A

doi:10.1371/journal.pone.0019568.t001
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Figure 6. Graphical representation of the error function E , around its minimum E * ( = 0.002 rad), as a function of K and B. In this
sensitivity analysis, we aim to find, the maximal change in parameter values of the KBI-model that leads to a chosen increase in the optimal matching
criterion E*. Note that this figure represents one optimization for one given set of MSM parameter values. E* was estimated using numerical
optimization. Every point on the surface was calculated by simulating the perturbation response of the KBI-model with the corresponding grid values
of [K B]. Then, the value for the matching criterion E was calculated using that KBI response and the response of the MSM model (see Eq. 3). Also
depicted in the figure is a horizontal plane corresponding to an E of 0.003 (thus E* plus a DE of 0.001), its intersection with the surface of E and the
ellipsoid contour of this intersection in the ground plane. The direction in which the vector [K B] can be changed the most before E equals
E*+DE = 0.003 is given by the eigenvector v belonging to the smallest eigenvalue of H, i.e. the second derivative matrix of E. Note again that this
analysis was done for every pMSM .
doi:10.1371/journal.pone.0019568.g006

Figure 7. Four examples of responses of the MSM and responses of the KBI-model with a maximal change in optimal K and B
leading to an increase in matching error DE = 0.001. The table gives the optimal values of K and B as well as the maximal change DK and DB.
Parameters of the MSM, perturbation type and time interval over which the perturbation was optimized were identical to those of Figure 2.
doi:10.1371/journal.pone.0019568.g007
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describe the dynamical behaviour of the MSM, ii) the complexity of

the relationship between the estimated parameters of the KBI-

model and the parameters of the MSM and iii) the sensitivity of the

estimated stiffness and damping to measurement errors.

Discussion

The results of this study showed that the estimated stiffness and

damping estimated using a KBI- model did not resemble any

of the parameters of the MSM, not even when there was virtually

no difference in the perturbation responses of the MSM and fitted

KBI-model. In fact, the simulations and analytical analyses

showed that the optimally estimated stiffness and damping

depended non-linearly on all dynamical parameters of the

MSM, by the type of the perturbation applied and the time

interval over which the parameters were estimated. Perhaps even

more problematically, the estimation of stiffness and damping

was found to be extremely sensitive to measurement errors that are

inherent to experiments. In other words, even very small dif-

ferences in measured and fitted responses can give rise to large

differences in estimated stiffness and damping. As can be

appreciated from Figure 5, fits that would all be marked as

excellent in an experimental study can result from changes in

estimated stiffness up to 200%! The sensitivity greatly increased

with smaller time intervals over which stiffness and damping were

estimated (see Figure 7A and B). The reason for this is that inertia

is the dominating dynamical parameter for the first part of

the response. Reversely, stiffness and damping play little role in

the first part of the response and hence are very sensitive to

measurement errors. For time intervals as large as 200 ms, the

Figure 8. Sensitivity of estimated stiffness for measurement/optimization errors. In this figure, the maximal difference in stiffness (DK) for
a small given change in matching criterion (DE = 0.001) was plotted as a function of KCE and BCE. KSE was set to 56KCE. Results are shown for impulse
torque perturbations with three different time intervals (T = 50, 100 and 200 ms) over which the responses were optimized (note the difference is
scaling of the axis).
doi:10.1371/journal.pone.0019568.g008

Figure 9. Sensitivity of estimated damping for measurement/optimization errors. Maximal difference in estimated damping (DB) is shown
as a function of KCE and BCE (DE = 0.001 and KSE = 56KCE). Results are shown for impulse torque perturbations with three different time intervals
(T = 50, 100 and 200 ms) over which the responses were optimized.
doi:10.1371/journal.pone.0019568.g009
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sensitivity for measurement errors was smaller, but then the

capability of the KBI-model to adequately describe the behavior of

the MSM was greatly diminished.

