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Abstract

Hereditary spastic paraplegias (HSPs) are a group of neurological disorders characterized clinically by spasticity of lower
limbs and pathologically by degeneration of the corticospinal tract. Troyer syndrome is an autosomal recessive HSP caused
by a frameshift mutation in the spartin (SPG20) gene. Previously, we established that this mutation results in a lack of
expression of the truncated mutant spartin protein. Spartin is involved in many cellular processes and associates with
several intracellular organelles, including mitochondria. Spartin contains a conserved plant-related senescence domain at its
C-terminus. However, neither the function of this domain nor the roles of spartin in mitochondrial physiology are currently
known. In this study, we determined that the plant-related senescence domain of spartin interacts with cardiolipin but not
with two other major mitochondrial phospholipids, phosphatidylcholine and phosphatidylethanolamine. We also found
that knockdown of spartin by small interfering RNA in a human neuroblastoma cell line resulted in depolarization of the
mitochondrial membrane. In addition, depletion of spartin resulted in a significant decrease in both mitochondrial calcium
uptake and mitochondrial membrane potential in cells treated with thapsigargin. Our results suggest that impairment of
mitochondrial calcium uptake might contribute to the neurodegeneration of long corticospinal axons and the
pathophysiology of Troyer syndrome.
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Introduction

The hereditary spastic paraplegias (HSPs) are inherited

neurological disorders characterized by a common feature of

progressive spasticity in the lower limbs with degeneration of

corticospinal projections of motor neurons [1]. Troyer syndrome

(SPG20) is an autosomal recessive HSP, in which patients show

spasticity of lower limbs as well as other symptoms, including

mental retardation, dysarthria, and short stature [2]. The disease is

caused by a frameshift mutation in the spartin gene (SPG20) [3]

resulting in a lack of expression of spartin rather than expression of

a truncated protein [4], indicating that the pathogenesis of Troyer

syndrome results from a loss-of-function mechanism.

Spartin harbors two conserved domains, an MIT (microtubule

interacting and trafficking motif) domain at the N-terminus and a

plant-related senescence domain at the C-terminus [5]. Currently,

neither the function nor the binding partners of the plant-related

senescence domain are known. The following evidence suggests

that the spartin protein plays diverse roles in the biology the cell:

the presence of different structural domains within spartin [5], its

association with several intracellular organelles [6–9] and its

interaction with many binding partners [10,11]. Thus far, spartin

is known to play a role in the trafficking of the epidermal growth

factor receptor [7,8] and in the turnover of lipid droplets [12,13].

Both overexpressed and endogenous spartin have been found to

associate with endosomes [7,8], lipid droplets [8,12], and

mitochondria [6]. However, the localization of spartin in the

mitochondria is controversial; an earlier study showed that

overexpressed spartin associates with mitochondria via its C-

terminus [6], but studies by Eastman and colleagues did not

confirm those findings [12].

Mitochondria are key organelles that are critical for generating

adenosine triphosphatase (ATP) via oxidative phosphorylation;

they are also involved in regulating intracellular Ca2+ levels and

generating reactive oxygen species (ROS). Impaired mitochondrial

function is implicated in the pathogenesis of several neurodegen-

erative diseases, including Huntington’s disease [14], amyotrophic

lateral sclerosis [15], as well as HSP7 [16] and HSP13 [17].

HSP7 is caused by a mutation in the paraplegin gene encoding

the AAA (ATPases associated with diverse cellular activities)

protease located in the inner mitochondrial membrane [18].

Paraplegin protein participates in the degradation of misfolded

proteins in the mitochondrial intermembrane space and is

important for the assembly of respiratory complexes [19].

Fibroblasts derived from HSP7 patients are more prone to oxidative

stress and show impaired activity of mitochondrial complex I

compared with fibroblasts derived from unaffected individuals [19].

HSP13 is due to a mutation in the gene encoding heat-shock

protein 60 (Hsp60) [17], a chaperonin involved in the folding of

proteins that translocate from the cytoplasm to the mitochondrial

matrix. It has been shown that decreased levels of Hsp60 activity

result in increased cell death and sensitivity to oxidative stress [20].
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Currently how spartin associates with the mitochondria and its

potential role in mitochondrial functions are not known. In this

study we determined that endogenous spartin is localized to

mitochondria. Furthermore, we discovered that spartin, via its

plant-related senescence domain, associates with cardiolipin, a

major mitochondrial phospholipid. We found that cells depleted of

spartin and neurons derived from Spg20 knock-out (KO) mice have

depolarized mitochondrial membrane (DYm). In addition,

treatment of spartin-depleted cells with thapsigargin, which

increases the cytosolic calcium levels, resulted in decreased

capacity of mitochondrial calcium uptake and depolarization of

the mitochondrial membrane.

Results

Endogenous spartin localizes to mitochondria
We examined the subcellular localization of endogenous spartin

in the SK-N-SH neuroblastoma cell line by immunofluorescence

using a recently developed polyclonal antibody against spartin.

First, we examined the specificity of polyclonal antibodies against

human spartin by immunoblotting using cell lysates from SK-N-

SH cells treated with control or spartin siRNA1 and siRNA2.

Endogenous spartin was detected as a doublet: immunoblotting

revealed a major, strong band at ,85 kDa and a much weaker,

slower migrating band at ,95 kDa when cells were treated with

control siRNA (Figure 1A). Both bands represent endogenous

spartin because neither of them was detected when cells were

treated with spartin siRNA1 or siRNA2 (Figure 1A). These results

are in agreement with previously published data demonstrating

that the fast migrating band corresponds to spartin protein,

whereas the slow migrating band corresponds to a mono-

ubiquitinated species of spartin [7,8].

