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Abstract

Background: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called
plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila b-integrin Myospheroid
(Mys) is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric
adhesion receptors consisting of a and b subunits, and similar to other plasma membrane receptors undergo ligand-
dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the
activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation
response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the
Drosophila anti-parasitoid immune response.

Results: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell
periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by
hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for
the proper localization of Mys after parasitization.

Significance: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly,
the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite
often raise larvae at 29uC when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal
recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.
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Introduction

Research in the last fifteen years has led to significant

breakthroughs providing evidence of a high degree of similarity

between insect and mammalian innate immune responses and

highlighted Drosophila as a model system for studying the evolution

of innate immunity, both humoral and cellular [1–4]. When the

morphology of Drosophila circulating immunosurveillance cells

(haemocytes) is compared, three types of cells can be identified:

plasmatocytes, crystal cells and lamellocytes. Plasmatocytes,

similar to the mammalian monocyte/macrophage lineage, are

professional phagocytes, dedicated to the phagocytosis of invading

pathogens and apoptotic bodies. In healthy larvae they make up

about ninety-five percent of circulating haemocytes and are

involved in phagocytosis, encapsulation and the production of

antimicrobial peptides. The other approximately five percent of

circulating haemocytes in healthy larvae consists of crystal cells

which rupture to secrete components of the phenol oxidase

cascade, involved in melanization of invading organisms, wound

repair and coagulation [2,3,5,6]. The third cell type, known as

lamellocytes, are rarely seen in healthy larvae and seem to be

specialized for the encapsulation of invading pathogens [7–9].

Insects have an open circulatory system in which circulatory

fluid is in a cavity known as the hemocoel. Endoparasitic wasps

from the Hymenoptera family are known to parasitize Drosophila

larvae by laying an egg within the hemocoel. Once a wasp egg is

recognized as foreign circulating plasmatocytes somehow adhere

to the invader. After spreading around the wasp egg plasmatocytes

form cellular junctions between the cells [10,11], effectively

separating the egg from the hemocoel. Next, lamellocytes

recognize the plasmatocytes surrounding the egg. The final phase

of encapsulation involves melanization of the capsule due to crystal

cell degranulation. From these events it is obvious that adhesion

and cell shape change are an essential part of the Drosophila’s

cellular immune response against parasitoid wasp eggs.

Previously, Irving et al. [12] published that a Drosophila b-

integrin, Myospheroid, is necessary for lamellocytes to adhere to

the cellular capsule surrounding the Leptopilina boulardi egg.

Integrins are heterodimeric adhesion receptors consisting of a and

b subunits. Like other plasma membrane receptors, integrins are

known to undergo ligand-dependent endocytosis [13–17]. After

endocytosis receptors can be recycled via two distinct mechanisms:

a short-loop recycling pathway and a long-loop recycling pathway.

Following internalization, receptors are delivered to early
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endosomes where decisions are made concerning the fate of the

internalized receptors. Those selected for the short-loop pathway

are sorted to early endosome subdomains and then under the

control of Rab4 GTPase they are rapidly recycled to the plasma

membrane [16,17]. Alternatively, receptors may pass from early

endosomes to the perinuclear recycling compartment (PNRC) and

return to the plasma membrane via a long-loop recycling pathway.

From these reports it becomes obvious that Rab GTPases are

centrally important for integrin recycling. Like all small GTPases,

Rabs cycle between GDP and GTP. In the GDP bound state Rab

GTPases are recognized by Rab-aGDI which translocates them

between membranes [18]. In mammalian cells the heat shock

protein Hsp90 was shown to regulate Rab-aGDI-dependent

retrieval of both Rab1 and Rab3A from membranes [19,20],

suggesting a link between chaperone proteins and Rab GTPase

signaling.

In mammalian cells it is known that integrin binding to the

extracellular matrix induces the activation of Rac GTPases [21],

and we have shown that both Drosophila Rac1 and Rac2 are

necessary for a proper encapsulation response [11,22]. Also, to

help the wasp embryo develop L. boulardi females inject various

proteins able to inhibit the Drosophila immune response. One of

these proteins encodes a RhoGAP able to inhibit Rac1 in

Drosophila lamellocytes, making them less adhesive [23–25]. This

led to the idea that Drosophila Racs are possibly acting downstream

of Myospheroid in the cellular response against parasitization.

