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Abstract

The open tank paradigm, also known as novel tank diving test, is a protocol used to evaluate the zebrafish behavior. Several
characteristics have been described for this species, including scototaxis, which is the natural preference for dark
environments in detriment of bright ones. However, there is no evidence regarding the influence of ‘‘natural stimuli’’ in
zebrafish subjected to novelty-based paradigms. In this report, we evaluated the spatio-temporal exploratory activity of the
short-fin zebrafish phenotype in the open tank after a short-period confinement into dark/bright environments. A total of 44
animals were individually confined during a 10-min single session into one of three environments: black-painted, white-
painted, and transparent cylinders (dark, bright, and transparent groups). Fish were further subjected to the novel tank test
and their exploratory profile was recorded during a 15-min trial. The results demonstrated that zebrafish increased their
vertical exploratory activity during the first 6-min, where the bright group spent more time and travelled a higher distance
in the top area. Interestingly, all behavioral parameters measured for the dark group were similar to the transparent one.
These data were confirmed by automated analysis of track and occupancy plots and also demonstrated that zebrafish
display a classical homebase formation in the bottom area of the tank. A detailed spatio-temporal study of zebrafish
exploratory behavior and the construction of representative ethograms showed that the experimental groups presented
significant differences in the first 3-min vs. last 3-min of test. Although the main factors involved in these behavioral
responses still remain ambiguous and require further investigation, the current report describes an alternative
methodological approach for assessing the zebrafish behavior after a forced exposure to different environments.
Additionally, the analysis of ethologically-relevant patterns across time could be a potential phenotyping tool to evaluate
the zebrafish exploratory profile in the open tank task.
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FINEP research grant ‘‘Rede Instituto Brasileiro de Neurociência (IBN-Net)’’ #01.06.0842-00. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dbrosemberg@gmail.com (DBR); losch@ufrgs.br (DLdO)

Introduction

The open field is the most used test for animal psychology

studies in basic sciences. It consists basically of introducing an

animal into a plain arena to observe its behavior across a specific

range of time [1]. This test, usually performed with experimental

rats or mice, provides an index of general behavior [2,3], and in

particular, exploratory activity, which is a crucial response to

novelty [4–6]. The initial responses to the open field test of adult

rats consist in thigmotaxis and increased exploratory activity,

which substantially decreases during the trial, reflecting an intra-

session state of habituation [7–9]. The intra-session habituation

involves spatial working memory and may also represent deeper

neurobiological constructs, such as adaptive processing of sensory

information and development of a cognitive map [10–12].

Furthermore, animals tend to establish during the test a key

location (homebase), characterized as a ‘‘safe’’ place to which they

repeatedly return after exploring the environment and spend more

time during the trial [13,14]. Thus, the open field test offers a

valuable and reliable test of activity and sequential (spatio-

temporal) structure of the exploratory behavior [3,15], which

emerges as an interesting tool that reveals the animal’s interaction

with a novel environment [16,17].

Zebrafish is becoming a popular animal model for behavioral

neuroscience studies [18–20]. Although the use of zebrafish in

behavioral research is increasing rapidly, the full potential offered

by its use in these studies still needs further elucidation. Similar to

the open field used for rodents, the novel tank diving test – also
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known as open tank paradigm – is emerging as a task for

behavioral analysis in zebrafish. This test fundamentally consists in

evaluate its vertical exploratory activity based on the tendency of

this species to initially dive to the bottom and gradually swim to

upper areas of the tank [18]. Several reports have been undertaken

in order to characterize the zebrafish responses to novelty-based

paradigms [16,21–24]. Recent data showed that zebrafish display

a robust habituation response to novelty [12] and the establish-

ment of a homebase [25]. Furthermore, pharmacological studies

have demonstrated that anxiogenic and anxiolytic drugs can

influence the habituation response to the novel tank test and

induce changes in some endpoint behaviors, such as freezing,

erratic movements, hyperactivity, and bottom-dwelling (or diving)

[12,16,19,21–24,26,27]. However, due to the complexity of the

behavioral repertoire displayed by adult zebrafish, the behaviors

themselves still remain poorly understood [28].

