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Abstract

Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions
such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and
therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous
System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role
of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE
expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt) are smaller at birth, display growth retardation and
early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD) 15 and 100% are dead by PD 29.
RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most
neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant
delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in
the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in
a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice
lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model
to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in
the normal development and suggesting the possible involvement of this protein in neurological disorders.
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Introduction

Mammalian Rho GTPases comprise a family of intracellular

signaling molecules which, by interacting with target proteins,

control a variety of cellular functions such as cell adhesion, cell

cycle progression, cell migration, cell morphogenesis, gene

expression and actin cytoskeleton dynamics [1,2,3]. Rnd GTP-

binding proteins compose a subgroup of the Rho GTPase family,

with unique properties. They have been found only in vertebrates

and, while most Rho GTPases switch between an active GTP-

bound form and an inactive GDP-bound form, Rnd proteins are

always bound to GTP, which suggests alternative regulation

mechanisms such as gene expression regulation, posttranslational

modifications and/or protein interactions [4,5,6].

RhoE/Rnd3 (hereafter referred to as RhoE) is a member of the

Rnd subfamily [7,8], which is also composed by Rnd1 and Rnd2

[4]. RhoE is thought to bind and inhibit the RhoA effector ROCK

I [9] and to interact with p190-Rho-GAP increasing the GTPase

activity of RhoA and thus, inactivating it [10]. As a consequence,

RhoE antagonizes RhoA function altering the actin cytoskeleton

organization and inducing cell motility [8]. In addition, RhoE is

involved in the control of cell cycle and survival in some cell lines

[11,12,13], and it also plays a role in the development and

function of the Central Nervous System (CNS) [14,15].

The functions of individual Rho GTPases have been mainly

described by expressing constitutively active and dominant

negative mutants. In the last years, analysis of mice that lack

some of the Rho proteins has provided very valuable information

about the role of these small GTPases in developmental processes

and cell behavior [2]. Knockout mice studies have even produced

different information to what has been predicted from dominant

negative mutant analysis, a difference that can be sometimes

explained by the functional redundancy between closely related

Rho isoforms. Importantly, knockout mice have also provided

models for human diseases, as is the case, for instance, of the

RhoGAP oligophrenin in mental retardation [16].

The functions of Rho GTPases seem to be especially important

in the nervous system since individual Rho proteins have been
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shown to play important roles in the regulation of neuronal

development, survival, and death. This has been considered

particularly relevant in the context of specific neurodegenerative

disorders in which Rho family GTPase function is altered [17].

While most of the functions of Rnd proteins have been studied

in vitro, little is known of their roles in vivo. A recent work has shown

that Rnd2 is essential for brain development [18], suggesting that

Rnd proteins could play important roles during development. To

study the role of RhoE in vivo we have generated mice lacking

RhoE expression by an exon trapping cassette. Our results show

that RhoE is essential for postnatal development since RhoE null

mice die shortly after birth. In addition, the lack of RhoE

expression results in important structural defects, such as the

absence of the common peroneal nerve, and notable motor and

behavioral deficits.

Results

RhoE gt/gt mice generation
Heterozygous RhoE +/gt mice were generated by using a gene–

trapping method, based on a tagged random mutagenesis, as

previously described [19] (Figure 1A). Wild type (+/+) and RhoE

gene-trap (gt/gt) mice were derived by breeding the heterozygous

founder mice on a hybrid genetic background (129SvEvBrd-

C57Bl/6J). The insertion of the trapping cassette was confirmed

by PCR with DNA extracted from mice tails (Figure 1B). We

ensured the absence of RhoE expression in gt/gt animals by

western blot (Figure 1C). Since the trapping cassette has a lacZ

reporter gene, the RhoE gt homozygous and heterozygous mice

have the lacZ gene knocked-into the RhoE locus, under the control

of the RhoE gene regulatory region. Blue staining resulting from

the inserted b-galactosidase (b-gal) activity, indicative of RhoE gene

expression, showed that RhoE was expressed in mouse embryos.

X-Gal staining was broadly detected in most embryonic tissues. In

addition to other organs, X-Gal staining was appreciable in the

central nervous system and in the developing muscles and

matched RhoE immunoreactivity (IR) (Figure 1D).

The absence of RhoE expression resulted in growth
retardation and postnatal mortality

To investigate the effect of the lack of RhoE expression on mice

viability, we studied the progeny resulting from heterozygous mice

crossings. Heterozygous animals were viable and fertile and did

not show any apparent abnormality. RhoE gt/gt mice were

obtained with a Mendelian distribution (22.3% RhoE gt/gt,

26.4% +/+ and 51.3% +/gt, from a total of 368 newborn mice,

p = 0.6791 in a Chi-square analysis when compared to the

expected Mendelian frequencies). RhoE gt/gt mice were signifi-

cantly smaller at birth than their heterozygous or wild type

littermates (p,0.01 in a Student’s t test) and showed a significant

growth retardation thereafter (Figure 2A and 2B and Table 1).

The two way ANOVA and Bonferroni posttest indicates that the

differences between RhoE gt/gt and the other two genotypes

increased from PD1 to PD21 (p,0.0001). Along the pre-weaning

period, RhoE gt/gt mice showed a slower daily increase in body

weight (p,0.0001 when comparing the slope of the linear

regressions), until postnatal day (PD) 18 when they started loosing

weight (Figure 2A and 2B and Table 1); there were no

statistically significant differences between the RhoE +/+ and

RhoE +/gt groups. The size and weight of the internal organs

were reduced but apparently proportional to the body size and

weight reduction (not shown). RhoE gt/gt mice did not survive

beyond PD29, with a median survival of 15 days (Figure 2C),

whereas there were no differences in the survival of RhoE +/+ and

RhoE +/gt mice (not shown). These results indicate that RhoE

expression is necessary for survival as well as for the correct

development during the postnatal period.