The current study presents the first evidence that in haemocytes,

Myospheroid undergoes re-localization after parasitization. Fur-

thermore, it shows that Rac1 and the heat shock protein Hsp83

are involved in regulating the proper cellular localization of

Myospheroid.

Results

Myospheroid undergoes activation dependent
endocytosis

To look for possible interactions between the Drosophila Rac

GTPases (Rac1 and Rac2) and mys, in the larval cellular immune

response, haemocytes were bled from parasitized control (w1118) or

Rac mutants and stained for Mys protein expression. Although the

Drosophila Rac GTPases, Rac1 and Rac2, are redundant during

embryogenesis, we have already shown that this is not the case in

larval haemocytes [11,22]. In haemocytes from parasitized control

larvae, or Rac2D null mutants, Mys was spread evenly across the

cell surface, but in Rac1J11 homozygous loss-of-function mutants

Mys seemed to mislocalize (Figure 1A).

To begin to understand if Mys is internalized after activation,

haemocytes were bled from non-parasitized third-instar larvae and

incubated in normal Drosophila cell culture media that contained

anti-Mys antibodies, for one hour at 4uC. The low temperature

inhibits receptor internalization. After one hour cells were

incubated at 25uC in fresh media, for the indicated time-points,

to allow for Mys internalization (Figure 1B). Immunofluorescence

microscopy of non-permeablized cells, revealed that Mys was

evenly dispersed across the cell surface on some haemocytes, while

on others, Mys had a more punctate distribution and was visible in

extended filopodia (Figure 1B). The level of Mys on the outer

surface of non-permeablized haemocytes was tracked by using

ImageJ to measure fluorescent intensity, average Mys surface-

expression at time zero was set at 100% (Figure 1C). After 30 and

60 minutes at 25uC, Mys cell surface expression was reduced in

comparison to the 0 time-point. By 30 minutes, surface Mys levels

were 49% (SE 6 7, p , 0.05) of initial expression, while at 60

minutes Mys surface expression was 53% (SE 6 5, p,0.05) of

time 0 expression levels (Figure 1C). To show the reduction in Mys

expression was due to relocalization, we examined the total

cellular antibody-bound pool by staining permeabilized cells for

Mys. Under these conditions, after 120 minutes Mys had

accumulated in some compartment that was not observed at the

0 time-point (Figure 1D). These results indicate that Mys

undergoes relocalization in haemocytes upon activation.

Myospheriod and Rac1 interact during encapsulation
When the larval immune response reacts properly against eggs

from the avirulent wasp strain L. boulardi G486, a darkened cellular

capsule surrounding the egg is visible in the hemocoel 30–40 hours

after parasitization. The temperature-sensitive alleles of myospheroid

(mysnj42 and mysts1) used in this study has a non-permissive

temperature of 29uC, so we measured the encapsulation ability

of larvae raised at 22uC and 29uC. Parasitized control (w1118)

larvae reared at 22uC or 29uC had encapsulation rates of 88% or

81% respectively (Figure 2A). Similar to what was reported

previously [12] at the permissive temperature 78% of mysnj42 and

85% of mysts1 larvae properly encapsulated the wasp egg, while at

the non-permissive temperature only 1% of mysnj42 and 5% of

mysts1 larvae encapsulated the egg, thus myspheroid is required for a

proper encapsulation response.

In our previous study, we reported that Rac1J11 mutants were

inhibited in their ability to encapsulate eggs from the avirulent

wasp strain L. boulardi G486 [22]. In that study all encapsulation

experiments were performed at 24uC. Interestingly, raising

homozygous Rac1J11 larvae at 29uC prior to parasitization rescued

the encapsulation defect (Figure 2A). While only 10% of

homozygous Rac1J11 larvae raised at 22uC properly encapsulated

the wasp egg, larvae raised at 29uC had a 92% encapsulation rate

(Figure 2A). To assess if hyperthermic rescue of the Rac1

encapsulation defect requires myospheroid, we measured the

encapsulation ability of mysnj42; Rac1J11 and mysts1; Rac1J11

double-homozygous larvae at 22uC and 29uC. Similar to

homozygous Rac1J11 mutants raised at 22uC, mysnj42; Rac1J11

larvae had an encapsulation rate of 9%, while 8% of mysts1; Rac1J11

larvae properly encapsulated the wasp egg. At 29uC wasp eggs

were never properly encapsulated in either strain (Figure 2A).