A straightforward approach in the validation of behavioral

measures for this species was performed using the bright/dark

apparatus [28–31]. This task is characterized by the natural

preference of zebrafish for dark environments (scototaxis), an

innate feature previously suggested for its usefulness for the

development of behavioral paradigms [32]. In fact, the bright/

dark test allowed the organization of ethograms, which show

relevant dimensions of defensive behavior [29,31]. This advance

was taken for the first time by Blaser et al. [28], using the dark/

bright tank in zebrafish. The confinement to each environment

demonstrated that animals with a high avoidance of the bright side

displayed substantial amount of freezing behavior when forcefully

exposed to the bright chamber. Moreover, a recent study using a

different protocol also demonstrated that animals forcefully

exposed to the white compartment three consecutive times

presented substantial differences in the behavioral repertoire

observed in the light/dark tank [29]. Although these reports

strongly suggest the aversion of zebrafish to bright environments,

there is no data evaluating the effect of ‘‘natural stimuli’’ on the

zebrafish behavior in the novel tank. Thus, it may be equally

interesting to determine how the forced short-period exposure in

two distinct preferred environments (dark vs. bright) affect their

spatio-temporal exploratory activity [28,29,32].

Therefore, the aim of the current study was to investigate the

spatio-temporal exploratory activity of the short-fin zebrafish

phenotype in the novel tank test after a short-period confinement

into dark and bright environments. The purpose to map the

behavioral repertoire typically employed by the species in the open

tank task lead us to suggest a standard exploratory profile for the

confined groups.

Methods

Ethics statement
All procedures with animal subjects have been approved by the

Ethics Committee for Use of Animals – CEUA from Universidade

Federal do Rio Grande do Sul (protocol number 2008058).

Animals
Adult male and female zebrafish (Danio rerio) (4–6 months-old,

,50:50 male:female ratio) of heterogeneous wild-type stock

(standard short-fin phenotype) were obtained from a local

commercial supplier (Delphis, RS, Brazil). Fish were housed in

50-L aquariums (80–100 fish per aquarium) for at least 2 weeks

prior to the experiments in order to acclimate to the animal

facility. All tanks were filled with unchlorinated water previously

treated with 132 mL.L21 AquaSafeH (Tetra, VA, USA) and kept

under mechanical and chemical filtration at a targeted tempera-

ture of 2662uC and water pH at 7.0–8.0. The room illumination

was provided by ceiling-mounted fluorescent light tubes on a 12/

12 light/dark photoperiod cycle (lights on at 7:00 am). Animals

were fed twice a day until satiety with a commercial flake fish food

(alcon BASICH, Alcon, Brazil). All animals used in this study were

experimentally naive, healthy and free of any signs of disease.

They were maintained according to the National Institute of

Health Guide for Care and Use of Laboratory Animals.

Apparatuses and experimental procedures
The behavioral test was performed during the same time frame

each day (between 10:00 am and 4:00 pm). All apparatuses were

filled with water adjusted to home tanks conditions and the

experimental procedures were performed in a stable surface with all

environmental distractions kept to a minimum. A total of 44 animals

obtained in five separate batches were used for independent

behavioral experiments. The forced exposures to the different

environments were performed during a 10-min period. Animals

were randomically handled from their home tanks and individually

transferred to the confinement cylinder (7.5 cm diameter612.5 cm

high) filled with 0.5 L of aquarium-treated water. Fish from both

sexes (,50:50 male:female ratio) were used for each experimental

group. For the bright confinement (white group, n = 16), fish were

placed in a white-painted cylinder, whereas the dark confinement

(black group, n = 16) was performed in a black-painted cylinder.

Another group of fish was confined in a transparent cylinder

(transparent group, n = 12), which closely resembled the home

tanks. After the forced exposure period, animals were carefully

removed from their respective confinement cylinder and placed in

the novel tank where their behavioral activity was recorded. This

apparatus consisted in a trapezoidal plastic tank (23.9 cm along the

bottom628.9 cm at the top615.1 cm high and 15.9 cm along the

diagonal side. It was 7.4 cm wide at the top, and tapered to 6.1 cm

at the bottom) (Figure 1A) filled with 1.5 L of aquarium treated

water. The dimension of the apparatus was similar to those

previously described for the zebrafish novel tank test [12,16,21–24].