Then, we applied these anti-spartin antibodies in an immuno-

fluorescence assay. As shown in Figure 1B, confocal microscopy

analysis of SK-N-SH cells (treated with control siRNA) revealed

the immunofluorescence staining of spartin in the mitochondria as

demonstrated by colocalization of spartin’s signal with TOM20, a

mitochondrial marker. Spartin staining was also observed within

the cytoplasm. A similar staining pattern of endogenous spartin

was observed in primary human fibroblasts, myoblasts, astrocytes,

and HeLa cells (data not shown). Importantly, when SK-N-SH

cells were treated with spartin siRNA nearly no immunofluores-

cence staining of spartin was observed, which verifies the

specificity of the antibody and spartin’s localization to the

mitochondria (Figure 1C).

To confirm the expression of spartin in the cytoplasm and

mitochondria, we examined the subcellular localization of

endogenous spartin by biochemical assays. Specifically, we used

differential centrifugation to separate cell homogenates into the

heavy-membrane (enriched in the mitochondria), light-membrane

(enriched in endosomes), and cytosolic fractions with subsequent

analysis by immunoblotting. Most endogenous spartin localized to

the cytosol, but a portion of it partitioned to the mitochondria-

enriched heavy-membrane fraction, as evidenced by the presence

of a mitochondrial marker, OPA-1 and a lack of the cytosolic

marker PLC-c, in this fraction (Figure 1C). A small fraction of

endogenous spartin also localized to light-membrane (enriched in

endosomes) as demonstrated by the presence of EEA1 marker in

this fraction (Figure 1C).

The plant-related senescence domain of spartin binds to
cardiolipin

It has been shown by immunofluorescence that the C-terminus

of spartin is responsible for its association with the mitochondria

[6]. We confirmed these results using differential fractionation of

cell homogenates transfected with HA-spartin (1–408) or HA-

spartin (409–666). Immunoblotting revealed that the entire post-

nuclear pool of HA-spartin (409–666) that encompasses the C-

terminus of spartin was detected in the heavy-membrane fraction

containing mitochondria (Figure S1). In contrast, HA-spartin (1–

408) was detected exclusively in the cytosolic fraction (Figure S1).

Spartin protein has no mitochondrial targeting sequence and

might associate with these organelles through the interaction of its

C-terminus with proteins and/or phospholipids that reside in the

mitochondria. The C-terminus of spartin encompasses the plant-

related senescence domain that is conserved in many proteins in

various species including Arabidopsis thaliana suggesting of its

important function. We reasoned that this domain might bind to

mitochondrial phospholipids. To test this hypothesis, we expressed

and purified a maltose binding protein (MBP)-spartin (421–607)

(which encompasses the entire plant-related senescence domain)

fusion protein and MBP alone (Figure 2A and B). MBP-spartin

(421–607) and MBP alone (used as a negative control) were

applied in an in vitro protein-lipid overlay assay using nitrocellulose

membranes with pre-spotted phospholipids. Using anti-MBP

antibodies, we found that MBP-spartin (421–607) interacted with

cardiolipin but not with two other major mitochondrial phospho-

lipids, namely phosphatidylethanolamine and phosphatidylcholine

(Figure 2C). The negative control (MBP alone) interacted with

neither cardiolipin nor with phosphatidylethanolamine or phos-

phatidylcholine (Figure 2C). Overall, our results indicate that

spartin interacts with mitochondria via its plant-related senescence

domain, which binds to cardiolipin, a major phospholipid of the

mitochondrial membrane.

Spartin associates with outer mitochondrial membrane
Cardiolipin is a major phospholipid in the inner mitochondria

membrane, but it has been also found in the outer mitochondrial

membrane [21]. To determine the topology of spartin in the

mitochondria, we overexpressed spartin-YFP in SK-N-SH cells

and isolated mitochondrial fractions. Those fractions were either

treated or not treated with proteinase K followed by immuno-

blotting (Fig. 3A). Overexpressed spartin-YFP, TOM20, and

OPA1 were all detected in the mitochondrial fraction not treated

with proteinase K (Figure 3A). Enzymatic treatment eliminated

detection of spartin-YFP and TOM20, which are anchored to the

outer mitochondrial membrane. In contrast, OPA1, a resident

protein of the intermembrane space, was still detected, indicating

that the inner mitochondrial membrane was intact (Figure 3A).

Overall, our results suggest that spartin is associated with the outer

mitochondrial membrane (Figure 3B). Importantly, alpha-synu-

clein has also been reported to associate with cardiolipin and to

locate to the outer mitochondria membrane [22].

Depletion of spartin results in depolarization of the
mitochondrial membrane

Our previous studies found that in fibroblasts derived from

patients with Troyer syndrome there is a lack of expression of

truncated spartin protein, implying that the pathology of this

disease occurs via a loss-of-function mechanism [4]. Our present

findings show that spartin associates with mitochondria through its

binding to cardiolipin, a major mitochondrial phospholipid. These

results prompted us to investigate mitochondrial function after

knock down of spartin’s expression. Specifically, we investigated

the DYm and ATP production in cells depleted of spartin. The

mitochondrial membrane potential was monitored in live cells

using a fluorescent probe, tetramethylrhodamine methyl ester

(TMRM), as described in Materials and Methods.

Spartin Regulates Mitochondrial Ca2+ Homeostasis
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SK-N-SH cells treated with control or spartin siRNA were

analyzed by an observer who was ‘blind’ to the experimental

conditions. We found that the mitochondrial membrane was

depolarized in cells treated with spartin siRNA1 compared with

control siRNA-treated cells (Figure 4A). Quantitative analysis from

three independent experiments revealed that depletion of spartin

with siRNA1 resulted in ,25% lower average pixel fluorescence

intensity of TMRM compared with cells expressing physiological

levels of spartin (15463.9 vs. 11462.9, control vs. spartin siRNA1-

treated cells, respectively, p,0.01; Figure 4B). Similar results were

found when cells were treated with spartin siRNA2 (15463.9 vs.