Finally, we overexpressed wild-type Rac1 (UAS-Rac1) in a mysnj42

mutant background using the haemocyte specific driver Hemese-

GAL4 (He-GAL4) [26], and raised the larvae at 29uC to see if Rac1

hyperactivity was able to rescue loss of Mys. Overexpression of

Rac1 was unable to rescue the mysnj42 encapsulation defect

(Figure 2A). From these results we conclude that hyperthermic

conditions are able to compensate for the loss of Rac1 during the

encapsulation response, and that Myospheroid is required for this

hyperthermic rescue.

To gain further insight into the encapsulation defects of mysnj42

and Rac1J11 mutants, we compared the ability of control and

homozygous mutant haemocytes to adhere to wasp eggs. Most

wasp eggs dissected from w1118 controls and homozygous mysnj42 or

Rac1J11 mutants, raised at either 22uC or 29uC, were fully

encapsulated by plasmatocytes (data not shown). By 38-40 hours

post-parasitization, lamellocytes were observed completely sur-

rounding wasp eggs recovered from control larvae. Yet, in mysnj42

mutant larvae reared at 29uC or Rac1J11 mutants raised at 22uC,

lamellocytes failed to completely surround the egg (Figure 2B,

arrowheads). A similar result was observed for mysts1 larvae (data

not shown). Rac1J11 mutants raised at 29uC where also completely

surrounded by lamellocytes, though they had a rough appearance

when compared to controls (Figure 2B), possibly due to a

reduction in lamellocytes adhesion capabilities.

Rac1 Regulates Integrin Localization
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Rac1 regulates Myospheroid cellular localization
Myospheroid localization was compared in haemocytes bled

from parasitized control or Rac1J11 larvae raised at either 22 or

29uC. Although Myospheroid localization was perturbed in all

haemocytes bled from parasitized Rac1J11 larvae, we chose to focus

our study on lamellocytes for the reason that their larger size and

extremely spread morphology makes them more amenable for cell

biology analysis. In lamellocytes recovered from control larvae,

raised at either 22uC or 29uC, Myospheroid protein was observed

accumulating at various places along the cell periphery (Figure 3A,

see Detail, arrowhead). In parasitized Rac1J11 larvae, raised at

22uC, instead of accumulating at the cell periphery, Myospheroid

protein appeared to localize intracellularly, (Figure 3A, see Detail,

arrows). Raising Rac1J11 mutants at 29uC rescued their encapsu-

lation defect, we examined lamellocytes to see if this could be due

to Myospheroid localization. In lamellocytes recovered from

parasitized Rac1J11 larvae raised at 29uC, Mys localization was

similar to controls.

Other studies have shown that integrin relocalization can be

activation-dependent [17,27]. To test if this was the case in the

Drosophila cellular immune response, lamellocytes from non-

parasitized control and homozygous Rac1J11 larvae raised at

22uC were stained for Myospheroid protein expression. Unlike

parasitized Rac1J11, in non-parasitized larvae Myospheroid was

observed at the cell periphery (Figure 3B). To verify that Rac1 was

regulating Mys localization, haemocytes were bled from third-

instar larvae and an internalization assay was performed on non-

permeabilized cells. In haemocytes bled from controls and non-

parasitized Rac1J11 larvae, Mys had a punctate plasma membrane

distribution after 30 minutes at 22uC. In haemocytes from

parasitized Rac1J11 larvae, raised at 22uC, very little Mys was

observed on the cell surface (Figure 3C), while in parasitized

Rac1J11 larvae raised at 29uC, Mys protein accumulated on the cell

surface. In order to confirm that the Mys localisation defect was

due to a lack of Rac1 signalling, we overexpressed Rac1 in a

homozygous Rac1J11 background [26,28]. In haemocytes recov-

ered from these parasitized larvae, raised at 22uC, Mys localized to

the cell surface (Figure 3C). From these results we conclude that

Myospheroid localization in lamellocytes becomes Rac1-depen-

dent only after immune activation.