RhoE gt/gt mice displayed neurobehavioral development
abnormalities

In addition to their reduced size, RhoE gt/gt mice also showed

some remarkable phenotypic abnormalities that were apparent at

birth and whose severity increased with age. These phenotypic

anomalies principally consisted in an abnormal body position,

affecting mainly the hindlimbs (see Figure 2A and Video S1).

RhoE gt/gt mice are also hypoactive and display general ataxia,

spontaneous convulsions and abnormal gait. We performed a set

of neurobehavioral tests during the 3 first postnatal weeks to

compare the performance of the RhoE gt/gt mice with their wild

type littermates. Examination of the sensory and motor reflexes

revealed a significant delay (p,0.001) in the appearance of the

hindlimb grasping and placing responses (Figure 3A). The

development of manipulative (grasping, placing) and locomotor

abilities of the forelimbs preceded that of the hindlimbs in all

genotypes. However, while by PD7 the hindlimb placing and

grasp responses could be reliably elicited in wild type and

heterozygous mice, they were not found in the hindlimbs until

PD10-PD14 in RhoE gt/gt mice. No differences were found

between the two groups in the tactile orientation tests such as the

vibrissae placing (Figure 3A). We found that the archaic reflexes,

such as the rooting response and the crossing extensor reflex,

disappeared later in the RhoE gt/gt mice than in +/+ or +/gt

littermates (p,0.001, Figure 3B).

Regarding the emergence of developmental landmarks, both

the eyelid opening and the permeation of the auditory conduct

took place later in the mutants (p,0.001) and also the functional

measure associated with ear opening, the Preyer’s reflex, was

significantly delayed in the RhoE gt/gt mice (p,0.001,

Figure 3C). No significant differences among the three groups

were observed in the other reflexes and landmarks studied

(Figure 3C).

RhoE deficient mice showed severe neuromotor
impairment

RhoE deficient mice displayed abnormal motor patterns and

motor behavior (Video S1). To assess the effect of RhoE ablation

on the neuromotor development the mouse motor abilities were

studied using the pivoting and the walking tests. The immature

pivoting locomotion persisted longer in mutant mice than in their

littermates (Figure 4A). Moreover, the RhoE gt/gt mice tended to

be hypoactive especially in intermediate neuromotor development

stages (PD 5–7). The persistence of this immature locomotor

pattern at later stages (PD 10–14), when straight-line walking

appears, indicates a possible delay in the cranio-caudal maturation

in RhoE gt/gt mice (Figure 4A). This increase in locomotor

activity is typical when a gross alteration in the hindlimb activity is

present and reflects a compensatory strategy.

The latency to start walking was significantly higher in RhoE

gt/gt mice than in the wild types during the first 10 days of life

(p,0.001). At PD3 and PD4 mutants were unable to stand on all

fours and walk in a straight line in 60 seconds (the maximum time

allowed to perform the task), whereas initiation of walking was

achieved in less than 40 seconds in the wild types (Figure 4B). In

the wire suspension test the RhoE gt/gt mice were unable to

remain hanging on the wire, being the latency to fall significantly

reduced with respect to +/+ and +/gt littermates (p,0.001 at

PD13, PD14 and PD15). These differences were more pro-
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nounced along postnatal life, with a possible gene-dosage being

detected at PD15 (p,0.001 when comparing RhoE +/gt with

+/+, Figure 4C). In addition, RhoE gt/gt mice presented a worse

performance than the controls in the other motor tests assayed,

vertical climbing and clinging, righting reflex and negative

geotaxis (p,0.001, Figure 4D).

To compare the sensorimotor performance of RhoE gt/gt mice

with +/+ littermates, we performed the limb clasping test. Limb

clasping is a phenotype observed when the animal is suspended by

the tail and clenches its limbs instead of showing the normal escape

posture. RhoE gt/gt mice displayed a pronounced limb clasping

behavior that was absent in +/+ and +/gt mice (Figure 4E).