10863.9, control vs. spartin siRNA2-treated cells, respectively,

p,0.01; Figure 4B). Importantly, all cells treated with carbonyl

cyanide 4-(trifluoromethoxy)-phenylhydrazone (FCCP), a mito-

Figure 1. Endogenous spartin associates with mitochondria. (A) Detection of endogenous spartin protein in SK-N-SH cells treated with
control siRNA, spartin siRNA1, and spartin siRNA2. Cell lysates were immunoblotted with guinea pig polyclonal anti-spartin antibodies. The arrow
identifies an ,85 kD spartin protein. Even loading was confirmed by immunoblotting with anti-tubulin antibodies. Sizes of protein standards are
indicated to the left in kDa. (B) Localization of endogenous spartin to mitochondria by immunofluorescence. SK-N-SH cells were treated with control
(upper panels) or spartin siRNA (lower panels), fixed, and immunostained with anti-spartin (red) and anti-TOM20 (green) antibodies. Merged images
are shown in the far right panels. The boxed areas are enlarged and placed below. Scale bar = 10 mm. (C) Cells were fractionated using differential
centrifugation. Mitochondria-enriched heavy-membrane fraction (HM), light-membrane fraction (LM), and cytosolic fraction (Cyt) were prepared as
described in Materials and Methods. 30 mg of protein from each fraction was loaded per lane and analyzed by immunoblotting using anti-spartin,
anti-OPA1 (mitochondrial marker), anti-PLC-c (cytoplasmic marker), or anti-EEA1 (endosomal marker) antibodies.
doi:10.1371/journal.pone.0019290.g001
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chondrial uncoupler, showed very low fluorescence intensity of

TMRM, reflecting a collapsed DYm (Figure 4B). We also

examined the mitochondrial membrane potential in primary

cortical neurons isolated from the wild type (WT) and Spg20

knockout mice. The lack of spartin’s expression in these mutant

mice was confirmed by immunoblotting homogenate tissue from

the brain, heart, and liver of these mice (Figure S2; Text S1; data

not shown). We determined that the mitochondria membrane in

cortical neurons from mutant mice was depolarized compared to

WT cortical neurons. Average TMRM fluorescence intensity in

cortical neurons from Spg20 KO mice was ,24% lower than that

of neurons derived from WT mice (85.8561.82 vs. 65.7361.68,

WT vs. mutant neurons, p,0.01) (Figure S5A; Text S1).

We also examined whether spartin depletion alters the levels of

ATP production. We found that spartin siRNA-treated SK-N-SH

cells showed lower levels of ATP production compared with

control siRNA-treated cells (Figure S4). However, these changes

were not statistically significant. Overall, our results suggest that

spartin plays a role in maintaining the mitochondrial membrane

potential.

High intracellular calcium levels reduce the
mitochondrial uptake of calcium and depolarize
mitochondrial membrane in spartin-depleted cells

Mitochondria and the endoplasmic reticulum (ER) play a

critical role in intracellular Ca2+ homeostasis (reviewed in [23]).

Evidence indicates that the loss of mitochondrial Ca2+ buffering

Figure 2. A plant-related senescence domain of spartin binds to
cardiolipin. (A) Schematic diagrams of the full-length spartin with the
MIT and the plant-related senescence domains and the MBP-spartin
(421–607) construct encompassing the plant-related senescence domain.
Numbers represent the amino acid residues, showing the boundaries of
indicated domains. (B) Coomassie blue staining of affinity-purified MBP
and MBP-spartin (421–607) separated on a polyacrylamide gel. The
asterisk (*) indicates a degradation product of MBP-spartin (421–607).
Sizes of protein standards are indicated to the left in kDa. (C) Detection of
MBP-spartin (421–607) binding to cardiolipin but not to phosphatidyl-
ethanolamine or phosphatidylcholine in a lipid-protein overlay assay.
MBP alone (negative control) did not associate with cardiolipin,
phosphatidylethanolamine, or phosphatidylcholine.
doi:10.1371/journal.pone.0019290.g002

Figure 3. The topology of spartin’s association with the
mitochondrial membrane. (A) SK-N-SH cells were transfected with
C-terminus tagged spartin-YFP, and spartin and mitochondrial fractions
were incubated with or without proteinase K. The total cell lysates (TCL)
were immunoblotted for YFP, and mitochondrial fractions were
immunoblotted for YFP, TOM20 (in the outer mitochondrial membrane)
and OPA-1 (in the inner mitochondrial membrane). (B) A proposed
model of spartin’s association with the outer mitochondrial membrane
via its senescence domain (SD). OMM and IMM, the outer and inner
mitochondrial membrane, respectively.
doi:10.1371/journal.pone.0019290.g003
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capacity might be an important factor in the pathophysiology of

Huntington’s disease, a neurodegenerative disorder that affects

neurons in the striatum [14,24]. Thus, to determine whether

spartin has a role in the homeostasis of mitochondrial Ca2+, we

induced high intracellular Ca2+ levels by treating cells with

thapsigargin. Thapsigargin increases intracellular Ca2+ levels by

depleting the ER Ca2+ stores and restraining the flux of Ca2+ to

the ER by inhibiting sarcoplasmic/endoplasmic reticular Ca2+

ATPase [25]. Thapsigargin treatment produces experimental

conditions by which it is possible to selectively investigate

mitochondrial Ca2+ uptake without interference from the ER.