A webcam (MicrosoftH LifeCam 1.1 with Auto-Focus) was placed

40 cm from the testing tank to ensure that the apparatus was within

the camera vision range and it was used to monitor the location and

swimming activity of the fish. Two yellow sheets of paper (standard

letter size: 21.59 cm627.94 cm) were placed 4.3 cm behind the

tank to ensure a uniform background for the video analysis. In order

to boost the contrast between the background and zebrafish, two 60-

watts light bulbs were placed 40 cm behind the yellow screen. The

webcam was plugged to a computer to record and analyze the

videos using appropriate automated video-tracking software.

The trapezoidal tank was virtually divided into three equally

horizontal areas (bottom, middle, and top) in order to evaluate

vertical exploratory activity. To analyze the horizontal exploratory

activity, the tank was also virtually divided into fifteen sections,

with five sections per area as demonstrated in Figure 1B. Once

the animals were placed in the novel test tank, the recording was

started. Each subject was observed individually in a single session

and the behavior was recorded over a period of 15 min. Before

and after the test, oxygen levels in water of the apparatuses were

measured and remained adequate during the experiment (8 ppm,

Labcom TestH, SC, Brazil).

Behavioral analysis
The behavioral analysis was performed in a laptop computer

using ANY-mazeH software (Stoelting CO, USA) to track the

swimming activity of the animals at a rate of 30 frames/sec. The

video-tracking data were then used to determine relevant measures

of vertical exploration across time, such as time spent per area and

Spatio-Temporal Behavior of Zebrafish
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transitions to each area. Moreover, some endpoint behaviors were

measured during the test, including distance travelled, absolute

turn angle, meandering, average speed, and time mobile. The

absolute turn angle represents the sum of all vectors angle of

movements created from one position to animal’s center point to

the next. The anti-clockwise movement was considered negative

and clockwise movement positive (2180u to 180uC). From this

measure we calculated the meandering, which is the result of the

absolute turn angle divided by the total distance travelled. In

addition to the time spent, number of transitions, and the latency to

middle and top area transitions, the vertical exploratory activity was

assessed by measuring, in each area, the distance travelled, absolute

turn angle, and meandering. The evaluation of the horizontal

exploratory activity of zebrafish was performed by determining the

time spent in each section per area and the number of transitions

between sections per area. The ratio between the number of

transitions per section and number of transitions per area was

calculated to estimate the exploratory profile of fish considering

both horizontal and vertical parameters (#1 values predominantly

characterize vertical exploration in each section, whereas .1 values

indicate the predominance of horizontal exploration in the

respective section). The distribution of the animals during the novel

tank test was also evaluated by representative tracks, occupancy

plots, and 3D reconstruction graphs. To establish a general profile

of the exploratory activity, we created representative ethograms

from each confined group by analyzing the 6-min behavioral

responses. These ethograms were analyzed more specifically by

comparing the first 3-min vs. last 3-min of test, which allowed a

detailed evaluation of the exploratory activity of zebrafish during

the intra-session habituation period [12].

3D Track reconstruction across time
The spatio-temporal analysis of zebrafish behavior in the novel

tank diving test was also performed using track reconstruction

across time as described previously [16,24]. Briefly, the videos

were analyzed using the ANY-mazeH software with the coordi-

nates of the experimental tank properly calibrated. The track data

for each fish was exported as raw data into separate spreadsheets,

providing spatial coordinates (x center and y center) across a time

scale broken down into fractions of a second. The exported traces

were analyzed based on similarity to each other by two trained

observers (inter-rater reliability .0.85), on a consensus basis. The

middle trace was selected as representative for the group, to

illustrate the pattern of exploration (first 3-min vs. last 3-min of

test). Spatio-temporal 3D reconstructions were created with

Graphis 3D graphing softwareH in which the x center (horizontal

distribution), y center (vertical distribution), and time were plotted

on the X-, Z- and Y-axis, respectively.