However, the expression of RhoE in the cerebellum at PD15

was detected only in the external granule cell layer, as assessed by

X-Gal staining (Figure 4F, left panel), reproducing the RhoE-IR

previously reported [14]. The cells of this layer proliferate during

the first days of postnatal development and later migrate inwardly

to form the internal granule cells. At PD15 almost all the cells of

Figure 1. RhoE gene-trap strategy. A) The gene trapping cassette in the retroviral vector VICTR37 was found in the second intron of the RhoE
gene, as assessed by reverse PCR. LTR, viral long terminal repeat; SA, splice acceptor sequence; IRES, internal ribosome entry site; bGeo, fusion of
beta-galactosidase and neomycin phosphotransferase genes; pA, polyadenylation sequence; PGK, phosphoglycerate kinase-1 promoter; BTK-SD,
Bruton’s tyrosine kinase splice donor sequence. B) Genotyping was performed as described in Materials and Methods by PCR. The position of the
primers used is marked in A by arrows. The gene-trap allele (gt) yields a lower molecular weight band than the wild type allele (wt). C) Western blot
with anti-RhoE antibodies to confirm the absence of RhoE expression in cells from RhoE gt/gt embryos. D) Sections showing RhoE immunoreactivity
(RhoE-IR, left panel) and X-Gal staining (central and right panels) of a 14.5 dpc RhoE +/gt embryo to reveal expression of the RhoE locus. RhoE-IR is
widespread in the embryo with a pattern that matches that of the X-Gal staining. RhoE expression is observed at the lumbar spinal cord (Sp c) and
very intense in the striated muscles (Ms), whereas the primordium of the lumbar vertebral body (L v) lacks RhoE-IR (left panel) and X-Gal staining
(central panel). A longitudinal section of the hindlimb of the same embryo (right panel) shows high level of X-Gal labeling at the level of the striated
muscles and in the joints, whereas the bone primordia lack X-Gal staining. Ms: striated muscles; Tb: tibia primordium. The asterisk marks the knee
joint primordium. Scale bar is 100 mm in the left and central panels and 200 mm in the panel on the right.
doi:10.1371/journal.pone.0019236.g001
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Figure 2. RhoE gt/gt mice are smaller in size and present a limited survival. A) Pictures of RhoE gt/gt and +/+ littermates were taken at
postnatal day (PD) 3 (left) and PD15 (right) to compare their size. Note the abnormal position of the hindlimbs of the RhoE gt/gt mouse. B) All mice
(n = 49, 8 wt, 30 +/gt and 11 gt/gt) were weighted everyday from PD1 to PD21. Data are represented as Mean+SD. RhoE gt/gt mice were smaller than
RhoE +/+ or +/gt animals at birth (Student’s t test, p,0.01) and showed a growth delay thereafter (one way ANOVA and Tukey’s test, p,0.005). C)
Kaplan Meier survival curve of a total of 31 RhoE gt/gt mice. All RhoE +/+ and +/gt littermates survived beyond the day when the last RhoE gt/gt
mouse died (not shown). The median survival for the RhoE gt/gt mice was 15 days.
doi:10.1371/journal.pone.0019236.g002
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the external granule cell layer have already migrated, and only a

few cells, which will soon disappear, remain located in the

outermost cerebellar cortex. As a consequence, none of the mature

neurons in the cerebellar cortex expressed RhoE and no gross

histological alteration in the cerebellum of the RhoE gt/gt mice

(Figure 4F, right panel) compared to the wild type (Figure 4F,

central panel) was detected.

In summary, all the results shown above suggest that the

absence of RhoE expression produces a delay in the neurobehav-

ioral and neuromotor development of mice.

Neuromuscular alterations and absence of peroneal
nerve in mice lacking RhoE expression

The poor performance in the motor tests along with the

abnormal posture of the RhoE gt/gt mice, led us to investigate

whether these alterations could have a structural basis. We therefore

analyzed the structure of the muscle fibers. Histological analysis of

mutant muscle fibers did not show any apparent anomaly nor any

increase in the number of central nuclei, which would suggest

muscular degeneration or regeneration. Nerve cross sections did not

show any gross alteration either (data not shown). However,

neuromuscular synapses were less developed in RhoE gt/gt mice

than in their control littermates (Figure 5A). We specifically found

a delay in neuromuscular junction maturation, with an increased

presence of less developed plates, both in the forelimbs (triceps

brachii) and in the hindlimbs (gastrocnemius), at PD21 (Figure 5B).

We finally studied whether the number of motoneurons was

affected in the ventral spinal cord of RhoE gt/gt mice and found a

reduction of 43% (p,0.001) in the number of motoneurons when

compared to the +/+ mice (Figure 5C and 5D).

One of the most striking findings was that all RhoE gt/gt mice

displayed an abnormal hindlimb position characterized by

hyperextension of the feet and impossibility to flex them (see

Figure 2A and Video S1). Accordingly, the behavioral tests

indicated worse performances in the hindlimbs grasping and

placing tests. In addition, as it can be noted in the footprint

analysis, RhoE gt/gt mice hindlimb steps were shorter and

irregular and showed a reduced stride length (15%, p,0.05) when

compared to their wild type littermates (Figure 6). In order to

analyze the anatomical integrity of the hindlimbs, we dissected the

limbs of RhoE gt/gt mice. Our analysis showed, in all the animals

analyzed (n = 37), a complete absence of the common peroneal

nerve (Figure 7A, top panels). Consequently, the mutant sciatic

nerve, instead of splitting into the common peroneal and the tibial

nerves, was only continued by its tibial component (Figure 7A,

bottom panels). The sciatic nerve of RhoE +/gt mice were similar

to the wild types (Figure 7A). We also found that all the spinal

roots which anatomically originate the sciatic nerve were present

in the mutant mice (Figure 7B). The absence of the peroneal

nerve in RhoE gt/gt mice resulted in the atrophy of its target

muscles, which are normally located in the craniolateral

compartment of the distal hindlimb (Figure 7C). These muscles

in the RhoE gt/gt mice appeared much reduced in size, with most

of the muscle fibers replaced by adipose and connective tissue,

whereas the remaining muscle cells appeared grouped in clusters

of small size fibers (Figure 7C). All other main muscles and nerves

of both the fore- and the hind-limbs appeared normally located

although the muscles of RhoE gt/gt mice were reduced in size and

volume when compared to the control littermates.