We measured the intracellular and mitochondrial Ca2+ levels using

fluorescent probes, Fluo3- AM and Rhod-2-AM, respectively, in

cells treated with thapsigargin (1 mM). The experiment was

conducted for 1200 seconds, and from 600 to 1200 sec, we found

significantly higher levels of Fluo3 intensity in spartin siRNA1-

treated cells than in control siRNA-treated cells (Figure 5A). At the

600-sec time point spartin-depleted cells and control cells showed

average Fluo3 fluorescence pixel intensity of 79.965.8 and

61.264.5 (p,0.05; Figure 5B) average fluorescence pixel intensity

of Fluo3, respectively. These results indicate that spartin depletion

results in high levels of intracellular Ca2+. In contrast, the Ca2+

levels in mitochondria determined by using Rhod-2 were

significantly lower in spartin-depleted cells compared with control

cells after stimulation with thapsigargin (Figure 6A). At 600 sec, we

detected about 30% lower Rhod-2 intensity in spartin siRNA1-

treated cells compared with cells expressing physiological levels of

spartin (29.962.0 vs. 19.663.9 normalized Rhod-2 ratios,

p,0.001; Figure 6B). Similar results were obtained in cells treated

with spartin siRNA2 (Figure S5A and S5B). In these experiments,

we acquired images for a total duration of 600 sec because, in

preliminary studies, we observed bleaching of Rhod-2 fluorescence

intensity after 600 sec of taking images. Thus, in order not to have

confounding results, we restricted the imaging time to 600 sec.

Mitochondrial Ca2+ uptake during thapsigargin exposure was

ensured using Ruthenium red, a specific inhibitor of mitochondrial

uniporter [26]. Cells were incubated with 10 mM of Ruthenium

red for 1 hr, and Rhod-2 fluorescence was measured before and

after thapsigargin treatment (Text S1). We observed a significant

decrease in Rhod-2 fluorescence intensity in the presence of

Ruthenium red in both control and spartin siRNA-treated cells

compared with thapsigargin alone (Figure S5A). This strongly

suggests that the Ca2+ uptake in both treatment groups occurs via

the mitochondrial uniporter.

Because lower calcium levels in mitochondria are correlated

with depolarization of the mitochondrial membrane [27], we

measured DYm in cells depleted of spartin after thapsigargin

(1 mM) treatment by using TMRM. As shown in Fig. 6C,

thapsigargin treatment led to higher depolarization of mitochon-

drial membrane in cells depleted of spartin compared with cells

expressing endogenous spartin. Data from four independent

experiments revealed that cells with knocked-down spartin had

four-fold lower TMRM fluorescence intensity than cells expressing

physiological levels of spartin (Figure 6D). Specifically, quantitative

analysis at 600 sec showed that TMRM average fluorescence

intensity was 215.263.3 and 26062.0 (normalized TMRM

ratios, p,0.001; Figure 6D) in control siRNA and spartin

siRNA1-treated cells, respectively. The TMRM average fluores-

cence intensity was also significantly lower when cells were treated

with spartin siRNA2 compared to cells treated with control siRNA

(Figure S5C and D).

To confirm these findings in another cellular model (i.e., lack of

spartin’s expression) of Troyer syndrome, we used neurons derived

from Spg20 KO mice. Thapsigargin treatment resulted in a higher

depolarization of mitochondrial membrane in primary cortical

neurons derived from Spg20 KO mice compared to neurons

obtained from WT mice. The quantitative analysis revealed 1.8-

fold lower TMRM fluorescence intensity in mutant neurons than

in WT neurons. At 1200 sec, the average TMRM fluorescence

intensity was 230.962.6 and 256.863.5 (p,0.001; Figure S3C)

in neurons derived from the WT and Spg20 KO mice, respectively.

Together, our data indicate that spartin plays an important role in

maintaining mitochondrial Ca2+ buffering capacity and mito-

chondrial membrane potential.

Discussion

In this study, we identified the role of the Troyer syndrome

protein spartin in mitochondrial functions. We demonstrated the

binding of the conserved plant-related senescence domain of

spartin to cardiolipin, a mitochondrial phospholipid; this might be

a major means by which spartin associates with the mitochondria.

Human neuroblastoma cells depleted of spartin and cortical

neurons obtained from Spg20 KO mice showed depolarized

mitochondrial membrane. In addition, knockdown of spartin

Figure 4. Spartin depletion causes depolarization of mitochon-
drial membrane potential. (A) Representative images showing
TMRM fluorescence in SK-N-SH cells treated with control (left panel) or
spartin siRNA (right panel). The pseudocolor bar represents an intensity
scale, with black as minimum and bright yellow as maximum intensity.
(B) The graph shows the average pixel fluorescence intensity of TMRM
in cells treated with control or spartin siRNA. Cells were either treated or
not treated with FCCP as indicated. The data represent mean 6 S.E.M in
150 cells for each condition from three independent experiments
(*p.0.01).
doi:10.1371/journal.pone.0019290.g004
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reduced mitochondrial Ca2+ influx upon thapsigargin stimulation.

Our findings suggest that spartin is an important player in the

physiological function of mitochondria and that lack of spartin’s

expression in patients with Troyer syndrome might cause impaired

mitochondrial calcium handling, which could contribute to the

pathophysiology of the disease.

The subcellular localization of spartin in mitochondria has been

controversial. Two studies by Byrne’s laboratory have shown, by

immunofluorescence and immunoblotting, that overexpressed and

endogenous spartin is present in the mitochondria [6,11].

However, a study by Eastman and colleagues did not replicate

those findings [12]. By using both immunofluorescence and

differential centrifugation of cells expressing endogenous spartin,

we found that spartin localized to cytoplasm and mitochondria.

Furthermore, using a biochemical assay we showed that the C-

terminus of spartin is responsible for its association with

mitochondria. These findings agree with an earlier immunofluo-

rescence study demonstrating that the C-terminus of overex-

pressed spartin colocalizes with mitochondria [6].

