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Abstract

Genome-wide association studies of gene-environment interaction (GxE GWAS) are becoming popular. As with main effects
GWAS, quantile-quantile plots (QQ-plots) and Genomic Control are being used to assess and correct for population
substructure. However, in G|E work these approaches can be seriously misleading, as we illustrate; QQ-plots may give
strong indications of substructure when absolutely none is present. Using simulation and theory, we show how and why
spurious QQ-plot inflation occurs in G|E GWAS, and how this differs from main-effects analyses. We also explain how
simple adjustments to standard regression-based methods used in G|E GWAS can alleviate this problem.
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Introduction

Genome-wide association studies of Gene-environment interac-

tion (G|E GWAS) are now being undertaken to search for

modification of environmental effects by genotypes [1,2]. As in

main-effects GWAS that search for the effects of genotype alone,

differences in recent ancestry, termed population substructure, can

be mistaken for true genetic effects, and is therefore a serious

concern [1,3].

In main-effects GWAS, the extent of the substructure problem is

typically addressed using Genomic Control [4]. Here, under the

assumption that processes of local mating and genetic drift inflate

measures of association in the same way genome-wide, the degree

of inflation of the median test statistic (known as lGC ) is a useful

assessment of the degree of test statistic inflation at all levels.

Dividing test statistics by lGC is a widely-used approach to correct

for minor substructure problems; for examples, see e.g. [5,6].

Adjusting for principal components, which we will use in this

paper, is another popular correction method [7,8].

In G|E GWAS, one can also argue that substructure leads to

inflation of test statistics by a multiplicative factor. However, in

G|E GWAS the same inflation can also be caused by an entirely

different mechanism: systematic underestimation of variability of

effect estimates across the genome. This is not confounding, but it

gives the appearance of confounding; hence nave use of Genomic

Control can be misleading.

In this paper, we show how the separate effects of population

substructure and underestimation of variability affect interpreta-

tion of G|E GWAS results, and we show how this problem can

be solved. In the Results section, using simulation and theory, we

describe how spurious QQ-plot inflation can occur. We also

illustrate how model-robust estimates of standard errors (also

known as ‘‘sandwich’’ standard errors) rectify the problem, while

retaining lGC ’s ability to identify true substructure.

Assumptions in G|E GWAS: classical approaches
In general, regression methods incorporate assessments of variability

by estimating standard errors; for a given estimated effect (i.e. b̂b), larger

standard errors reflect greater variability from sample to sample, and

produce less significant results. However, the precise assumptions

reflected in these statements of variability differ between methods.

Under ‘‘classical’’ or ‘‘model-based’’ regression approaches,

standard errors only account for random variation in the

phenotype (denoted Y ). Furthermore, for their validity these

classical variability estimates require that the mean value of Y is

truly linear in the coefficients of the independent variables, such as

environmental variables (denoted E) or genotypes (denoted G) [9].

To illustrate these classical assumptions, we consider linear

regression, with G coded as 0/1/2 copies of the minor allele. For

classical main-effects analysis one might assume that the mean

value of Y truly is

½Y jG�~b0zb1G:

Association would be assessed using the least squares regression

estimator b̂b1 and its estimated standard error, which is based on

estimated random variation in the phenotype Y with the values of

the observed predictor G fixed. (Formally, the analysis is

‘conditioned’ on the independent variable G) [10].

Using the classical approach for interaction analyses, one might

instead assume that

½Y jG,E�~b0zb1Gzb2Ezb3(G|E): ð1Þ

Inference would use b̂b3 and its estimated standard error, where

again the variability accounted for by model-based standard errors

is that of the phenotype, Y , in replicate experiments where G and

E are fixed at the values observed in the original data.