Discussion

Rnd proteins are atypical members of the Rho family and their

functions in vivo have been less studied. The recent reports showing

that Rnd2 is essential for the migration of radial cortical neurons

acting downstream of neurogenin2 [18], and that Rnd1 and Rnd3

are required for Xenopus somitogenesis [20] suggest that Rnd

proteins could be important during development. However, the

generation of mice lacking Rnd proteins, which would provide

new tools to study the in vivo function of these proteins, has not yet

been described. Here, we analyze the phenotype of RhoE null

mice and show that RhoE is essential for a correct development

since the absence of RhoE expression induces severe behavioral

and structural alterations and becomes deleterious few weeks after

birth. Our results show that RhoE has unexpected functions

during the development since mice lacking RhoE expression have

neuromotor impairment and neuromuscular alterations. Surpris-

ingly, RhoE deficiency also results in the complete absence of the

common peroneal nerve. As RhoE is highly expressed not only

during postnatal but also embryonic development, the absence of

RhoE expression during prenatal development is also very likely to

contribute to the phenotypes observed in RhoE null mice. This is

supported by the fact that most of the deficits observed in RhoE

null mice are already present at birth. The real impact of the

absence of RhoE expression during the embryonic development

will be addressed in future studies.

The ablation of RhoE expression leads to a delayed maturation

of several systems, especially of those that affect motor develop-

ment, as it can be concluded from the results of the motor tests,

which are notably worse performed by RhoE null mice. The

neuromotor development is a complex process that has to be

interpreted globally. In our model, the time-dependent changes in

pivoting activity combined with the delayed latency observed in

the walking activity, reflect a delay in neuromotor development. In

fact pivoting activity is an immature motor pattern that disappears

along time, (as can be seen in Figure 4A for wild type mice). This

is accompanied with a progressive decrease in the time needed to

initiate the straight line walking (Figure 4D) as the cranio-caudal

maturation is completed. Instead, RhoE gt/gt mice were

hypoactive in early time points (PD5–7), with less pivotings and

longer latency to walk than their siblings, and showed a delayed

neuromotor development characterized by the persistence of the

immature motor pattern in the pivoting test and a delay in the

appearance of a normal gait pattern. Moreover, the worse

performance of the RhoE gt/gt mice in a broad range of motor

Table 1. RhoE gt/gt mice are smaller than their littermates.

Weight at birth Weight at PD18
Daily body-weight
increase (slope) Is the slope different from RhoE +/+?

RhoE +/+ 1.7460.10 9.3660.46 0.4960.01

RhoE +/gt 1.7560.07 9.8460.35 0.5260.02 NO (p = 0.2325)

RhoE gt/gt 1.4060.05 6.3060.41 0.3260.01 YES (p,0.0001)

doi:10.1371/journal.pone.0019236.t001
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tests indicates that RhoE could be involved in the correct

development of the motor function. These results suggest that

RhoE is involved in the maturation of the neuromotor system at

different levels. Some of these defects could have been originated

in different encephalic structures. For example, the limb clasping

phenotype along with ataxia can have a cerebellar origin [21].

RhoE expression in the cerebellum is restricted to the EGL.

Although we have not observed gross alterations of the cerebellum

in RhoE gt/gt mice, we cannot rule out that molecular changes in

these cells in the RhoE null mice could be responsible for some of

the effects. As RhoE is widely expressed in the central nervous

system, as we have previously shown [14], other encephalic

structures could also be altered in RhoE null mice. Therefore, a

careful analysis of RhoE gt/gt mice brains will be performed.

It is interesting to note that many Rho GTPases regulate axon

outgrowth and growth cone formation and/or collapse (reviewed

in [22]). Additionally, we have recently shown that RhoE

stimulates neurite-like outgrowth in PC12 cells through the

inhibition of RhoA/ROCKI signaling [15]. Therefore, the

delayed maturation observed in many neuronal functions of

RhoE null mice could be related to neurite outgrowth retardation.

The less developed stage of the motor endplates that we have

observed in the RhoE gt/gt mice could also be due to similar

causes. Nevertheless, the actual state of neurite outgrowth of RhoE

gt/gt neurons is currently under study.

The lack of RhoE expression results in a decrease in muscle

mass and in the number of motoneurons, and in a delay of the

neuromuscular junction maturation. Interestingly, recent evidenc-

es show that RhoE expression is involved in muscle maturation.

Specifically, RhoE is essential for myoblast elongation and

alignment before fusion, although it is dispensable for myogenesis

induction [23]. RhoE is also upregulated in C2C12 cells

overexpressing Gaz, resulting in the inhibition of myogenic

differentiation [24]. In addition, RhoE has recently been shown

to interact with PLEKHG5/Syx [25], a brain-specific RhoA GEF

(guanine exchange factor, a positive regulator of Rho GTPases)

[26]. This protein has been found to be mutated in a form of

Lower Motor Neuron Disease (LMND), characterized by

childhood onset and generalized muscle weakness and atrophy

with loss of walking [27]. Moreover, other Rho GTPases such as

RhoA and Rac1 have also been demonstrated to be involved in

motoneuron survival, and mutations of ALS2, which encodes

alsin, a GEF with dual specificity for Rac1 and Rab GTPases,

cause a form of juvenile-onset of the degenerative disorder of

motor function Amyotrophic Lateral Sclerosis (reviewed in [17]).

Our findings confirm that RhoE is highly expressed in the forming

striated muscles as well as in the central nervous system (this work

and reference [14]).Thus, we can speculate that the absence of

RhoE expression could result in a delay of myogenesis that would

produce a reduction of muscle mass which, in turn, would

decrease the number of motoneurons as a consequence of a lesser

production of trophic factors . On the other hand, the smaller

number of motoneurons found in the RhoE gt/gt mice could be a

direct consequence of the lack of RhoE expression and this, in

turn, would result in the reduction of muscular mass observed in

these animals. All these data suggest that RhoE could be involved

in motoneuron diseases and that the RhoE mutant mouse

presented in this work could be a useful animal model for these

diseases.