Rac1 localizes to microtubules in lamaellocytes
To determine if Rac1 protein distribution in haemocytes

correlated with the Mys mislocalization phenotype, lamellocytes

Figure 1. Myospheroid undergoes activation-dependent internalization in lamellocytes. (A) Lamellocytes were bled from at least 24
control (w1118), homozygous Rac1J11, and homozygous Rac2D larvae approximately 40 hours post-parasitization and stained for Myospheroid protein
expression (red), as well as actin (green). (B) Anti-Mys antibody was bound to the surface of lamellocytes bled from control (w1118) larvae, followed by
internalization for various times as indicated (n = 12 larvae/time-point). The cells were not permeabilized (C) Graph indicating percentage of surface
Myospheroid expressed on control (w1118) haemocytes. Fluorescent intensity was measured using ImageJ to calculate the amount of cell surface
Myospheroid on lamellocytes. Asterisk indicates significant difference (One-way Anova, P,0.01), errors bars indicate 6 SE; n = 12 larvae/time-point, 0
minutes n = 1256 haemocytes, 30 minutes n = 1294, 60 minutes n = 1175). (D) Anti-Mys antibody was bound to the surface of lamellocytes bled from
control (w1118) larvae, followed by internalization for 120 minutes as indicated (n = 12 larvae/time-point). Cells were permeabilized to allow for
visualization of internalized Myospheroid. Size bars always indicate 20 mm.
doi:10.1371/journal.pone.0019504.g001
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were bled from larvae 38–40 hour post-parasitization, and stained

for Rac1 and a-Tubulin expression. Fluorescent intensity of

microtubule-associated Rac1, versus the rest of lamellocyte Rac1

expression, was calculated using ImageJ over/under threshold

analysis. In lamellocytes, from parasitized or non-parasitized

control larvae, much of the Rac1 staining co-localized with

microtubules (Figure 4A and 4B). In lamellocytes, from non-

parasitized controls, when microtubule-localized Rac expression

was compared to total cellular Rac1 levels, ,57% (SE 6 2) of the

expression was concentrated to microtubules (Figure 4B). After

parasitization, the amount of microtubule-associated Rac1 ex-

pression increased to ,65% (SE 6 1.5). When Rac1 protein

distribution was analyzed in Rac1J11 mutants, there seemed to be

little increase in microtubule-associated Rac1 after parasitization

(Figure 4B). The remnant Rac1 microtubule staining in Rac1J11

mutants could be due to the expression of Rac2 in lamellocytes.

To see if this was true, the distribution of Rac1 in non-parasitized

and parasitized Rac2D null mutants was compared. These mutants

do not express Rac2 protein [29,30], so all Rac staining observed

should be due to the expression of Rac1. Similar to what was

observed in control larvae, after parasitization there was an

increase in the amount of microtubule-associated Rac1, ,60%

(SE 6 4.5) in non-parasitized and ,71% (SE 6 4) in haemocytes

from parasitized larvae (Figure 4A and 4B). From these results we

conclude that Rac1 co-localizes with microtubules in lamellocytes,

and the amount of microtubule-associated Rac1 increases after

parasitization.

Hsp83 overexpression rescues Myospheroid
mislocalization

Rac1-dependent localization of Mys was overcome by hyper-

thermia, leading us to speculate that Drosophila heat shock proteins

Figure 2. Myospheroid and Rac1 are necessary for encapsulation of L. boulardi eggs. (A) Encapsulation capacities of loss-of-function
mutants in response to parasitization by L. boulardi G486. Values for proper encapsulation were calculated by the following equation [(Number of
properly encapsulated wasp eggs/number of parasitized larvae) x 100]. Numbers above the bars indicate the number of wasp-parasitized larvae
examined. (B) Wasp eggs collected 38–40 hours after parasitization were stained with the lamellocyte-specific antibody L1. Bright field pictures were
taken to show that eggs recovered from the loss-of-function larvae were not properly melanized. Arrows indicate lamellocytes attached to wasp eggs
recovered from either mysnj42 or Rac1J11 mutant larvae. 20-24 wasp eggs were dissected for staining from parasitized larvae of the various genotypes.
doi:10.1371/journal.pone.0019504.g002
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Figure 3. Myospheroid requires Rac1 for its proper localization. (A) Control (w1118) and homozygous Rac1J11 larvae were raised at 22uC or
29uC, lamellocytes were recovered from at least 12 larvae during three experiments approximately 40 hours post-parasitization and stained for
Myospheroid protein expression (green), as well as a-Tubulin (red). Arrowheads indicate Myospheroid protein localization. Size bar indicates 20 mm.
(B) Lamellocytes were recovered from at least 24 non-parasitized late third instar larvae and stained for Myospheroid protein expression (green), as
well as a-Tubulin (red). Size bar indicates 20 mm (C) Anti-Mys antibody was bound to the surface of lamellocytes bled from either non-parasitized or
parasitized control (w1118), homozygous Rac1J11, or homozygous UAS-Rac1;He-GAL4,Rac1j11 larvae raised at the indicated temperature, followed by
internalization for 30 minutes (n = 12 larvae/time-point).
doi:10.1371/journal.pone.0019504.g003