Statistics
Data were expressed as mean 6 standard error of the mean

(S.E.M.) and p-values were considered significant for p#0.05. All

behavioral parameters evaluated across time were analyzed by

repeated-measures analysis of variance (ANOVA). The endpoint

behavioral measures for vertical and horizontal exploration,

homebase parameters, and the exploratory profile (transitions

ratio) were analyzed by two-way ANOVA. Comparison among

means was carried out using Bonferroni’s test as post hoc. The

basic data of general locomotor activity (distance travelled, average

speed, absolute turn angle, meandering, and time mobile) and the

comparison of homebase parameters between the experimental

groups were analyzed by one-way ANOVA, followed by

Bonferroni’s test as post hoc.

Results

Vertical exploration
In the 15-min novel tank test (Figure 2), the black, white, and

transparent cylinder-confined groups showed a characteristic

pattern of duration in the different areas (bottom, middle and

top) and in transitions between these vertical areas across time. A

3615 (Color6Time) repeated-measures ANOVA was used to

analyze the duration in each of the three vertical areas. We

observed that the duration in the bottom decreased across the 15-

min test (F [14,660] = 9.18, p,0.0001) and both black and

transparent-confined groups spent significantly more time in the

bottom than the white-confined group (F [2,660] = 7.33,

p,0.005). Moreover, the time spent in the bottom area dropped

faster in the white-confined group than in the other experimental

groups (F [28,660] = 2.12, p,0.05). Although there was no

significant effects of any variable on time in the middle area, the

duration in the top increased significantly across the 15-min test (F

[14,660] = 10.23, p,0.0001). Both black and transparent-confined

groups spent significantly less time in the top than the white-

confined group (F [2,660] = 5.83, p,0.01). Finally, the time spent

in the top increased faster in the white-confined group than in the

black and transparent-confined groups (F [28,660] = 2.12,

p,0.05). Regarding the number of transitions between the three

vertical areas, the animals displayed few entries to the middle and

top areas (F [14,660] = 4.25, p,0.0001; and F [14,660] = 4.12,

p,0.0001; respectively) in the first minute when compared to

subsequent minutes of test.

Figure 1. The novel tank. (A) The apparatus consisted in a trapezoidal plastic tank with the specific dimensions described above. (B) Virtual
divisions were used for evaluation of zebrafish swimming activity in the novel tank diving test, with three vertical areas (bottom, middle, and top) and
fifteen horizontal sections (1–15), with five sections per area.
doi:10.1371/journal.pone.0019397.g001
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Horizontal exploration
Since the time spent in bottom and top areas for animals

previously exposed to dark, bright, and transparent environments

reached a plateau after 7 min, further behaviors were assessed

using the initial 6-min period. The horizontal exploratory activity

was analyzed by two-way ANOVA using the duration of time

spent and the transitions between each horizontal section

(Figure 3). In general, animals spent more time in central

sections of the bottom area (2, 3 and 4), while this preference for

the center was less evident in the middle and top areas.

Figure 2. Vertical exploration of zebrafish previously confined into dark, bright, and transparent environments. The exploratory
activity in each vertical area (bottom, middle, and top) was assessed during a 15-min trial and the time spent and number of transitions per area were
shown. * Significant difference between black/transparent and white cylinder-confined groups (repeated-measures ANOVA followed by Bonferroni’s
test as post hoc, p#0.05).
doi:10.1371/journal.pone.0019397.g002

Figure 3. Effect of the confinement in the horizontal exploratory activity of zebrafish in the open tank. * Significant difference between
black/transparent and white cylinder-confined groups. Distinct letters mean statistically significant differences within groups (two-way ANOVA
followed by Bonferroni’s test as post hoc, p#0.05).
doi:10.1371/journal.pone.0019397.g003
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Additionally, both black and transparent-confined fish spent

significantly more time in the central sections of the bottom area

than did white-confined animals, while the white-confined fish

spent significantly more time in the central sections of the top area.

The same pattern of results was observed for transitions between

sections in each area.

Representative occupancy plots across time were constructed

(Figure 4A), as well as a detailed 3D reconstruction of behavior

(Figure 4B), which illustrate the differences between the three

groups in terms of both lateral and vertical exploration (see
video S1).

Endpoint behaviors
The general basic behaviors, such as total distance travelled,

absolute turn angle, meandering, and average speed did not

significantly differ between the experimental groups (Figure 5A).

It is interesting to mention that animals did not freeze at all during

the novel tank test; they explored the apparatus during the entire

15-min trial and travelled a constant distance across time.