One of the most intriguing observations of this work is that the

lack of RhoE expression results in the absence of the common

peroneal nerve, accompanied by the atrophy of its target muscles

which are located in the craniolateral compartment of the distal

hindlimb. The abnormal hindlimb position and the delayed

Figure 3. RhoE gt/gt mice displayed neurobehavioral abnor-
malities. The different reflexes and responses were analyzed as
described in Materials and Methods. In all cases the postnatal day (PD)
when the response appeared or was lost was recorded. A total of 49 mice
(11 RhoE gt/gt, 30 +/gt and 8 +/+) were analyzed. Data are presented as
Mean+SEM. Statistically significant differences between RhoE gt/gt and
+/+ mice are shown (***p,0.001) A) Grasping reflexes and placing
responses correlate with the altered hindlimb position in RhoE gt/gt
mice. The day when the mice were able to show the correct response was
recorded. B) Archaic reflexes (rooting and crossed extensor) persist
longer in RhoE gt/gt mice than in wt or heterozygous littermates.
Columns show the day when the reflex was not observed. C) The day
when the following development landmarks appeared was recorded:
separation of the ears from the head (Pinna), apparition of body hair
(Hair) and opening of the auditive conduct (Ear) and of the eyelids (Eyes).
The delay in the auditory (Preyer) and not in the tactile (Blast) startle
responses is a functional consequence of the delayed ear opening.
doi:10.1371/journal.pone.0019236.g003
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Figure 4. RhoE gt/gt mice show neuromuscular development defects. The same cohort of animals described in Figure 3 was used. Data are
presented as Mean+SEM. Statistical differences between groups are shown when significantly different from the wt controls (*p,0.05; **p,0.01;
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appearance of the hindlimb grasping and placing reflexes in RhoE

gt/gt mice is likely to be a consequence of such nerve absence.

Strikingly, in addition to RhoE, other apparently unrelated genes

as the ephrin receptor EphA4 [28] and the HoxD locus [29] have

been reported to be responsible for the proper development of the

peroneal nerve. Similarly to RhoE, EphA4 ablation induces the

absence of the peroneal nerve and muscular atrophy of its target

muscles, but with slightly lower penetrance (88% of hindlimb

affected in EphA4 2/2 vs 100% in RhoE gt/gt). In contrast,

whereas about 30% of EphA4 heterozygotes display such

anomaly, none of the RhoE +/gt mice was affected.

Emerging evidence shows that activation of Eph-mediated

downstream signaling involves Rho proteins leading to actin

cytoskeleton reorganization. Several studies have identified

signaling molecules downstream of Eph activation, the majority

of which converge to the regulation of small Rho GTPases

including Rac1, Cdc42, and RhoA. For example, activation of

EphA by its ligand leads to a transient inhibition of Rac1 activity,

concomitant with RhoA activation [30,31]. In addition, various

GEFs have been identified as intermediaries that link EphA

receptors to small Rho GTPases at growth cones [31,32,33].

Finally, GTPase-activating proteins (GAPs), which act as negative

regulators of Rho GTPases are also involved in Eph signaling

[34,35]. To date, no direct relationship has been described

between EphA4 and RhoE, but the similarity of the phenotypes

observed in EphA4 2/2 and RhoE gt/gt, along with the Eph-

RhoA relationship and the RhoA-RhoE antagonism, suggest that

RhoE could be involved in the EphA4 signaling pathway. In this

context, it is noteworthy that it has been recently found a novel

interaction between EphA1 and the Integrin-Linked Kinase (ILK)

[36], a mediator of interactions between integrin and the actin

cytoskeleton that regulates RhoE to control Schwann cell process

extension [37].

Loss of HoxD10 function, alone [29,38] or together with

Hoxc10 [39], also results in the absence of the peroneal nerve,

probably because of the disorganized pattern of the nerve

formation. Since no relationship has been established between

the hox genes and Rho proteins to date, it would be interesting to

analyze whether RhoE is altered in the HoxD mutant mice, as well

as in the EphA4 2/2 mice.

How the absence of RhoE produces all these anomalies is

currently under research. We have analyzed the protein expression

profile in extracts from RhoE gt/gt and wild type brains and the

result shows that the highest difference is in cofilin (manuscript in

preparation). Cofilin is an actin severing protein involved in actin

depolymerization and therefore in several events as cell motility,

growth cone collapse and axon repulsion (reviewed in [40]).

Cofilin activity is regulated by phosphorylation/dephosphoryla-

tion events [41]. The Rho/ROCK pathway can regulate cofilin

phosphorylation through LIMK [42]. We have recently demon-

strated that RhoE induces neurite outgrowth in PC12 cells

through inhibition of the RhoA/ROCK pathway resulting in

dephosphorylation of cofilin [15]. All these data would suggest that

the absence of RhoE expression in RhoEgt/gt mice would result in

the activation of the RhoA/ROCK pathway that in turn would

inactivate cofilin, resulting in neurite extension and/or cell

migration alterations.

In summary, the absence of RhoE expression results in a

phenotype characterized by the abnormal development of the

nervous system, reduced body size and lethality few weeks after

birth. Therefore, with our in vivo system, RhoE reveals itself as a

very important protein for the normal development of vertebrates.

Moreover, our results suggest that RhoE (and/or its signaling

pathway) could be involved in neurological disorders as many

other members of the Rho family [43]. Our recent reports

showing high levels of RhoE expression in widespread areas of the

central nervous system, including the motoneurons [14], and the

role of RhoE as a promoter of neurite formation [15] could help to

explain the importance of this protein in the nervous system and

the alterations observed in the mice lacking RhoE expression.