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19416



How does the mean model assumption affect GWAS work? In

main effects analyses, the validity of the mean model is not a major

concern. Under the ‘strong null hypothesis’ of no association

between Y and G, the true mean value of Y is simply

½Y jG�~b0:

This means that the model assumptions hold under the null

hypothesis, which is sufficient for valid p-values. But in G|E

work, even under the null hypothesis of no statistical interaction

(b3~0 in (1)), model-based standard errors assume that the mean

of Y is truly linear in E and the residual variance is constant with

respect to E. When this assumption fails, model-based errors may

be too small.

How does accounting for different sources of variability impact

GWAS work? In main-effects analyses, we typically have the same,

well-specified model for each gene we test, under the null

hypothesis. In this case, the variability in our estimates is the

same whether or not G is truly fixed. As a result, model-based

standard errors can be used to produce valid QQ-plots, even

though each point on the plot represents a different G. But when

there is mean-model mis-specification in G|E GWAS, variability

in interaction term coefficient estimates from G to G becomes

important. QQ-plots using model-based standard errors provide

results based on viewing Y as random, and E and G as fixed. This

contrasts with the observed variation in p-values entering the

computation of lGC , where E is fixed, but G varies – all along the

genome. In particular, this means that G|E varies in a way not

accounted for by model-based analysis.

We will see that in G|E GWAS using model-based standard

errors, the behavior of QQ-plots and lGC may not be as

straightforward as in main-effects work. In Results, we show

how violation of the assumptions both about mean-model validity

and what is considered random can lead to misbehaved QQ-plots

in G|E studies.

Assumptions in G|E GWAS: robust approaches
‘Model-robust’ standard errors are an alternative to model-

based. Here, instead of assuming a particular form for the mean Y

given G and E, standard error estimation views regression

estimates as simple summaries of the observed association between

Y and E, or Y and G. For example, interaction terms summarize

how a measure of the Y : E association differs between values of

G. While the summary is expressed linearly, no underlying

assumption of true linearity, in either the Y : E relationship or

how it differs between levels of G, is required for accurate standard

error estimates [11]. Thus, concerns about mis-specification of the

mean model in G|E GWAS disappear. This form of standard

error estimation should give inherently better-behaved QQ-plots

than the model-based approach.

Model-robust standard error estimates are known as ‘‘hetero-

scedasticity-consistent’’, ‘‘model-agnostic’’, ‘‘Huber-White’’, or

‘‘sandwich’’ standard errors, and are available in standard

statistical software [12–14]. Unlike model-based standard errors,

they summarize uncertainty in estimates where Y and all

independent variables are considered random. In G|E GWAS

work, this means that repeated sampling variability in Y , G and E
is accounted for. However, when we examine QQ plots we have Y

and E fixed while only G varies. As will be discussed in the

theoretical portion of the Results, this produces about the same

amount of variability as when all variables are considered random,

and more than when only Y is considered random. As a result,

robust standard errors should give a better assessment of variability

than model-based standard errors when we vary G due to genome-

wide comparison as we do on a QQ-plot.

Results

Simulation results
Before deriving theoretical results, we illustrate the scope of the

difference between model-based and model-robust inference in

Figure 1. Correctly Specified Model. In this scenario the data is generated according to Y*N(1:2|E; 1), independent of G. Both the model-
based and robust standard errors are valid estimates of variability, as demonstrated by the QQ-plot.
doi:10.1371/journal.pone.0019416.g001
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G|E GWAS, and the extent of QQ-plot inflation that may be

produced in the absence of population substructure.

In Figures 1 and 2, we show the QQ plots for linear regression

results in G|E GWAS, based on simulations of well specified and

misspecified modeled relationships between Y and E. All

simulations use Wald tests, independent Normal phenotypes Y ,

biallelic genotypes G in Hardy Weinberg equilibrium with MAF

varying between 0.02 and 0.5 and coded as 0/1/2 copies of the

minor allele; for details see Methods. Importantly, the null

hypothesis of no G : E interaction holds throughout, and no

population substructure is present. Using model-based standard

errors, in Figure 1 we see no inflation beyond that expected by

chance alone. In Figure 2, in the presence of either of two types of

slight model mis-specification, substantial inflation of model-based

statistics is observed (l~1:32 and l~1:38), well beyond chance,

despite the absence of real interactions or of population

substructure. Using the model-robust approach, we see no

inflation in the correctly specified model (Figure 1), or for either

of the mis-specified models (Figure 2).