Proteins that are not permanently located in the mitochondria

due to the lack of a mitochondrial targeting signal associate with

the mitochondria by two major, non-mutually exclusive mecha-

nisms: 1) they bind to the proteins that reside in the mitochondria

[28] and/or 2) they bind to phospholipids enriched in the

mitochondrial membranes [22,29]. We found that spartin,

through its plant-related senescence domain, binds to cardiolipin,

a phospholipid that is present mostly in the inner [30], and to a

lesser degree in the outer mitochondrial membrane [21]. Our

experiments examining the topology of spartin revealed that it

associates with the outer mitochondria membrane. This finding

together with the presence of a large pool of spartin in the

cytoplasm [7,8], suggests that spartin might transiently bind to

cardiolipin and/or protein(s) located on the outer mitochondrial

membrane. This would also be in agreement with our previous

findings showing that spartin is a highly mobile protein [7].

Spartin is a multifunctional protein [11] and localizes to many

subcellular compartments [6–9]. The localization of spartin to

some specific organelles is transient and becomes evident after cells

are treated with compounds that facilitate a particular physiolog-

ical change. For example, treatment of cells with epidermal growth

factor, which induces synchronized endocytosis in serum-starved

cells, facilitates distribution of spartin to the endosomes [7,8].

When cells are treated with oleic acid, it causes the formation of

lipid droplets and causes spartin to relocate from the cytoplasm to

those lipid droplets [8,12]. In cells grown in regular medium with

serum, endogenous spartin has been reported to localize to trans-

Golgi [9], midbodies during cell division [9,31], and to

mitochondria (present studies). Recently, it was reported that

spartin affects lipid droplet turnover [12,13], and in the present

study we show that spartin also regulates calcium uptake to

mitochondria. Thus, spartin’s localization to the lipid droplets and

mitochondria has biological functions and further supports the

multifaceted role of spartin in the biology of the cell.

In addition to spartin, other proteins were originally found to be

mostly present in the cytoplasm and then were also located to lipid

droplets as well as mitochondria. For example, similar to spartin,

wild-type and mutant A53T alpha-synuclein (which causes a

dominant- negative form of Parkinson’s disease), and protein

kinase C (PKC) d re-distribute from the cytoplasm to the lipid

droplets after cells are treated with oleic acid [32,33]. Whereas

PKC d translocates from the cytoplasm to the mitochondria after

cells are treated with 12-O-tetradecanoylphorbol-13-acetate [34], a

pool of alpha-synculein associates with mitochondria at steady

state [35,36]. Similar to spartin, alpha-synuclein binds to

cardiolipin and is associated with the outer mitochondrial

membrane [22].

Figure 5. Thapsigargin treatment induced high levels of intracellular calcium measured by Fluo3-AM. (A) Fluorescence changes of
Fluo3 are shown as DF and reflect the cytosolic Ca2+ levels. Spartin (white circles) and control (black circles) siRNA-treated cells were incubated with
Fluo3-AM and stimulated (indicated by the arrow) with 1 mM of thapsigargin. An asterisk (*) indicates a significant difference in cytosolic Ca2+ levels
between spartin and control siRNA-treated cells at the indicated time points. (B) The graph shows quantification of relative fluorescence changes of
Fluo3 signifying cytosolic Ca2+ levels. Analysis was performed in cells treated with control (black bars) or spartin (gray bars) siRNA at baseline (before
stimulation with thapsigargin) or at 600 sec after the collection of the first image. The data represent mean 6 S.E.M in 70 cells from two independent
experiments (*p.0.05).
doi:10.1371/journal.pone.0019290.g005
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It has been reported that the C-terminus of spartin is responsible

for its association with lipid droplets in the presence of oleic acid

[12] and with the mitochondria at steady state [6]. Spartin

associates with lipid droplets via binding to the TIP-47 protein

[12], a structural protein in lipid droplets [37]. However, the

amino acid region that is responsible for spartin’s binding to the

TIP-47 protein remains to be determined. In the present study, we

determined that spartin through its plant-related senescence

domain (amino acids 423–607) binds to cardiolipin, suggesting

that this might be the means by which spartin associates with the

mitochondria.

An important finding of our study is that acute depletion of

spartin by siRNA significantly decreased mitochondrial Ca2+

uptake capacity. It is well known that mitochondrial Ca2+

buffering is controlled mainly by mitochondrial membrane

potential, which provides the driving force for Ca2+ to enter the

Figure 6. Increased intracellular Ca2+ levels result in mitochondrial dysfunction in SK-N-SH cells depleted of spartin. (A) Fluorescence
changes of Rhod-2 intensities are shown as DF and signify the mitochondrial Ca2+ levels. Control (black circles) and spartin (white circles) siRNA-
treated cells were incubated with Rhod-2-AM and stimulated (indicated by the arrow) with 1 mM of thapsigargin. Error bars represent S.E.M.
(**p,0.001). (B) The graph shows quantification of relative fluorescence changes of Rhod-2 signifying mitochondrial Ca2+ levels. Analysis was
performed in cells treated with control (black bars) or spartin (gray bars) siRNA at baseline (before stimulation with thapsigargin) or at 600 sec after
the start of the experiment. **p,0.001. The data represent mean6 S.E.M in 80 cells from three different experiments. (C) Fluorescence changes of
TMRM intensities are shown as DF and determine the mitochondrial membrane potential. Black and white circles as in (A). Cells were stimulated
(indicated by the arrow) with 1 mM of thapsigargin. **p,0.001. (D) The graph shows quantification of relative fluorescence changes of TMRM
signifying the levels of mitochondrial membrane potential. Analysis was done in cells treated with control (black bars) or spartin (gray bars) siRNA at
baseline (before stimulation with thapsigargin) and at 600 sec after taking the first image. The data represent mean 6 S.E.M in 100 cells from four
independent experiments (**p,0.001).
doi:10.1371/journal.pone.0019290.g006
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matrix via the Ca2+ uniporter (reviewed in [38]). In pathological