Materials and Methods

Ethics Statement
All animal procedures were approved by the local ethics

committees (Ethics Committee for Animal Research of the

Barcelona Biomedical Research Park, ID#MDS-08-1060, and

Ethics Committee for Animal Welfare of the Universidad CEU

Cardenal Herrera, ID#CEBA03/2007), met the local guidelines

(Spanish law 32/2007), European regulations (EU directive 86/

609) and Standards for Use of Laboratory Animals nu A5388-01

(NIH). The experimenters hold the official accreditation for

animal work (Spanish law 32/2007).

Generation of RhoE gt/gt mice
Mice deficient for RhoE expression were generated at Lexicon

Pharmaceuticals, by gene trapping in ES cells, identification of

trapped genes by using OmniBankTM Sequence Tags (OSTs) and

characterization of retroviral gene-trap vector insertion points as

previously described [19,44]. OmniBank ES cell clone

OST364657 was used to generate RhoE gt/gt mice as described

[44]. The gene-trap vector VICTR 37 was inserted within intron 2

of the RhoE gene. All mice were of mixed genetic background

(129SvEvBrd and C57Bl/6J). Mice were genotyped by PCR. The

wild-type locus yields a PCR product of 600 bp using primers 59-

TTT ACA CAG TAG GCT GAC TC-39 and 59-TGA GCT

AGG AAG ATG CGG ATG T-39. The mutant locus yields a

PCR product of 400 bp using primers 59-AAA TGG CGT TAC

TTA AGC TAG CTA GCT TGC-39 and 59-TGA GCT AGG

AAG ATG CGG ATG T-39 (Figure 1B). PCR products were

separated through 1% agarose electrophoresis gels.

The expression of RhoE was analyzed by Western Blot of

extracts from Mouse Embryonic Fibroblasts (MEFs) of the three

genotypes. Cell extracts were prepared as described [12]. We used

an anti-RhoE monoclonal antibody (clone3, Upstate, Lake Placid,

NY, USA) and horseradish peroxidase-conjugated secondary

antibodies (Pierce, Rock-Ford, IL, USA). Blots were developed

***p,0.001). A) The number of times that the mouse rotated on its hindlimbs without moving (Pivoting) over a 60 second period was recorded at
different postnatal days (PD) as indicated. B) Latency to walk on a straight line was recorded. At PD 3 and 4, RhoE gt/gt mice showed no walking
activity along the maximum time allowed (60 seconds). C) In the wire suspension test the latency to fall was significantly reduced in RhoE gt/gt mice.
D) RhoE gt/gt mice perform worse in different motor tests. The postnatal day (PD) in which the following tests were performed correctly was
recorded: vertical climbing (Climbing), vertical clinging (Clinging), righting reflex (Righting) and negative geotaxis (Geotaxis). The tests are described in
Materials and Methods. E) Pictures show an example of the limb clasping response of a PD21 RhoE gt/gt mouse (right) compared with the normal
escape posture of a RhoE +/+ (left) and a RhoE +/gt (central) mouse when suspended by the tail. F) Sections of P15 cerebella showing X-Gal staining
only in the external granular cell layer (EGL, left panel) and the absence of gross abnormalities in the RhoE gt/gt sample (right panel) compared with
the wild type (central panel). The sections in the central and right panels are stained with 1% cresyl fast violet solution.
doi:10.1371/journal.pone.0019236.g004
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using the enhanced chemiluminescence system (ECL Plus,

Amersham Bioscience, Little Chalfont, UK).

Same sex littermates were group-housed (4–6 animals per cage)

under a 12-h light/dark schedule in controlled environmental

conditions of humidity and temperature with food and water

supplied ad libitum. As RhoE gt/gt mice died shortly after weaning,

they were kept with their mother until they died or were sacrificed

when their condition worsened.

Somatometric and postnatal neurobehavioral analysis
Mice used for behavioral analysis were derived from crosses

between RhoE +/gt animals. The day of birth was considered

PD1. All the behavioral tests were conducted by the same

experimenter in an isolated room and at the same time of the day.

The experimenter was blind to genotype. A total of 49 mice (11

RhoE gt/gt, 30 RhoE +/gt and 8 RhoE +/+) from six different

litters were examined during the pre-weaning period. Somatom-

etry was performed daily (PD1 to PD21) by weighing the pups and

measuring the body length. The day of appearance of develop-

mental landmarks was recorded and used as the unit of analysis.

Neurobehavioral analysis included a battery of tests evaluating

pre-weaning sensorial and motor responses that reflect the

maturation of the CNS [45]. The following tests were performed:

Crossed extensor reflex. Pinching the foot of one hind limb

causes flexion of the stimulated limb, while the opposite hind limb

is extended.

Rooting reflex. Bilateral stimulation of the face region

stimulates the animal to crawl forwards pushing the head in a

rooting fashion.

The day in which these two reflexes were lost was recorded.

Righting Reflex. When the animal is placed on its side, it

immediately turns over to rest in the normal position with all four

feet on the ground. The first day when the animal is able to turn

over in less than 30 seconds was recorded.

Fore and hind limb placing responses. Contact of the

dorsum of the foot against the edge of an object will cause the foot

to be raised and placed on the surface of such object when the

animal is suspended by the tail.

Grasp reflex. When the fore or hind foot is stroked with a

blunt instrument, it is flexed to grasp the instrument.

Vibrissae placing response. When the mouse is suspended

by the tail and lowered so that the vibrissae make contact with a

solid object, the head is raised and the fore limbs are extended to

grasp the object.

The first day in which the placing and grasping reflexes

appeared was recorded.