It goes without saying that the musculoskeletal model used in this

study is a gross simplification of the real musculoskeletal system. The

Hill-type muscle model used in this study neglected the non-linear

force-length-velocity relationship of real muscles. Above that,

several other dynamical properties originating from, for example,

activation dynamics [19,20], short range stiffness [21] and history

dependence of muscle force production [22] were not taken into

account at all. We again want to stress that by using a linearized

Hill-type muscle model we do not imply that it is capable of

adequately describing the dynamics of the real musculoskeletal

system. We chose such a model as it is the simplest model that takes

into account the essential interaction between the stiffness of the

tendon that is in series with the stiffness and damping of the con-

tractile element that gives rise to so-called ‘‘contraction dynamics’’.

Our rationale here was that if the KBI-approach fails to adequately

characterize and estimate the dynamical parameters of a linearized

Hill-type musculoskeletal model, it must be all the more problematic

for characterizing the real musculoskeletal system.

The model used in this study did furthermore not include the

reflexive control loops that are known to affect the dynamics of the

system. It has been suggested that feedback from muscle spindles

and Golgi tendon organs might improve the linearity of the

responses of the neuro-musculoskeletal system to perturbations (e.g.

[23,24]). However, it is debatable how much the kinematic

response of the neuro-musculoskeletal to perturbations resembles

that of a KBI-model. For example, in a study by Tsuji et al [25],

the maximal correlation coefficient between observed responses

(time window .350 ms) and that of a KBI-model was around

0.85. More importantly, as stated above and exemplified by

Figure 2A–C, we have shown that the actual flaw of a KBI

approach lies not in its predictability of kinematic responses to

perturbations, but in the complex non-linear relationship of the

estimated parameters with those of the underlying system, and the

very high sensitivity of the estimated parameters to measurement

errors. Taken together, the results of the present study indicate

that attempting to capture the dynamics of the neuro-musculo-

skeletal system using a second order stiffness-damping-inertia

model is both theoretically and empirically problematic. Yet, this

method of estimating stiffness and damping is widely used.

Our finding that the estimated dynamical parameters depend

greatly on i) the nature of the perturbation, ii) the time interval

over which the response is being fitted and iii) are very sensitive to

measurement errors is supported by the very wide range of joint

stiffness reported in the literature. For example, elbow joint

stiffness values reaches from about 14 Nmrad-1 to 126 Nmrad-1 in

‘do resist’ paradigms (e.g. [11,13,26]). Based on the rationale

described above, this study predicts a very high variability of the

stiffness and damping estimated in such studies. Unfortunately,

most of the studies that reported in vivo stiffness and damping

estimates do not present relevant measures of variability. In one

exception, Popescu et al. [12] assessed the range of possible K and

B values which yielded fits (to 30 ms sinusoid torque perturbations

over a time interval of 50 ms) within the standard error bounds. In

accordance with our findings, their sensitivity analysis indicated a

large within-subject variability of estimated stiffness and an even

larger sensitivity of estimated damping.

Apart from the sensitivity issues, one might argue that even

though the parameters estimated using a KBI-model may not have

a simple relationship with the parameters of the musculoskeletal

system, they do reflect ‘some’ of its dynamics. And, if the

protocol for stiffness and damping estimation is left unchanged

over experimental conditions, one might investigate the

(bio-)mechanical variables controlled by the CNS. However, such

a point of view raises fundamental problems. For example, as can

be appreciated from the Results (see Figure 4), estimated stiffness

can change substantially by only changing CE damping. CE

damping however changes not only with muscle activation, but

also with contraction velocity. Therefore, changes in estimated

stiffness do not necessarily reflect either changes in CE/SE stiffness

due to changed motor commands per se. In addition, CE stiffness

is not only influenced by activation level, but also by CE length

(and hence tendon length) and activation/contraction history (see

e.g. [22]) and therefore also influence the stiffness and damping

identified. In conclusion, we are of the opinion that by

investigating changes in estimated stiffness and damping using a

stiffness-damper-inertia model, even if the experimental protocol is

left unchanged, does not provide information about the dynamical

properties that are under the control of the CNS.