These endpoint behaviors were then filtered by vertical location

and analyzed using two-way ANOVA (Figure 5B). Total swim

distance, absolute turn angle, and duration in each area showed

identical patterns of results: they were significantly higher in the

bottom than in the middle or top areas. Additionally, they were

significantly higher in the bottom area for black and transparent-

confined animals, and significantly higher in the top area for

white-confined animals. Meandering and transition frequency did

not change between groups. However, latency to enter in the top

was significantly shorter in the white-confined group than in the

black and transparent-confined groups.

Homebase formation
Representative endpoint data (Figure 6A) illustrate the

differences in the swimming traces among the areas and sections

and also show that all groups spent significantly more time in the

bottom area than the middle or top. These data allowed us to

identify a classical homebase formation for the short-fin zebrafish

strain in the novel tank test (middle sections of the bottom area). In

this place, the animals travelled a greater distance, spent the most

part of the test, and also performed a considerable number of

entries. Fish confined into the white cylinder exhibited a significant

decrease in all homebase parameters as compared to the groups

forcefully exposed to the black and transparent cylinders

(Figure 6B).

The analysis of the homebase parameters across time by a 366

(Color6Time) repeated-measures ANOVA showed that the

duration and distance travelled in the homebase decreased across

the 6-min test (F [5,264] = 11.25, p,0.0001 and F [5,264] = 4.66,

p,0.001), respectively. The confinement into distinct environ-

ments also promoted significant differences in the time spent

(F [2,264] = 4.35, p,0.05) and distance travelled in the homebase

(F [2,264] = 4.90, p,0.05), which were significantly lower for the

white cylinder-confined group during the 5th and 6th minutes of

test. However, no significant differences in the number of

homebase transitions between groups (Figure 6C) were observed.

In the 15-min test, all homebase parameters remained similar to

those observed in the final of the 6-min analysis (data not shown).

Spatio-temporal patterns of behavior
The relative exploratory activity across both dimensions of the

novel tank was estimated by calculating the ratio of transitions

between horizontal sections to transitions between vertical areas

(Figure 7A). These ratios, analyzed across time (Figure S1), were

then used to create representative visual diagrams (ethograms) that

reflect frequencies and transitions between each individual

behavioral activity [24,33–35] and to characterize the overall

spatio-temporal exploratory pattern during the trial. Ethograms

for the black, white, and transparent cylinder-confined groups

were generated for the novel tank test during the first 3-min and

last 3-min of the test (Figure 7B). The diameter of each circle

corresponded to the frequency of each individual behavioral

activity, while the arrow width and direction reflected the

frequency of transitions between these behaviors. This ethological

analysis allowed us to define the differences in the main behaviors

presented by the experimental groups during the intra-session

habituation period to the open tank, such as homebase swimming,

lateral exploration, and transition swimming between bottom and

top areas (see video S1).

Discussion

The main finding of this study is that a short-period

confinement into dark and bright environments induces differ-

ences in the spatio-temporal structure of zebrafish behavior in the

open tank paradigm. Previous studies demonstrated the usefulness

of the novel tank test to evaluate the vertical exploration of fish

after exposure to several drugs [21,23,24,27]. However, since adult

zebrafish has been consolidated as an emergent vertebrate model

in behavioral neuroscience research [28–31], it becomes reason-

able to evaluate the effect promoted by ‘‘natural stimuli’’ in the

behavioral repertoire of fish subjected to the open tank paradigm.

The protocol consisted in confining the animals into a black or a

white cylinder (dark vs. bright environments) during 10 min prior

to the novel tank test. Additionally, another group of fish was

confined into a transparent cylinder (transparent environment),

which closely resembled the home tanks. Our results showed that

all groups steadily increased their vertical exploratory activity

within the first 6-min of the test, reaching a plateau after the 7th

minute. These data corroborate with previous findings which

demonstrated a rapid habituation response of zebrafish in the

novel tank test [12,23,36]. Our results support the hypothesis that

the behavioral manifestation of habituation responses to novelty in

zebrafish is different from that of rodents [12]. Instead of a

reduced locomotion when rodents become familiar with the novel

environment [37,38], zebrafish appears to do the opposite.