Preyer’s response. A loud, sharp noise causes an immediate

startle response, observed as a sudden extension of the head and

fore and hind limbs which are then withdrawn and a crouching

position is assumed.

Tactile startle response (blast response). A strong blow

causes an immediate startle response, a sudden extension of the

head and fore and hindlimbs, which are then withdrawn and a

crouching position assumed.

The first day when the normal startle responses were observed

was used for comparison between the three genotypes.

Gait analysis and developmental locomotor pat-

terns. Pivoting is an immature locomotion characterised by

rotations around the hindlimbs and is due to the later development

of these hindlimbs. The ability to walk in a straight line is an

indicative of a more mature development. At different ages, the

number of pivotings (measured as 90u turns) in 60 seconds was

recorded. The latency to walk was measured as the time the mouse

waits until it starts moving in a straight line for a distance equal or

higher than its own length in less than 60 seconds.

Wire suspension test. The ability to hold on to a 4 mm bar

for a given amount of time was measured, as latency to fall. The

maximum time allowed was 60 seconds.

Negative geotaxis. When the mouse is placed on a 45u angle

slope with its head pointing down the incline, it will turn around

and crawl up the slope. The day when the animal was able to turn

around in less than 35 seconds was recorded.

Figure 5. RhoE gt/gt mice show a delay in neuromuscular junction maturation and a decrease in the number of spinal
motoneurons. A) Representative synaptic AChR cluster morphologies in the neuromuscular junctions of wild type (left) and RhoE gt/gt (right) mice
at postnatal day 21, both in the triceps brachii (TB, top) and in the gastrocnemius (G, bottom) muscles. The picture of the RhoE gt/gt mouse
corresponds to the M4 stage of neuromuscular junction, whereas the image of the wild type shows a more developed M5 form of synaptic cluster. B)
Type of synaptic AChR clusters in PD21 RhoE gt/gt and wild type mice according to the status of maturation in the triceps brachii (left) and
gastrocnemius (right) muscles. The forms of synaptic clusters that are present in the RhoE gt/gt mice are less developed than in the wild types. C)
Motoneurons from 4 RhoE wt and 5 RhoE gt/gt mice were counted as described in Materials and Methods. RhoE gt/gt mice show a significantly
reduced number of motoneurons (14676146 vs 25826322, p,0.001 in a Student’s t test). D) Representative pictures of RhoE +/+ and RhoE gt/gt
ventral horns (dotted lines) of cervical spinal cord sections. Arrows point at one motoneuron in each section.
doi:10.1371/journal.pone.0019236.g005

Figure 6. Abnormal walking of RhoE gt/gt mice. Representative
walking footprint patterns of PD21 wild type (top) and RhoE gt/gt
(bottom) mice. Forepaws were stained in red and hindpaws in blue. The
pattern clearly differs, showing shorter and irregularly spaced strides in
RhoE gt/gt mice when compared to the wild types. The graph shows
the quantification of the stride length index of wild type and RhoE gt/gt
mice. Since RhoE gt/gt mice were smaller than the wild types, the stride
length index was calculated as the ratio stride-length/body-length for
each mouse. The stride length index was reduced in the RhoE gt/gt
mice compared to the control mice (*p,0.05 in a Student’s t test).
doi:10.1371/journal.pone.0019236.g006
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Vertical Clinging and Climbing. The pup is held against a

vertical metallic grid (wire: 0.6 mm in diameter, mesh: 6 mm

wide). Two behaviours are scored: clinging for 10 s and climbing

after clinging. The first day when the test is positive was recorded.

The limb clasping test consists in analyzing the response of the

mouse limbs when the mice are held suspended in the air by the

tail. The wild type mice open their limbs widely [46,47].

Footprint test
The hind- and forepaws of the mice were coated with blue and

red nontoxic paints, respectively. The animals were then allowed

to walk along a 50 cm-long, 10 cm-wide runway into an enclosed

box (with 10 cm-high walls). All mice had two training runs. The

footprint patterns were analyzed for three step parameters

(measured in cm): (1) Stride length was measured as the average

distance of forward movement between each stride, (2) hind-base

width and (3) front-base width were measured as the average

distance between left and right hind footprints and left and right

front footprints, respectively. These values were determined by

measuring the perpendicular distance of a given step to a line

connecting its opposite preceding and proceeding steps [48].

X-Gal staining
Embryos from RhoE +/gt mice crosses were obtained by

cervical dislocation or by overdose of pentobarbital of the mother

at 14.5 days post coitum (dpc). They were then washed in cold-

phosphate-buffered saline (PBS) and fixed (2% paraformaldehyde

2 mM MgCl2) for 2–4 hours at room temperature, cryoprotected

and frozen. Samples were then serially sectioned in a cryostate,

postfixed with 0,2% PFA 2 mM MgCl2 and permeabilized with

detergent solution (0,02% NP40, 0.01% deoxycolate, 2 mM

MgCl2, in 100 mM sodium phosphate buffer pH 7.3). For X-

Gal staining, the embryos were incubated in the dark at 37uC
overnight in X-Gal solution (1 mg/ml X-Gal, 5 mM potassium

ferricyanide and 5 mM potassium ferrocyanide, 0,02% NP40,

0.01% deoxycolate, 2 mM MgCl2, in 100 mM sodium phosphate

buffer pH 7.3). Finally, sections were mounted and observed

under light microscopy.