There is ample evidence that the dynamics of the musculoskel-

etal system positively contribute to stabilize posture and movement

control and that the dynamics are influenced by changes in motor

commands (e.g. [4,6,9,10,26]). However, using a KBI-approach to

measure the specific changes in musculoskeletal dynamics that are

under the control of the CNS is both theoretically and

experimentally problematic. As mentioned in the Introduction,

these problems arise because a KBI-model neglects fundamental

dynamical properties of the musculoskeletal system. When it

comes to analyzing musculoskeletal dynamics, two alternatives are

available that might avoid these issues. A first alternative is to use

parametric models of higher order than the KBI-model. A third-

order model as depicted in this study seems to be of the minimal

complexity to capture the dynamics of a muscle and its interaction

with the skeleton. Nevertheless, since this model is still less

complex than the real system it remains to be investigated whether

such a model is free from problems similar to those encountered

when using a KBI-model. The difficulty in evaluating the

adequacy of a third (or higher) order model is that one needs to

compare it to a more complex/realistic model of the (neuro-

)musculoskeletal system ([27–30]). A second and perhaps better

alternative is to make use of nonparametric analysis techniques.

The major advantage of such an approach is that it does not

require an a-priori assumption about the underlying order of the

musculoskeletal system [31,32]. Yet the disadvantage of such

techniques, and the one described before, is that it assumes

linearity of the musculoskeletal system [33] and it remains to be

shown how well it is capable describing the non-linear dynamics of

the real (neuro-)musculoskeletal system.

Materials and Methods

Model definition
The dynamics of the musculoskeletal model (MSM, Fig. 1a) and

the KBI-model (Fig. 1b) are formulated in terms of their

impedance, ZMSM and ZKBI respectively, in the Laplace domain

(see Supporting Information S1):

ZMSM (s)~
(KCEzBCEs)KSE

KCEzBCEszKSE

zIMSMs2 ð1Þ

ZKBI (s)~KzBszIs2 ð2Þ

For convenience, we take the parameters of each of the models

in a parameter vector and define pMSM = [KCE BCE KSE IMSM]T for

the MSM, and pKBI = [K B I]T for the KBI-model.

In Vivo Estimation of Stiffness and Damping

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19568



Parameters of the MSM
In essence, the MSM presented in this study acts like a lumped

muscle representing all muscles crossing the elbow joint that work

basically in series. Parameters of muscles crossing the joint were

obtained from the literature [34–36] (see also [30,37,38]). The

range of KSE estimated was based on a non-linear quadratic spring

and its stiffness can be written as:

KSE~
LMSE

L _QQ ~2k: DlSE
:arm2 ð4Þ

With k the tendon stiffness, DlSE the tendon elongation, MSE the

torque due to tendon force and arm the moment arm of the

muscle. k was calculated such that at maximal isometric CE force,

SE elongates 4%. At zero CE force (DlSE = 0), KSE is zero. Using

the parameters of the individual muscles crossing the elbow joint,

total KSE at maximal isometric CE force was estimated to be

1800 Nm/rad.

The CE force-length relationship mainly originates from the

changes in myofilament overlap and (at maximal muscle

activation) is reasonably well described by a parabola. In this case

KCE is linearly dependent on lCE:

KCE~
LMCE l

L _QQ
~

{2

w2
: (lCE rel{1)

lCE opt

:Fmax
:arm2 ð5Þ

With w a parameter defining the active and passive slack length

of a muscle, lCE_rel the CE length relative to its optimum CE

length (lCE_opt) and MCE_l the torque due to the CE force-length

relationship. Based on the sliding filament theory, this parameter

was set to 0.56, yielding a maximal lCE_rel range of 16w. Maximal

KCE (at active slack) for a lumped elbow muscle is about 200 Nm/

rad. Obviously, at optimum CE length no stiffness originates from

changes in myofilament overlap (the derivative of force-length

relationship = 0) and should be seen as an upper limit. In reality,

CE stiffness increases due to short-range stiffness [19] and

sarcomere length dependent [Ca2+] sensitivity [20]. In addition,

experimental studies indicate that the steady state muscle force

after slow stretch is higher than expected solely on the basis of the

myofilament overlap function [39].