Furthermore, motor and posture patterns that are known to be

exhibited in the open tank trial, such as freezing and erratic

movements [12,16,18,19], were absent during our test. Studies

demonstrated that both behaviors may significantly decrease over

the habituation course to the novel tank [12,24], or even occur

with an extremely low frequency during the trial [18,19,39]. It is

likely that several factors can explain these discrepancies, including

differences in testing apparatuses (e.g. light intensity for the

tracking) and in the protocol used (e.g. isolating the fish before the

behavioral test). Thus, our data suggest that the time spent in the

top and the number of transitions to top area across time may be

better behavioral indicators of habituation response to the open

tank.

Although we observed a rapid habituation response to novel

tank test in all experimental groups, the confinement into bright

environments altered the intra-session habituation response. Such

as many teleosts, zebrafish displays a natural preference for dark

environments in opposition to brightly lit ones, named scototaxis

[29,40]. Studies have been suggested that it represents a typical

defensive pattern of species that exploits crypsis with the

substratum as a strategy for predator avoidance [31,40]. This

task has already been validated at construct level for zebrafish

[29–31] and recent pharmacological data also give a robust
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support for its predictive validity [41]. Additionally, Lau et al. [42]

demonstrated that fish that highly avoided a bright image

presented a significant activation of the medial zone of the dorsal

telencephalic region (Dm) and the dorsal nucleus of the ventral

telencephalic area (Vd), which is anatomically homolog to the

mammalian amygdala and striatum, respectively. It has been

Figure 4. Comparison of the spatio-temporal behavior of the experimental groups in the novel tank test. (A) Representative occupancy
plots of black, white, and transparent-confined groups displaying the specific patterns of time spent in each segment of the apparatus across time.
Data were analyzed using video-tracking software (ANY-mazeH, Stoelting CO, USA). (B) Representative 3D reconstructions of zebrafish swimming
activity during the first 3-min vs. last 3-min of test obtained by plotting animal traces across the time. The X-, Z- and Y-axis represent the horizontal
distribution, vertical distribution, and time, respectively.
doi:10.1371/journal.pone.0019397.g004
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shown that the scototaxis test did not present intra- or inter-session

habituation of white avoidance [29], even though the authors

could not reliably record the vertical distribution of zebrafish in

the apparatus due to technical difficulties (e.g. in this task

recordings must be made from top). Since zebrafish display a

natural preference for dark environments, it is interesting that

animals confined to the white cylinder habituate to the novel tank

more rapidly than those confined to the black and the transparent

cylinders. On the assumption that the white chamber is aversive,

the obvious prediction is that white-confined fish should habituate

less readily to the novel tank – a prediction which is inconsistent

with our data. The faster habituation of the white-confined group

is difficult to interpret, and highlights the need for a clearer

understanding of the interaction between motivational state and

vertical exploratory behavior in zebrafish. In the open tank trial,

the total distance travelled, absolute turn angle, meandering,

average speed, and time mobile did not change between the

experimental groups, which indicate that the general locomotor

activity of fish remained unaltered after the forced exposure to

distinct environments. To better understand the nature of this

effect, a more detailed evaluation of the spatio-temporal

exploratory behavior across the intra-session habituation period

was undertaken.