Histology and number of motoneurons
Mice at PD21 (4 RhoE +/+ and 5 RhoE gt/gt) were sacrificed

with an overdose of sodium pentobarbital and perfused transcar-

dially with 50 ml of heparinized physiological saline followed by

200 ml of fixative solution containing 4% paraformaldehyde in

0.1 M phosphate buffer, pH 7.4, containing 0.2% picric acid at

room temperature. The spinal cord was removed and immersed in

4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, for 3

days at 4uC. The spinal cord was cryoprotected in 20%

phosphate-buffered sucrose solution. Serial 16 mm thick coronal

sections were cut with a cryostat and stained with 1% cresyl fast

violet solution. Sections were analyzed with an Olympus BX40

microscope. Spinal motoneurons, identified by their location at the

ventral horns as big size cells with a well defined nucleus, were

counted by an experimenter blind to genotype. From each animal,

a total of 120 sections (40 from each of the spinal regions, cervical,

thoracic and lumbar) separated at least 64 mm, were analyzed.

Muscle histology was analyzed by immersing the hindlimbs of

PD15 mice in formalin for 7 days at room temperature. Then, the

limbs were rinsed in water and decalcified with equal parts of 8%

hydrochloric acid solution and 8% formic acid solution for 1 day.

Once the decalcification was completed, the limbs were rinsed in

water and transferred to an ammonia solution for 30 min. After

fixation, decalcification and paraffin-embedding, 8 mm thick

sections were obtained. The sections were dehydrated with a

graded series of increasing ethanol concentrations and stained with

hematoxylin-eosin. Cerebellar sections (4 mm thick) were obtained

from paraffin embedded PD15 mice brains. Sections were

deparaffined and hydrated and stained with cresyl violet solution.

Immunohistochemistry
Embryos were immersed in 4% paraformaldehyde overnight,

dehydrated in increasing concentrations of ethanol, embedded in

paraffin, serially sectioned (5 mm) in an HM 310 Microm

microtome (Walldorf, Germany) and collected on polylysine-

coated slides. Antigen retrieval of deparaffined and rehydrated

sections was performed by heating at 100uC in a water-bath for

20 min in citrate buffer (10 mM pH 8). Sections were then washed

three times in 0.1 M phosphate buffer with 0.2% Triton X-100

(PBST) and incubated with 3% H2O2 in methanol for 40 min to

quench endogenous peroxidase activity. Nonspecific binding was

blocked with 10% horse serum in 3% BSA. Immunohistochem-

istry for RhoE (Upstate, Lake Placid, NY, USA, 1:50) was

performed using the immunoperoxidase procedure of Vectastain

Elite ABC kit (Vector Laboratories, Burlingame, CA, USA).

Briefly, the sections were incubated with the primary antibody

overnight at 4uC in a humidified chamber. They were then

incubated 1 h with a biotinylated secondary anti-mouse antibody,

amplified with the avidin–peroxidase complex and finally revealed

by diaminobenzidine tetrahydrochloride stain.

Morphological analysis of neuromuscular junctions
Mice were sacrificed as described above and the limbs were

dissected to expose the triceps brachii and gastrocnemius muscles.

Muscles were fixed in 4% PFA, sunk in 30% sucrose, frozen and

sectioned in a cryostat. Sections were then stained with alpha-

bungarotoxin-tetramethylrhodamine and visualized with fluores-

cence microscopy. The process of maturation of the Acetilcholine

(AChR) clusters distribution at the neuromuscular junctions

(NMJs) was classified into six stages (M1 to M6), as previously

described [49].

Data analysis
As no significant differences were detected between male and

female mice of each genotype, results were combined. Unless

Figure 7. Absence of the common peroneal nerve and disappearance of the craniolateral hindlimb muscle fibers in RhoE gt/gt
mice. A) Top panels: Dissection of the hindlimb of representative PD21 wild type, RhoE +/gt and RhoE gt/gt mice. The common peroneal nerve was
absent in all the RhoE gt/gt mice (right panel). Arrows indicate the presence of the common peroneal nerve in the wild type (left panel) and in the
heterozygous (central panel) and its absence in the RhoE gt/gt sample (right panel). Botom panels: The two main components (tibial and common
peroneal) of a sciatic nerve removed from a wild type mouse (left panel) and form a heterozygous central panel) can be observed, whereas the sciatic
nerve of a RhoE gt/gt mouse only shows the tibial nerve. B) The spinal roots originating the sciatic nerve in a wild type (top) and in a RhoE gt/gt
(bottom) mouse are similar. The figure on the right shows a schematic representation of the roots. C) Histological section of a left P15 hindlimb from
a wild type (left panels) and a RhoE gt/gt (right panels) mouse. The lower panels show a higher magnification of the area in the upper rectangle. The
dotted lines represent the area covered by the craniolateral muscles in the wild type and in the RhoE gt/gt mice. Note that in the RhoE gt/gt hindlimb
almost all muscle cells have been replaced by adipose tissue and clusters of small size fibers. TA: tibialis anterior muscle, EDL: extensor digitorum
longus muscle, T: tibia, F: fibula.
doi:10.1371/journal.pone.0019236.g007
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stated otherwise, the significance of the effects was assessed by a

one-way or multivariate analysis of the variance (ANOVA) with

Bonferroni’s post hoc analysis test. All analyses were performed by

using the statistical package GraphPad Prism (5.0).

Supporting Information

Video S1 RhoE gt/gt mice are smaller and show an
abnormal hindlimb position. Recording showing one PD7

RhoE gt/gt mouse (left on the screen) with one wild type

littermate. The RhoE gt/gt mouse shows an abnormal position of

the hindlimbs due to the absence of the common peroneal nerve,

with the characteristic foot drop and narrowing of the toe spread,

and uncoordinated movements. Note that the RhoE gt/gt mouse

is much smaller that the wild type.
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