Figure 4. Rac1 localizes to microtubules in lamellocytes. (A) Lamellocytes were recovered from at least 24 control (w1118), homozygous
Rac1J11, and Rac2D larvae approximately 40 h post-parasitization and stained for Rac (green) and a-Tubulin (red) protein expression. (B) ImageJ was
used to measure fluorescent intensity of Rac1 localized microtubule staining from at least 50 haemocytes from three different larvae. An asterisk
indicates a significant difference (error bars show 6SE, *Student’s t-test, P,0.01) compared with the non-parasitized control strain.
doi:10.1371/journal.pone.0019504.g004
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might be involved. To begin to investigate the possibility that a

heat shock protein was involved in hyperthermic rescue of Mys

mislocalization, lamellocytes from parasitized larvae were stained

for the Drosophila homologue of Hsp90, known as Hsp83. In

lamellocytes bled from parasitized control and Rac1J11 larvae,

raised at 22uC, Hsp83 localized to a perinuclear region and a low-

level of expression was also observed along the microtubules.

Much more Hsp83 protein co-localized with microtubules when

control and Rac1J11 mutants were raised at 29uC prior to

parasitization (Figure 5A). This increase of Hsp83 could be due

to a redistribution of protein from the perinuclear region to

microtubules, or it could be due to an overall increase in Hsp83

expression. Protein from whole wandering third-instar larvae was

collected and Western analysis was performed to see whether

raising the larvae at 29uC was sufficient to increase total Hsp83. As

shown in Figure 5B, raising control or Rac1J11 larvae under

hyperthermic conditions was sufficient to increase Hsp83 expres-

sion levels. In controls or Rac1J11 mutants there was about a 2.5

fold increase in total Hsp83 protein respectively when larvae were

raised at 29uC. Comparatively there was a 2 fold increase in total

Hsp70 protein when larvae were raised a 29uC (Figure 5C).

Finally, Hsp83 was overexpressed in Rac1J11 mutant larvae to

test the idea that increased Hsp83 activity could rescue the Mys

localization defect. Adding a wild-type Hsp83 transgene was

sufficient to rescue the Mys localization defect in parasitized

Rac1J11 homozygous mutant larvae raised at 22uC (Figure 6A).

Hsp83 overexpression was also able to increase the encapsulation

rate to 68% at 22uC in a Rac1J11 mutant background. Finally,

overexpression of Hsp83 failed to rescue the encapsulation defect

in a mysnj42;Rac1J11 mutant background (Figure 6B).

Discussion

Although it is known that integrins and Rho-family GTPases

are involved in cellular adhesion, little is known about how these

proteins interact in circulating immunosurveillance cells [31–34].

In Drosophila the b-integrin myospheroid is necessary for lamellocytes

to properly encapsulate parasitoid wasp eggs [12]. Also, we have

previously published the involvement of the Rho-family GTPases

Rac1 and Rac2, in a non-redundant fashion, in the cellular

immune response against the parasitoid wasp Leptopilina boulardi

[11,22]. Here, we present evidence that the Rho-family GTPase

Rac1 and the heat-shock protein Hsp83 are necessary for the

proper localization of the b-integrin Myospheroid in lamellocytes

during the Drosophila encapsulation response.

Requisite integrin recycling during cellular adhesion is becom-

ing increasingly recognized [17,32]. Like many other transmem-

brane receptors, when integrins become activated they go through

a process of endocytosis. After endocytosis integrins travel to early-

endosomes where they are sorted, and are either directly recycled

back to the plasma membrane via Rab4-regulated vesicles or to a

compartment known as the perinuclear-recycling center (PNRC)