In Figure 3, we show that similar behavior can occur when

substructure is present in an interaction analysis with model mis-

specification. Here, structure was incorporated by assigning MAFs

Figure 2. Mis-specified model. Panels A and C show scatterplots of Y vs. E generated according to Y*N(1:2|Ez0:2|E2; 1) and
Y*N(2|E; 1z0:1|E2) respectively, independent of G. Panels B and D demonstrate the corresponding effect of this mis-specified mean model
and non-constant variance.
doi:10.1371/journal.pone.0019416.g002
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to two sub-populations, choosing Wright’s Fst to be 0.01, and the

mis-specification exactly that displayed in panels A and B of

Figure 2. Using a model-based analysis that accounts for the

substructure by including one principal component of the SNP

data as a covariate in the regression, we see that inflation persists,

spuriously. However, the principal component-adjusted model-

robust inference removes the substructure problem, and again

gives correctly-calibrated p-values.

Finally, in Figure 4, we show that similar behavior holds for

non-linear regression analysis. In these, model-based errors

assume linearity on a modified scale: logit E½Y jG,E�ð Þ for logistic

regression, and the log hazard for Cox proportional hazards

regression. Here, in the top row we show results for binary Y , a

Y : E relationship that is non-linear on a logit scale, and no true

interaction. In the bottom row, we show similar results for a mis-

specified Cox proportional hazards regression, with uniform

censoring at the median [15]. Similar results hold when using

likelihood ratio tests and joint tests of bG:E~bG~0.

Theoretical results
We now develop theoretical results governing the behavior of

lGC under model-based and model-robust analyses of G|E

GWAS.

In the absence of population structure, the population

parameter consistently estimated by lGC for interaction terms

can be viewed as a ratio of conditional and unconditional

variances, as follows:

l̂l~
1

0:4549
median

b̂b2
G|Ecvarvar½b̂bG|E �

( )
, ð2Þ

where .4549 is the median of the x2
1 distribution and cvarvar½b̂bG|E � is

the variance estimate, either model-based or robust, used in the

analysis. For simplicity we first consider the situation where 1)

bG|E~0 for all G, where 2) G is independent of E, and where 3)

the minor allele frequency is the same for all SNPs G. We note

that, in the absence of population stratification, the first two

conditions are approximately true for nearly all SNPs. The third

condition will later be relaxed. Under these three conditions,cvarvar½b̂bG|E � is approximately constant and can be factored out of

the computation of the median in equation (2).

Since bG|E~0 and b̂bG|E is asymptotically Normal,

1

0:4549
medianfb̂b2

G|Eg

is consistent for the variance of b̂bG|E taken over the distribution of

G but conditioning on Y and E. The genomic control l̂l can then

be written as

l̂l&
cvarvar b̂bG|E jY ,E
h i
cvarvar½b̂bG|E �

The numerator of l̂l is the empirical variance of the regression

coefficients and is always a good estimate of var½b̂bG|E jY ,E�, the

true variance over genotypes fixing the outcome and exposure

variable. The denominator of l̂l is the estimated variance of b̂bG|E

from the regression analysis. If model-based inference is used, this

estimates var b̂bG|E jG,E
h i

, the variance taken over the distribu-

tion of the outcome, conditional on the predictor variables. If a

model-robust variance estimator is used, the denominator

estimates var b̂bG|E

h i
, the unconditional variance of b̂bG|E taken

over the distribution of all variables.