Damping parameters of the joint are not readily obtained from

the literature, partially because these parameters are often based

on the KBI approach and partially because damping of individual

muscle is not often reported. We based BCE on considerations of

the classic Hill-type (concentric) force-velocity relationship:

FCE nzað Þ vCE relzbð Þ~ 1zað Þ:b ð6Þ

FCE_n is the normalized CE force; a and b are the Hill

parameters and were set to 0.41 and 5.2 respectively (b/a is the

maximal contraction velocity); vce_rel is the normalized contraction

velocity (normalized to lCE_opt). Taking the derivative of FCE_n with

respect to vCE_rel, rewritten in terms of joint damping and scaled

with the maximal CE force, BCE is expressed as:

BCE~
LMCE v

L _QQ
~

(1za):b

{(vCE relzb)2
: arm2

lCE opt

:Fmax ð7Þ

Estimated maximal concentric (lumped muscles) elbow joint

damping (BCE) on the basis of a Hill-type muscle was about

18 Nms/rad. The eccentric force-velocity slope at vCE = 0 is

estimated to be about twice as high as that of the concentric part

[40], yielding a BCE of 36 Nms/rad.

For graphical purposes and based on the rationale that KSE

cannot be set independently from muscle CE force, KSE was

chosen to be a fixed value of KCE. Around active slack, KCE is

maximal, but because FCE is zero KSE is very low. On the other

hand, at lCE_opt, no stiffness originates from changes in myofilament

overlap (derivative of force-length relationship = 0) and hence SE

stiffness is much greater that CE stiffness. At a relative CE length

of .8 times optimum length, CE stiffness of a lumped elbow muscle

maximal stimulation is about 80 Nm/rad. This value increases

in reality due to LDCS and short range stiffness and hence

maximal CE stiffness was set to an upper limit of 100 Nm/rad (it

can be even higher at shorter CE lengths). At this CE length and at

maximal activation, SE stiffness is about 10 times higher. At the

same CE length but with an activation yielding a KCE of about

30 Nm/rad, KSE is about 4 times that of the CE. At a CE stiffness

of 10 Nm/rad, KSE equals that of the CE. This all taken into

account, we used the following parameter set:

N IMSM = 0.10 kgm2 (the inertia of the forearm relative to the

elbow joint)

N KCE = 102200 Nm/rad

N KSE = 2, 5 and 106KCE

N BCE = 2232 Nms/rad

Numerical optimisation of the response match
Simulations were carried out to obtain the responses to per-

turbations (impulse, sinusoid, pulse, double pulse) of the MSM

(QMSM ) using values of pMSM. For each of the combinations of

pMSM, optimal values for pKBI
* = [K * B * I * ] were identified that

minimized the difference between QMSM and response of the KBI-

model (QKBI). Optimal values were identified for three different

time intervals over which the responses were fitted (T = 50, 100 or

200 ms). These intervals were based on the range reported in the

literature (e.g. 40–140 ms [10]; 50 ms [12,41]; 60 ms [15]; 150 ms

[14,42]. pKBI was optimized by minimizing the following error

criterion that is only sensitive to differences in the shape of the

responses

E~

ÐT
0

QKBI (t){QMSM (t)ð Þ2dt

ÐT
0

QMSM
2(t)

ð3Þ

The value of E obtained with pKBI
* will be indicated as E* (see

Figure 6) and corresponds to the (minimal) value of the error

criterion function for a given set of pMSM.

Analytical approximations
To gain insight in the relation between parameters of the MSM

and those of the optimized KBI-model, analytical approximations

of the impedance of the MSM were derived for low-frequency

(ZLF; s = 0) and for high-frequency (ZHF; s = ‘) perturbations. The

low-frequency approximation that results from Taylor expansion

of the impedance of the MSM (s = 0) is:

In Vivo Estimation of Stiffness and Damping

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e19568



ZLF (s)~
KCEKSE

KCEzKSE

z
BCEKSE

2

(KCEzKSE)2
sz

IMSM{
BCE

2KSE
2

(KCEzKSE)3

� �
s2

ð8Þ

In line with the numerical approximation of ZLF, ZHF can be

obtained by the Taylor expansion of the impedance of the

reference model for s = ‘:

ZHF (s)~IMSMs2z0:szKSEz:::s{1z:::s{2z � � � ð9Þ

Not surprisingly, at high perturbation frequencies inertia

dominates the dynamic behavior. At s = ‘, any CE damping

resists the CE from length changes and hence yields zero overall

damping. In more practical situations, perturbation frequencies

are never so high that the damping of the musculoskeletal system is

completely removed. A better approximation of the impedance

(when s is high, but not infinite) was based on the rationale that at

high frequency perturbations, CE force is dominated by CE

damping and as such CE stiffness was removed from the

impedance of the MSM:

ZHF (s)~
BCEKSEszIMSM KSEs2zIMSMBCEs3

BCEszKSE

ð10Þ

Second, as high frequency conditions are characterized by large

magnitudes of the Laplace variable s, the term BCEs will be large

with respect to KSE. Ignoring KSE from Eq. 10 yields:

ZHF (s)~KSEz
IMSMKSE

BCE

szIMSM s2 ð11Þ

This approximation is identical to the formal expansion for high

frequency perturbations with an additional damping term and it

was found that this approximation markedly improved the

description of the impedance at high frequency conditions. Below,

these analytical expressions will be used to analyze the relationship

between the parameters of the MSM and KBI-model under low

and high frequency conditions.

Sensitivity analysis
In an experiment, inherent errors occur in both the applied

perturbation and the measured response. To directly explore the

sensitivity of estimated stiffness and damping to such errors, a

sensitivity analysis was carried out. Any given difference between

actual and measured joint angle time histories can be expressed by

a corresponding value of the error criterion E. In this sensitivity

analysis, we calculated the maximal change in parameter values of

the KBI-model that led to an arbitrarily small DE, and hence

assessed the sensitivity of parameters that can be expected on the

basis of measurement errors.

>For a given optimally estimated pKBI
* at the minimum of the

error function (E*), the first derivative matrix (or Jacobian) of E to

the optimal parameter set pKBI
* is zero by definition. Therefore,

the second derivative (or Hessian, H = =2E) of E with respect to

pKBI determines the change of E as a function of small changes in

pKBI. Defining small changes from pKBI, DpKBI = [DK DB DI],

DE can be approximated by a second-order Taylor expansion

of E:

DE&
1

2
DpKBI

T H DpKBI

Using this Hessian, the DpKBI is calculated for which E changes

the least. Thus, in other words, this DpKBI indicates the

combination of parameter values that can be changed the most

before the difference between the response of the MSM and KBI

reaches an error DE (see Figure 6). Since H is a symmetrical

matrix, the direction of DpKBI is defined by the eigenvector

(v = [v1 v2 v3]T) corresponding to the smallest eigenvalue (l) of the

H:

DPKBI~

DK

DB

DI

2
64

3
75~n

v1

v2

v3

2
64

3
75 ð12Þ

n indicates the norm of DpKBI. Because v is an eigenvector of H
we have Hv = lv, and therefore:

DE&
1

2
DpKBI

T H DpKBI~
1

2
nvð ÞT H nvð Þ~1

2
vT Hvð Þ n2~

~
1

2
vT lvð Þ n2 ~

1

2
vT v ln2~

1

2
ln2

ð13Þ

So the error increase DE is proportional to the smallest

eigenvalue of H and to the squared norm of DpKBI. Using Eq. 11,

DE can be expressed in terms of DpKBI:

DE&
1

2
l DpKBIk k2 ð14Þ

The largest simultaneous change in parameters as a function of

DE is given by:

DpKBI&

ffiffiffiffiffiffiffiffiffi
2DE

l

r
v ð15Þ

The sensitivity of stiffness and damping to a difference in

measured/optimized response can be readily obtained using

Equation 15. Note that v depends on all parameters of the

MSM and thus was calculated for every pMSM.

Computational aspects
All calculations were performed in Matlab (R14). A Nelder–

Mead simplex search method [43] was used to identify the values

of pKBI
*. The Hessians for every pMSM was estimated by

computing a finite-difference approximation.
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