The sub-division of the novel tank in different sections allowed

the estimation of the exploratory profile of the dark, bright, and

transparent groups by considering the exploration of fish in both

dimensions of the apparatus. In all three groups, fish show

significantly more horizontal (lateral) exploratory activity in the

central sections of bottom, whereas the middle area was mainly

used for vertical transitions, in which animals practically did not

explore. However, the top area ratio suggests that white-confined

fish showed more lateral exploration in the upper portion of the

tank than black and transparent-confined fish. These data were

confirmed by representative track and occupancy plots, and

suggest a characteristic homebase formation in the open tank

paradigm by all three groups. The homebase is defined as a place

in the field for which the experimental animal shows a preference

across time, both in terms of occupancy and as a starting and

ending point of exploratory excursions [14]. It has been shown

that similarly to rodent behavior, zebrafish display a typical

homebase formation in novelty-based paradigms [25]. Our 6-min

observation period demonstrated that the white-confined group

differed significantly on all homebase parameters assessed. The

analysis of homebase behavior across time demonstrated that even

though the transitions to the homebase remained virtually

unaltered, fish confined into the white cylinder travelled a shorter

distance and spent less time in the homebase during the 5th and

6th minutes. These data show that animals confined into the

bright environment transit more rapidly out of homebase

behaviors than those confined into the dark and transparent

Figure 5. Basic endpoint behaviors of the experimental groups in the novel tank test during 6 min. (A) The graph shows total distance
travelled, average speed, absolute turn angle, meandering, and time mobile. Data were analyzed by one-way ANOVA followed by Bonferroni’s test as
post hoc, considering p#0.05 as significant. (B) Endpoint parameters of zebrafish behavior filtered by each vertical area (bottom, middle, and top) of
the novel tank. * Significant difference between black/transparent and white cylinder-confined groups. Distinct letters mean statistically significant
differences within groups (two-way ANOVA followed by Bonferroni’s test as post hoc, p#0.05).
doi:10.1371/journal.pone.0019397.g005
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environments. It is possible that, additionally to being a reference

point for the exploratory incursions, the homebase reflects a

behavioral state comparable to thigmotaxis, and that confinement

to the white cylinder disrupted this behavior. In this regard,

Maximino et al. [29] showed that confining animals thrice in the

white compartment prior to the scototaxis experiment does not

alter spatio-temporal measures of preference, but decrease the

frequency of burst swimming, freezing and thigmotaxis in the

white compartment, suggesting that this treatment could diminish

fear.

Our apparent inconsistency between predicted aversion to the

white, and subsequent exploratory behavior in the novel tank may

also support at dissociation between the mechanisms of black/

white preference and novel tank diving behavior [43]. For

example, the novel tank seems to be sensitive to diazepam, but

not to chlordiazepoxide, while the scototaxis test is sensitive to

other benzodiazepines as well [41]. Both behavioral paradigms

also present different sensitivities to fluoxetine [23,41] and the

light/dark tank shows a lack of sensitivity for moclobemide, a

MAO-A inhibitor [41]. These apparently conflicting data

provided by pharmacological manipulations suggest that the two

paradigms may not assess the same underlying state. Although the

current study provides a detailed account of zebrafish behavioral

repertoire in the open tank, further experimentations using

alternative methodological approaches will be required to

understand how these behaviors relate to that observed in the

black/white preference task, and the neural mechanisms involved

in each.

The spatio-temporal 3D reconstructions across the intra-session

habituation period (first 3-min vs. last 3-min of test) showed that

the white-confined fish displayed a wider distribution in the novel

tank during the first 3-min of test than black and transparent-

confined groups. These 3D reconstructions of behavior have

several important advantages over 2D traces because they provide

a more ‘‘realistic’’ representation of the fish swimming activity

including their lateral movements. A recent study provided a

Figure 6. Overall exploratory activity and homebase formation of the experimental groups in the open tank. (A) Representative track
and occupancy plots of the experimental groups obtained by video-tracking software (ANY-mazeH, Stoelting CO, USA), displaying the specific
patterns of their exploratory behavior during 6 min. (B) Zebrafish displays a classical homebase formation in the central sections of bottom area
during the 6-min trial. Basic endpoint behaviors in the homebase were compared for black, white, and transparent cylinder-confined animals.
* Significant difference between black/transparent and white cylinder-confined groups (one-way ANOVA followed by Bonferroni’s test as post hoc,
p#0.05). (C) Evaluation of behavioral parameters of zebrafish in the homebase across time. * Significant difference between black/transparent and
white cylinder-confined groups (repeated-measures ANOVA followed by Bonferroni’s test as post hoc, p#0.05).
doi:10.1371/journal.pone.0019397.g006
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Figure 7. Behavioral profile of zebrafish in the open tank after the environmental manipulations. (A) The exploratory profile of dark,
bright, and transparent-confined groups was determined by the ratio between the total transitions between sections and the number of entries in
the respective area. * Significant difference between black/transparent and white cylinder-confined groups. Distinct letters mean statistically
significant differences within groups (two-way ANOVA followed by Bonferroni’s test as post hoc, p#0.05). (B) Distinct behavior patterns displayed by
zebrafish in the novel tank task after the short-period confinement into different environments. The ethological profiles were constructed by
specifically analyzing the exploratory behaviors presented during the intra-session habituation period to the open tank. Representative ethograms
were generated based on frequencies and transitions between each individual behavioral activity. The diameter of each circle corresponds to the
frequency of each individual behavioral activity, whereas the arrow width and direction reflect the frequency of transitions between these behaviors.
doi:10.1371/journal.pone.0019397.g007
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detailed evaluation of three-dimensional neurophenotyping of