To see that l̂l should be approximately 1 when there is no

population structure, despite the conditioning on Y and E that is

implicit in the computation of its numerator, we can examine the

variance decomposition:

var½b̂bG|E �~var (b̂bG|E jY ,E)
h i

z var½b̂bG|E jY ,E�
� �

ð3Þ

Figure 3. QQ-plots with added population structure. In the left panel, nothing is done to account for the structure. On the right, the results are
adjusted for principal components, leaving about the same amount of inflation as the case with no population stratification.
doi:10.1371/journal.pone.0019416.g003
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The numerator of l̂l accurately estimates the second term in this

decomposition. We show in Appendix S1 that the first term is

approximately zero for the case of linear regression, so

var½b̂bG|E �&var b̂bG|E jY ,E
h i

as required. Our simulations confirm that this result also holds for

logistic regression and Cox regression.

So far we have assumed constant MAF, but the arguments do not

depend on the value of the MAF, nor does the conclusion that l&1.

Since l is defined from the median of the chi-squared statistic, if

l&1 for the SNPs with each fixed MAF we must also have l&1
pooling over a range of MAF. For this reason, the results should

hold with typical range of MAFs seen in GWAS so long as the

sample size and MAF are large enough to allow accurate estimation

of the sandwich variances. This is further supported by the

simulation results, which used a wide range of MAFs.

The analog of equation 3 for the model-based estimator is

var½b̂bG|E �~var (b̂bG|E jG,E)
h i

z var½b̂bG|E jG,E�
� �

: ð4Þ

The first term in this decomposition is not negligible unless the

Figure 4. Example of behavior in logistic and proportional hazards regression. The top row displays the results for logistic regression, and
the bottom for proportional hazards. The data was simulated according to Y*Bernoulli(logit(0:5z0:2|E2)) and Y*Exponential(exp(Ez
0:2|E2)) with half of the data censored at the median survival time. The top left shows the log odds of an event, which demonstrates non-linearity
that was not specified in the model. The plot on the lower left displays a loess curve through the Schoenfeld residuals from the regression of Y on E. A
non-zero slope is indicative of violation of the proportional hazards assumption.
doi:10.1371/journal.pone.0019416.g004
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Y : E model is correctly specified, so under model mis-

specification

Var½b̂bG|E �w Var½b̂bG|E jG,E�
h i

and l̂l will tend to be greater than 1 even when there is no

confounding by population substructure. Figure 5 shows an

example of this.

As a further complication, the model-based variance estimatordVarVar b̂bG|E jG,E
h i

need not be close to the true variance, the

second term in equation 4, if the model is misspecified [16].

Discussion

We have seen in the above that standard errors that rely on

model assumptions can be underestimates of var b̂bG|E jE,Y
h i

when those model assumptions are not met, while model-robust

estimates of variance provide well-calibrated standard errors and

p-values. This distinction can be seen in all types of regression

examined. The problem is not merely theoretical; our research

was motivated by seeing apparent population substructure similar

to that in Figure 2 in initial analyses of a G|E GWAS of

echocardiographic traits [17] and noticing that the inflation was

absent in cohorts that had used model-robust standard error

estimates. The simulation results from linear regression show that

even mild heteroskedasticity or mean-model mis-specification can

inflate model-based test statistics.

Intuitively explaining sources of variability
The impact of different sources of variability and its relation to

model mis-specification is not well recognized. We illustrate the

situation for G|E GWAS in 5. Here, for a continuous phenotype

Y , continuous exposure E, and binary genotype G, we show the

spread of bG|E estimates holding different variables constant

when there is no true interaction or population structure present.

Within the blue boxes, G and E are held fixed while Y is varied to

produce different estimates of bG|E . From boxplot to boxplot G is

varied. Each blue boxplot illustrates the variability in b̂bG|E using

what model-based errors assume is fixed; it can be compared to

the variability with Y , G, and E all random, and with E and Y

fixed. Under model mis-specification, it is clear that the

distribution of b̂bG|E varies from G to G, and that the variability

in b̂bG|E is larger when Y , G and E are all random or when only

E and Y are fixed.