conditions, the efflux of Ca2+ from the mitochondrion occurs via

the mitochondrial permeability transition pore (MPTP), which is

opened by several factors, including depolarized mitochondrial

membrane potential, high levels of ROS in mitochondria, and/or

high levels of Ca2+ in the matrix [39]. Thus, two possible scenarios

could account for poor mitochondrial Ca2+ handling in cells

depleted of spartin. First, the lack of spartin’s expression might

lead to diminished Ca2+ uptake through the uniporter because of

the depolarized mitochondrial membrane potential. Alternatively,

a rapid influx of calcium might open the MPTP thereby

permitting the release of Ca2+ to the cytosol. The latter mechanism

has been reported to be responsible for the low uptake of Ca2+ by

mitochondria in striatal neurons derived from a murine model of

Huntington’s disease [40]. Treatment with MPTP inhibitors

significantly improved mitochondrial Ca2+ uptake in mutant

huntingtin-expressing striatal neurons [40]. We are currently

investigating molecular mechanisms by which spartin might

regulate Ca2+ uptake to the mitochondria.

In summary, we demonstrate the localization of spartin to

mitochondria and the functional role of spartin in maintaining

mitochondrial Ca2+ buffering capacity and mitochondrial mem-

brane potential. Spartin is also involved in trafficking of cargo

receptors [7,8] and in the turnover of lipid droplets [12,13]. It is

reasonable to suggest that several cellular dysfunctions due to lack

of spartin’s expression contribute to a complex constellation of

phenotypic symptoms present in patients with Troyer syndrome.

We have just begun to determine specific functions of spartin at

the cellular level, and the future experiments will parse out the

different aspects of spartin’s biological role, including its role in

mitochondrial function, on the integrity of the corticospinal axons.

Materials and Methods

Cell Culture and Transfection
SK-N-SH cells were maintained in Minimal Essential Medium

(MEM) (Mediatech, Inc., Manassas, VA) supplemented with 10%

fetal bovine serum (Gemini BioProducts, West Sacramento, CA)

and essential amino acids (Invitrogen, Carlsbad, CA). The

transfections with DNA plasmids and siRNA were performed

using Lipofectamine and Lipofectamine RNAiMAX (Invitrogen),

respectively, according to the manufacturer’s instructions. The

hemagglutinin (HA)-tagged full-length spartin, HA-spartin 1–408,

and spartin-yellow fluorescence protein (YFP) in YFP-N1 were

described previously [7]. All functional experiments were per-

formed using control and spartin siRNA1 and siRNA2, the

sequences of which we described previously [7]. To generate the

pGW1-HA-tagged human spartin 409–666 construct, we used

PCR, and the amplified DNA was cloned in-frame to an EcoRI site

into the pGW1-HA vector.

Antibodies and Reagents
To generate polyclonal antibodies against human spartin, we

subcloned human spartin (108–367) into a pGEX-6p-1 vector and

expressed the glutathione S-transferase (GST) fusion protein in

BL21 E. coli bacteria as described previously [10]. The protein was

purified, digested with PreScission Protease (GE Healthcare,

Waukesha, WI), eluted, and injected into guinea pigs to produce

polyclonal antisera (Veritas Labs, Rockville, MD). We purified the

anti-spartin IgG fraction using protein A-Sepharose (Sigma-

Aldrich, St. Louis, MO). The following primary antibodies were

used: mouse monoclonal anti-optic atrophy 1 (OPA1; BD

Biosciences, San Jose, CA), mouse anti-early endosome antigen

1 (EEA1; BD Biosciences), anti-phospholipase C-c (PLC- c;

Upstate Biotechnology, Lake Placid, NY), rabbit polyclonal anti-

HA-epitope (Abcam, Cambridge, MA), mouse monoclonal anti-

translocase of the outer membrane 20 (TOM20; BD Biosciences),

mouse monoclonal anti-b-tubulin (clone 6G7) (Developmental

Studies Hybridoma Bank, University of Iowa, IA), mouse anti-

YFP (Covance, Princeton, NJ) and mouse anti-maltose binding

protein (MBP) (New England BioLabs, Ipswich, MA). The anti-

rabbit, anti-mouse, or anti-guinea pig antibodies conjugated to

horseradish peroxidase (HRP) were from Thermo Fischer

Scientific (Waltham, MA). The secondary antibodies used for

immunofluorescence included anti-mouse, anti-rabbit, or anti-

guinea pig conjugated to Alexa Fluor 488 or 555 (Invitrogen).

Thapsigargin was purchased from Enzo Life Sciences (Plymouth

Meeting, PA) and FCCP and proteinase K were obtained from

Sigma-Aldrich.

Subcellular Fractionation and Protease Digest
To detect endogenous spartin in different subcellular fractions,

cells were washed with ice-cold phosphate-buffered saline (PBS;

pH 7.4) containing 1 mM EDTA, harvested, and resuspended in

buffer A (210 mM mannitol, 70 mM sucrose, 1 mM EDTA,

10 mM HEPES, pH 7.5 with protease inhibitors) then disrupted

using a Dounce homogenizer (30 strokes). The homogenate was

centrifuged at 9006 g for 5 min, and the supernatant was

recentrifuged at 9006 g for 5 min to remove the unbroken cells

and nuclei. The post-nuclear fraction was centrifuged at 10,0006g

for 10 min, yielding a heavy-membrane fraction (HM) and

supernatant that was subsequently centrifuged at 100,0006 g,

generating light-membrane (LM) and cytosolic fractions. The

protein concentrations were measured by bicinchoninic acid

protein assay (Thermo Fisher Scientific), and 30 mg of total

protein from each fraction was resolved on 8% SDS-PAGE gel.