adult zebrafish behavior [44]. The authors demonstrated that the

temporal reconstructions may significantly differ after pharmaco-

logical treatments, which allowed the organization of distinct

behavioral clusters. This analysis of the swimming pattern has

already been applied to create accurate predictive models of

medaka fish movement based on high-density trajectory data sets

[45,46]. In addition to the 3D data, we addressed for the first time

a new insight of analysis provided by occupancy charts, taking into

account not only the distribution, but also the time spent by the

fish in each part of the apparatus across time. Thus, the association

of both methodologies is a powerful tool which helps to

characterize the exploratory profile of zebrafish after environ-

mental manipulations into quantitative models.

Using descriptive ethological diagrams, based on mean

frequency, duration and latency of every behavioral pattern, we

provided an overview of the spontaneous behavioral patterns

displayed by the experimental groups in the open tank. The

substantial differences detected in the first 3-min vs. last 3-min of

test reflect that the intra-session habituation response to the novel

tank involves changes in these behaviors over the course of the test

(see video S1). The similarities in the ethograms detected for

both black and transparent-confined group strongly suggest that it

truly is the confinement to white that is affecting the zebrafish

behavior away from the baseline.

Perspectives of the ethological analysis of zebrafish
behavior

In conclusion, this study provided detailed approaches to

evaluate the spatio-temporal swimming activity and homebase

formation of zebrafish during their intra-session habituation

period to the novel tank test after a forced exposure to black,

white, and transparent cylinders. Since naturalistic approaches

may have an important place in research to better understand the

biological mechanisms of the behavioral responses in vertebrates

[47], the current report supports the idea that zebrafish is

undoubtedly a potential animal model for translational research. It

must be emphasized that future studies using different protocols

could be relevant to further elucidate underlying factors that

contribute to the behavioral repertoire observed. One might access

the effect promoted by a large spectrum of drugs in the short-

period confinement and further subject the animals to the novel

tank test. However, researchers are cautioned, at this time, to

interpret these data carefully, since the exact significance of the

behaviors is not fully understood and little empirical evidence is

available to support the validity of the behavioral measures in the

open tank [28–31]. Furthermore, the current report presented a

new analysis of behavioral data by occupancy plots, a quantitative

approach for determining the fish exploratory profile, and a

detailed ethological analysis in the novel tank. These data help to

clarify the ethological network and also bring new insights

regarding the validation of spontaneous exploration models.

Consequently, the analysis of the overall structure of behavior

across time in the open tank task suggests that this paradigm can

also be a valuable tool to analyze zebrafish behavioral responses

after distinct environmental manipulations.

Supporting Information

Figure S1 Spatio-temporal analysis of the exploratory
profile of dark, bright, and transparent groups. (A) Ratio

between the total transitions per sections and the number of entries

in the respective area during each minute of the trial. * Significant

difference between black/transparent and white cylinder-confined

groups. Distinct letters mean statistically significant differences

within groups (two-way ANOVA followed by Bonferroni’s test as

post hoc, p#0.05). (B) Representative diagrams demonstrating the

transitions per minute estimated by the ratio analysis. The

proportion of exploratory activity for each area (bottom, middle,

top) and section (1–15) during the novel tank test (6 min) was

shown for animals previously confined into dark, bright, and

transparent environments.

(TIFF)

Video S1 Basic behaviors of zebrafish during the intra-
session habituation period to the open tank paradigm.
The video describes the protocol of the short-period confinement

into dark, bright, and transparent environments (10-min period

into the respective cylinder) and demonstrates the spatio-temporal

behavior of the experimental groups (dark/transparent vs. bright)

in the novel tank diving test. Representative movies of the first 3-

min vs. last 3-min for dark/transparent and bright groups were

shown (note that the exploratory profile and homebase formation

are different between the groups).

(AVI)
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