When the linear model is true, as in the data summarized in left

panel, then the linear trend is the same for any level of E. When

this is true, the variability in b̂bG|E is the same whether or not G

and E are taken to be random. However, when the linear model is

not true, then the linear trend need not be the same at different

levels of E. In right panel of Figure 5, the data were generated

according to an exponential relationship between Y and E. Under

this model the linear trend will be steeper in samples where the

values of E are larger. Now for any single instance of E and G

there is always some small degree of correlation between them

within the data. As each of these small, fixed associations between

G and E varies over G, there is truly effect modification: subjects

with different genotypes will tend to have slightly different levels of

E, and hence a slightly different relationship with Y . So in

addition to the usual sampling variability in estimating b̂bG|E , we

have this ‘bias’ that varies from each pair of G and E to the next. If

we add these two sources of variability, we obtain the full

variability that we observe when G and E are also random.

Conclusions
In G|E GWAS, nave use of QQ-plots and genomic control

with model-based standard errors may lead to false conclusions

Figure 5. Illustrating the variance decomposition. The panels show estimates of bG|E over replications with different variables held constant.
At left, the Y : E relationship is truly linear. Because bG|E is the same regardless of which variables are held constant, then according to the variance
decomposition, so is the variability. In the right panel the Y : E relationship is exponential. With E and G fixed, a certain amount of within-sample
correlation remains fixed, making bG|E different for each instance of G. Both the G|E setting where Y and E are fixed and G is random, and the
setting when all variables are random incorporate this extra variability.
doi:10.1371/journal.pone.0019416.g005
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about substructure. The extent of this problem depends on the

degree of mis-specification of the mean-model, the form of

regression used, and the distribution of the environmental

exposure. Use of model-robust inference offers a simple alternative

that avoids these difficulties, and retains genomic control as a

useful tool for the assessment of substructure.

Methods

Simulation studies in R [18] were used to assess the

performance of model-based standard errors and sandwich

standard errors in a variety of scenarios, with the genomic-control

l used to assess the degree of inflation in the test statistics. Visually,

this can be seen in QQ-plots.

We simulated a normally distributed environmental exposure,

and a response generated from this either under a correctly

specified linear model, or under a quadratic mean-model.

Genotypes at 10,000 loci were simulated according to a binomial

distribution, with minor allele frequency (MAF), drawn from a

beta(.5,.5) distribution truncated at 1/2, and with frequencies

filtered to be above 0.02. We found that the behavior of the

simulations was not affected in a substantial way when the MAF

was fixed at any particular value for all loci. In this way, genotype

is entirely unrelated to phenotype in these simulations, and so we

would hope that tests for gene-environment interaction yield

uniformly distributed p-values, as they should be under the null

hypothesis.

Population stratification was simulated by drawing an MAF for

each of two sub-populations at each locus, centered around some

MAF drawn from the distribution described above. These sub-

population MAFs were distributed according to a beta distribution

parametrized by the central MAF and Wright’s Fst, in this case

chosen to be 0.01 [4]. In order to allow for confounding, we

created a slight difference in the relationship between phenotype

and environmental exposure: the linear component of the

relationship was 1:2|E 20% of the population and 1|E in the

other population, while the quadratic component was 0:2|E in

both groups.

In addition to linear regression, performance of model-based

and sandwich standard errors was assessed in logistic and

proportional hazards regression. In these situations we generated

simulations in which departures from linearity were on the

appropriate transformed scale. In logistic regression, this meant

that the linearity was judged on the scale of the logit of the

probability of ‘success’. In proportional hazards, the scale was on

the log hazard scale. To achieve this, we generated exponentially

distributed event times where the exponentiated ‘rate’ parameter

was related quadratically to exposure.
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