The presence of spartin, OPA1 (a mitochondrial marker), and

phospholipase C-c (a cytosolic marker) was analyzed by immuno-

blotting. To determine the localization of spartin in the

mitochondrial membranes, SK-N-SH cells were overexpressed

with spartin-YFP vector. The isolated mitochondrial fractions

were either treated or not treated with proteinase K (50 mg/ml) on

ice for 30 min, and the reaction was stopped by adding 5 mM of

phenylmethylsulfonyl fluoride (PMSF) as described previously

[41]. Equal amount of proteins (30 mg) from the mitochondrial

fraction treated with or without the enzyme were resolved on

SDS-PAGE gradient gel (Invitrogen). The presence of overex-

pressed spartin-YFP, OPA1 (localized in the mitochondrial

intermembrane space), and TOM20 (localized in the outer

mitochondrial membrane) was analyzed by immunoblotting.

Lipid-Protein Overlay Assay
Spartin construct 421–607 was cloned into a pMal-5 vector,

using BamHI and EcoRI restriction sites at the 59 and 39- ends,

respectively. The MBP–spartin 421–607 or MBP alone was

expressed in E. coli BL21 cells, incubated with amylase resin (New

England BioLabs) overnight at 4uC while rocking, and then eluted

according to the manufacturer’s instructions. The nitrocellulose

membrane with spotted lipids, including cardiolipin and a solvent

blank control, were purchased from Echelon Biosciences (Salt

Lake City, UT). The membrane was wetted in molecular biology

grade water, then equilibrated with Tris-buffered saline Tween-20

(TBST) for 5 min and subsequently incubated with blocking

solution as described previously [42]. Then the membrane was

incubated with 2 mg/ml of MBP-spartin 421–607 or MBP in

TBST overnight at 4uC. The following day the membrane was

washed in TBST, incubated with primary anti-MBP antibody for

1 hr, washed, and incubated with anti-mouse antibody conjugated
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with HRP. After extensive washes, the membrane was incubated

with enhanced chemiluminescence (Thermo Fisher Scientific) and

exposed to film.

Immunofluorescence
SK-N-SH cells were grown on glass cover slips, fixed with 4%

paraformaldehyde for 25 min, and processed as described

previously [10]. Cover slips were mounted with ProLong Antifade

reagent (Invitrogen), and images were acquired using a Zeiss

LSM-510 confocal microscope with a 636 1.4 NA Plan

Apochromat oil immersion objective at 102461024 resolution.

The images were processed with Adobe Photoshop 7.0 software

(Adobe, San Jose, CA).

Measurement of Mitochondrial Membrane Potential in
Live Cells

Mitochondrial membrane potential was measured by the

potentiometric fluorescent probe, tetramethylrhodamine methyl

ester (TMRM; Invitrogen), which accumulates in the mitochon-

drial inner and outer membrane based on DYm and can be

detected using live cell imaging [43–45]. Cells treated with control

or spartin siRNA for 48 hrs were incubated with TMRM (50 nM)

in Tyrode’s buffer (TB) (145 mM NaCl, 5 mM KCl, 10 mM

glucose, 1.5 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, pH 7.4)

for 30 min at room temperature. The same concentration of

TMRM was present throughout the experiment. The culture

dishes with a glass bottom (MatTek Corporation, Ashland, MA)

were placed over the mounting chamber, and a field containing

15–20 cells was selected. Fluorescence imaging was performed

using confocal microscopy (LSM 510, Carl Zeiss MicroImaging

Inc, Thornwood, NY). The observer who acquired the images was

‘blind’ to the experimental conditions. Images from randomly

selected fields were collected by using a 406 water immersion

objective at 514/570 nm excitation/emission with an argon laser

at 5% transmission and 2566256 resolution. Images were

acquired with identical instrument settings across all samples to

ensure the comparability between experimental groups. The

fluorescence images were collected for 1 sec at an interval of

59 sec and axial resolution of 3.0 mm, to increase the optical

thickness, and a pixel depth of 12 bits. About 25–30 mitochondrial

structures were chosen as regions of interest (ROIs) in each cell

and pixel intensity of TMRM fluorescence in these regions was

averaged after background subtraction. The decrease in average

pixel intensity of TMRM fluorescence in mitochondrial regions of

interest (ROIs) was interpreted to signify the depolarization of the

mitochondrial membrane potential. Mitochondrial localization of

TMRM was confirmed by using a protonophore FCCP, which

eliminates the TMRM fluorescence from mitochondria by

collapsing the mitochondrial membrane potential. In our time

series experiment, after subtracting the background fluorescence,

the changes in TMRM fluorescence intensity were calculated

using the formula DF = F2F0/F06100, where F0 is the initial

fluorescence and F is the fluorescence intensity at any time point

[46,47].