[13–17,35]. In wild-type haemocytes prior to parasitization the

Drosophila b-integrin Myospheroid is observed evenly distributed at

the plasma membrane. After cellular activation by parasitization,

or by crosslinking due to the addition of Mys-specific antibodies,

Figure 5. Hsp83 localizes to microtubules in lamellocytes. (A) Control (w1118) and homozygous Rac1J11 larvae were raised at 22uC or 29uC,
lamellocytes were recovered from at least 24 larvae approximately 40 h post-parasitization and stained for Hsp83 protein expression (green), as well
as a-Tubulin (red). (B) Western analysis to look at Hsp83 and Hsp70 protein levels was performed on protein collected from control (w1118) and
homozygous Rac1J11 larvae were raised at 22uC or 29uC, a-Tubulin was used as a loading control. (C) Quantification of the Western analysis comparing
expression levels of Hsp83 or Hsp70 in lysates from whole third instar larvae raised at either 22uC or 29uC (n = 5, error bars show 6SE, * indicates
Student’s t-test, P , 0.01).
doi:10.1371/journal.pone.0019504.g005
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Myospheroid re-localizes to various places around the cell

periphery, including filopodial extensions. This localization fits

with the idea of why integrin recycling is important. Basically,

integrins go through endocytosis at the retracting end of a cell and

are recycled to the leading edge where they undergo exocytosis

[15,17]. This recycling provides fresh integrin receptors to the

leading edge of the cell. During the encapsulation of parasitoid

wasp eggs, integrin recycling may be necessary for proper cellular

spreading and adhesion, again integrin would be needed at the

periphery of the spreading cells.

In mys and Rac1 mutants, lamellocytes fail to properly

encapsulate the parasitoid wasp egg. Interestingly, in mys mutants,

plasmatocytes adhere and spread around the egg similar to control

larvae, showing that mys function is not required in plasmatocytes

during the encapsulation process. Mys is expressed at much higher

levels in lamellocytes than in plasmatocytes and recently we have

shown that another Drosophila b-integrin, bu, is required for

plasmatocytes to adhere to L. boulardi eggs (data not shown, and M.

Williams manuscript in preparation). This leads to the possibility

of different integrin receptors being necessary to varying degrees in

different haemocyte cell types. Unfortunately, since lamellocytes

adhere to plasmatocytes and not to the wasp egg, we cannot judge

the necessity of bu for lamellocyte function during the encapsu-

lation process.

Lamellocytes from Rac1 mutants raised at 29uC are able to

adhere to the cellular capsule surrounding the wasp egg in a Mys

dependent manner, and hyperthermic conditions rescued Rac1-

depedent Mys localization. Previously, it was demonstrated in

mammalian cell lines that Hsp90 was involved in the proper

localization of a RabGDI, necessary for Rab GTPase recycling

[19,20]. The basal Hsp83-regulated Rab GTPase dependent

recycling apparatus may not be able to cope with the large

Figure 6. Hsp83 overexpression rescues loss of Rac1 signal. (A) Control (w1118), homozygous Rac1J11, homozygous Rac1J11,P(Hsp83+) larvae
were raised at 22uC, lamellocytes were recovered from at least 24 larvae approximately 40 hours post-parasitization and stained for Myospheroid
protein expression (green), as well as a-Tubulin (red). Size bar indicates 20 mm. (B) Control (w1118), homozygous Rac1J11, homozygous
Rac1J11,P(Hsp83+), and mysnj42;Rac1j11,P(Hsp83) larvae were raised at 22uC and an encapsulation assay in response to parasitization by L. boulardi G486
was performed. Values for proper encapsulation were calculated by the following equation [(Number of properly encapsulated wasp eggs/number of
parasitized larvae) x 100]. Numbers above the bars indicate the number of wasp-parasitized larvae examined.
doi:10.1371/journal.pone.0019504.g006

Rac1 Regulates Integrin Localization

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e19504



turnover of activated Mysopheroid after parasitization, and thus a

second Rac-regulated pathway is induced. Raising the larvae

under hyperthermic conditions increases the amount of Hsp83 in

the lamellocytes and may increase the efficiency of the basal Rab

GTPase endosomal-recycling apparatus. This could account for

the hyperthermic rescue of Mys localization in Rac1 mutant

larvae.

The addition of PDGF to 3T3 fibroblast cells induces Rab4-

dependent integrin recycling, and this recycling requires the

serine-threonine kinase PKD1 [13,14]. Furthermore, PKD1

activates JNK in a Rac1 dependent manner [36]. In Drosophila

the PDGF/VEGF receptor PVR signals via Rac1 to activate JNK

for thoracic closure during metamorphosis and for border cell

migration during oogenesis [37,38]. PVR is also known to be

necessary for haemocytes to migrate during embryogenesis

[39,40], and Pvr signalling is sufficient to induce the larva immune

response [26]. There are three Pvr ligands in Drosophila, Pvf1, -2,

and -3, and in larvae it has been shown that overexpression of Pvf2

is also sufficient to activate the cellular immune response [41].

This leads to the possibility that similar to 3T3 cells Pvr functions

via Rac1 and JNK to control Rab4-regulated integrin recycling in

lamellocytes after parasitization. Though Pvr has been shown to

be involved in larval haematopoiesis, it must be mentioned that it

is not known whether Pvr, or any of its ligands, is actually involved

in the anti-parasitoid cellular immune response.

Finally, when the wasp L. boulardi parasitizes Drosophila larvae it

also injects venom, one of the proteins the female wasp injects

encodes a Rac-specific RhoGAP, called LbGAP [23]. To turn off

GTPase signalling GTP-bound small GTPases, such as Rac1, are

recognized by GTPase activating proteins (GAP) that accelerate

GTP to GDP hydrolysis. Somehow LbGAP is able to localize to

the cytosol of lamellocytes and is sufficient to inhibit lamellocytes

from adhering to the growing cellular capsule surrounding the

wasp egg [23,23–25]. Considering the data presented in the

current study, it is possible that LbGAP inhibits Rac1 in

lamellocytes, thus inhibiting Myospheroid recycling after parasit-

ization, making them less adherent and lowering their ability to

properly encapsulate the wasp egg.

Materials and Methods

Insects
Drosophila strains were obtained from the Bloomington Stock

Center, and the references are given in Flybase. UAS-Rac1IR flies

were provided by Ryu Ueda [19,20]. The Hemese-GAL4 driver line

was described previously [26]. Flies were kept on a standard

cornmeal diet at 25uC. The G486 strain of L. boulardi was bred on

a w1118 stock of Drosophila melanogaster at room temperature. Adult

wasps were maintained at room temperature on grape juice agar.

Myospheroid internalization assay
Mys localization in haemocytes was followed by staining cells

according to following protocol (modified from [35]). Haemocytes

were bled from larvae into room temperature Schneider’s media

(Invitrogen) and allowed to adhere to a glass slide (SM-011,

Hendley-Essex, Essex, UK) for 1 hour at 25uC. Haemocytes were

stained with 4uC anti-integrin betaPS antibody (Developmental

Studies Hybridoma Bank) diluted to 10 mg/ml in Schneider’s

media and incubated at 4uC for 1 hour. Afterwards cells were

washed twice with cold Schneider’s media. Immediately, the 0

time-point cells were fixed for 5 minutes with 3.7% paraformal-

dehyde/Phosphate Buffered Saline (PBS) at 4uC. Pre-warmed

(25uC) Schneider’s media was added to the other cells to stimulate

recycling; these cells were fixed after 30 and 60 minutes. Cells were

washed three times for 5 minutes with PBS, and then blocked for

30 minutes at room temperature with 3% BSA/PBS (Blocking

solution). Cells were then incubated at room temperature for

1 hour with secondary antibody diluted in blocking solution, anti-

mouse Alexo-fluor 488 (1:500) (Invitrogen). Cells were washed

three times for 5 minutes with PBS, followed by fixation with 3.7%

paraformaldehyde/1x PBS for 5 minutes, and washed again three

times with PBS for 5 minutes. Cells were mounted in 50%

glycerol/1x PBS. Movement of integrin was further investigated

by changing a step on the previous technique allowing for the

visualisation of integrin inside the cells, for this purpose, after the

initial fixation, cells were washed for 5 minutes each with PBS,

PBX (0.1% Triton X-100 in 1x PBS) and a final wash with PBS.

Cells were visualized using a Zeiss Axiovert 200 M epifluorescent

microscope and digital pictures were taken with a Hamamatsu

C4742-80-12AG video unit, controlled by the Simple PCI 6.1

program (Hamamatsu). ImageJ (NIH) was used for digital editing

and for measuring fluorescent intensity.

Wasp egg encapsulation assay
The encapsulation assay was done according to Sorrentino et al.

[42]. Briefly, two days before parasitization the appropriate fly

strains were crossed and kept at 21–25uC. Four or five females of

L. boulardi G486 were allowed to infest at room temp for 2 h, after

which the Drosophila larvae were transferred to apple juice plates

and left at room temperature for 40–42 h. After this time the

larvae were collected, washed in PBS, and then viewed under a

stereomicroscope for the presence of a dark capsule. Larvae in

which no dark capsule was observed were dissected in 20 ml of

PBS to determine if they had been parasitized. Larvae containing

eggs from the parasitoid that hadn’t darkened by this time were

scored as non-encapsulated. Non-parasitized larvae were excluded

from the count.