Intracellular and mitochondrial Ca2+ measurements
Intracellular and mitochondrial Ca2+ were measured with the

Ca2+-sensitive fluorescent probes Fluo3- acetoxymethyl (AM) ester

and Rhod-2 AM (Invitrogen) , respectively, as described previously

with minor modifications [48–50]. Briefly, SK-N-SH cells grown

in dishes with a glass bottom (MatTek Corporation) were washed 3

times with TB and incubated with Fluo-3AM (5 mM) containing

0.02% pluronic acid in TB at 37uC for 30 min [50,51]. Then cells

were washed 4 times with TB and incubated in the dark for

45 min to complete de-esterification of AM ester by intracellular

esterases to ensure the binding of the probe to free intracellular

Ca2+ [52]. To measure the mitochondrial Ca2+, Rhod-2 AM was

reduced to dihydrorhod-2 by adding a small amount of sodium

borohydrite (NaBH4, a stock of 1 mg/ml was prepared in

methanol) which is known to increase the mitochondrial loading

of the probe [49,53]. Cells were incubated with 5 mM of reduced

Rhod-2 AM containing 0.02% pluronic acid for 60 min in TB

then washed 4 times with TB and incubated in MEM for another

6 hrs. We determined the 6-hr incubation time for SK-N-SH cells

empirically, because during that time the Rhod-2 dye was present

predominantly in the mitochondria, as indicated by its colocaliza-

tion with MitoTracker Green FM (100 nM). A field containing a

minimum of 15–20 cells was selected for the experiments. The

images were acquired using 488/515 nm and 561/580 nm,

excitation/emission for Fluo-3 and Rhod-2, respectively, with

the laser power and resolution as described for mitochondrial

membrane potential. The fluorescence images were collected for

1 sec at an interval of 59 sec or 29 sec to measure the cytosolic

and mitochondrial Ca2+ levels at an axial resolution of 3 mm and a

pixel depth of 12 bits. The change in fluorescence intensity (DF)

was calculated similarly to that for TMRM.

Statistical analysis
Data analysis was carried out using Sigma plot software (Systat

Software Inc, Chicago, IL). The data were represented as mean 6

SEM, calculated from 3–5 experiments. To calculate statistical

significance, we used Student’s t-test, and p#0.05 was considered

significant.

Detection of ATP
ATP levels were measured using an ATPLite kit (Perkin Elmer)

according to the manufacture’s instructions. The kit contains

luciferin and luciferase reagents to detect ATP by biolumines-

cence. Luminescence was measured in a Bio-Tek luminometer.

[54]

Supporting Information

Figure S1 The association of spartin with mitochondria
using fractionation. (A) Schematic diagrams of HA-tagged full-

length spartin and deletion constructs encompassing microtubule

interacting and trafficking (MIT) and/or plant-related senescence

domain studied in a mitochondrial fraction. Numbers represent

the amino acid residues, showing the boundaries of MIT and

plant-related senescence domain. (B) SK-N-SH cells were

transfected with indicated constructs of spartin, and the post-

nuclear total homogenates (T) were fractionated into soluble (S)

and mitochondria-enriched heavy-membrane fractions (HM) and

immunoblotted with anti-HA antibodies. Sizes of protein stan-

dards are indicated to the left in kDa.

(TIF)

Figure S2 Analysis of expression of spartin in brain
tissue from WT and Spg20 KO mice. Brain tissues from wild

type (WT) and Spg20 KO mice were homogenized and

immunoblotted with anti-spartin (upper panel) and b- tubulin

antibodies (lower panel).

(TIF)

Figure S3 Depolarization of mitochondrial membrane
potential in cultured primary cortical neurons derived
from Spg20 KO mice. (A) Average pixel fluorescence intensity

of TMRM from randomly selected mitochondrial regions in WT
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and Spg20 KO primary cortical neurons. Neurons were treated or

not treated with the mitochondrial uncoupler, FCCP. (B) Changes

in TMRM fluorescence intensity before and after treatment with

1 mM thapsigargin (indicated by arrow) in WT (black circle) and

Spg20 mutant (white circle) neurons. (C) Bar graphs showing the

relative fluorescence changes of TMRM representing the levels of

mitochondrial membrane potential. Analysis was carried out in

WT (black bars) or Spg20 mutant (gray bars) neurons at baseline

(before stimulation with thapsigargin) and at 1200 sec after taking

the first image. The data represent mean 6 S.E.M in 75 neurons

from three independent experiments (**p,0.001).

(TIF)

Figure S4 The levels of ATP in SK-N-SH cells treated
with control or spartin siRNA. Cells were treated with siRNA

for 48 hrs and ATP levels were measured using ATPlite

luminescence assay kit (PerkinElmer) according to the manufac-

turer’s protocol. Data represent mean 6 SEM luminescence in

triplicate treatment groups.

(TIF)

Figure S5 High intracellular Ca2+ levels cause mito-
chondrial dysfunction in spartin depleted SK-N-SH cells.
(A) Changes in Rhod-2 fluorescence intensities (DF) upon 1 mM

thapsigargin exposure in control siRNA (black circle) and spartin

(white circle) siRNA2-treated cells. Fluorescence changes of Rhod-

2 intensities were also measured in siRNA treated cells in the

presence of mitochondrial Ca2+ uniporter blocker, Ruthenium

red, prior to their stimulation with thapsigargin. Control siRNA

(black triangles) and spartin siRNA (white triangles) depict changes

in Rhod-2 fluorescence intensity upon thapsigargin exposure in

cells treated with Ruthenium red. (B) The bar graph shows

quantification of relative changes in Rhod-2 fluorescence intensity

indicating the mitochondrial Ca2+ levels. Analysis was performed

at baseline (before thapsigargin treatment), at 600 sec after the

start of the experiment in control (black bars) and spartin siRNA2

(grey bars)-treated cells. Treatment groups are indicated on the

X-axis. The data represent mean6 S.E.M in 80 cells from two

different experiments (**p,0.001). (C) Changes in TMRM

fluorescence intensity (DF) upon 1 mM thapsigargin treatment

(indicated by the arrow) in control (black circles) and spartin

siRNA2 (white circles)-treated cells. (D) Bar graph representing the

quantification of relative fluorescence changes of TMRM (DF) at

baseline (before thapsigargin treatment) and at 600 sec after taking

the first image in control (black bars) and spartin siRNA2 (grey

bars) treated cells. The data represent mean 6S.E.M in 100 cells

from three independent experiments (**p,0.001).

(TIF)

Text S1

(DOC)
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