Antibodies and reagents
Mouse monoclonal anti-Myospheroid (Developmental Studies

Hybridoma Bank, Iowa, USA), lamellocyte-specific mouse mono-

clonal antibody (L1a) [28] and plasmatocyte-specific monoclonal

mouse anti-Nimrod [28,43] were all used undiluted, mouse

monoclonal anti-Rac1 (BD Biosciences) diluted 1:250, mouse

monoclonal antibody anti-a-Tubulin (Sigma) diluted 1:1,000,

rabbit polyclonal anti-a-Tubulin (Abcam) diluted 1:500, rat

monoclonal anti-Hsp90 (Abcam) diluted 1:300.

Immunofluorescence
Wasp egg staining. Wasp eggs were bled from larvae into

PBS and allowed to attach to a glass slide for 5 minutes at room

temperature. Staining and analysis were done according Williams

et al. [11].

Circulating haemocyte staining. For all haemocyte

antibody-staining, haemocytes were bled from a larva into PBS,

and allowed to attach to a glass slide (SM-011, Hendley-Essex,

Essex, UK) for 1 hour. Staining and analysis were done according

to Williams et al. [22]. Cells were visualized using as in

Myospheroid internalization assay section.

Measuring Rac1 concentration. The over/under threshold

capability of ImageJ was used to measure fluorescence intensity of

Rac1 staining localising to microtubules. The percent of Rac1

localising to microtubules was defined as the intensity of Rac1

staining along microtubules divided by total Rac1 staining of an

individual haemocyte. At least 50 haemocytes from three different

larvae were measured. For statistics, an initial ANOVA analysis

(http://www.physics.csbsju.edu/stats/anova.html) indicated that

parasitization affected rac1 localisation significantly. Multiple
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Student’s t-tests (Microsoft Excel and http://www.graphpad.com/

quickcalcs/ttest1.cfm) were performed to study specific

interactions between genotypes, and in the case of UAS-RNAi

their corresponding crosses, before and after parasitization.

Western analysis
Wandering third instar larvae were collected and homogenized

in cell lysis buffer (50 mM Tris/HCl pH 7.5, 10 mM MgCl2,

0.3 M NaCl, 2% IGEPAL). The lysate was microcentrifuged at

8000 xg for 5 minutes at 4uC and the supernatant recovered to a

new tube. The concentration was then quantified using the

BioRad DC Protein Assay Kit (BioRad). Protein fractions (10 mg)

were diluted with Laemeli buffer and then heated at 65uC for

10 min. Samples were electrophoresed on a 4% polyacrylamide

stacking gel, 12% resolving gel with appropriate size markers. Gels

were washed three times for 10 min with transfer buffer (25 mM

Tris, 190 mM glycine, 20% methanol), then transferred to a

Hybond nitrocellulase membrane (Amersham). Membranes were

blocked for 1 h at room temperature in Western blocking solution

(1x Tris-buffered saline, 0.1% Tween-20 (TBST) with 5% non-fat

dry milk). The rat anti-Hsp83 (Abcam) was diluted 1:1000, the

mouse anti-Hsp70 (Abcam) was diluted 1:5,000, and the rabbit

anti-a-Tubulin (Abcam) was diluted 1:1000 in Western blocking

solution and incubated with the membranes overnight at 4uC.

Membranes were washed three times 10 minutes with 1x TBST.

HRP-conjugated anti-rat secondary antibody (Abcam) was diluted

1:5000, anti-mouse and anti-rabbit secondary (Amersham) were

diluted 1:10000 in Western blocking solution and incubated with

the membranes at room temperature for 1 hour. Membranes were

washed six times 10 minutes with 1x TBST and two times 5

minutes with 1x TBS. Finally, blots were incubated with ECL Plus

Western blotting detection reagent (Amersham) for 5 minutes.

Blots were exposed to X-ray film (Hyperfilm ECL, Amersham) for

60-120 seconds. Western analysis was repeated four times. The

relative amount of antibody binding was evaluated by ImageJ.

Statistical Analysis
The influence of time or of Rac1 on integrin recycling by

haemocytes was analysed by ANOVA’s General Linear Model

allowing investigating both the effects of the genotype and time on

the levels on the outer-surface of haemocytes, as well as the

interaction of these factors. Tukey Simultaneous Tests were used

to obtain pairwise comparisons of the different parameters means.

All ANOVA and Student t-test analysis were conducted using the

statistical analysis package provided in Minitab15.
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